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ABSTRACT

A state-of-the-art parallel programming environment called UPPER (User-interactive Parallel Pro-
gramming EnviRonment) is presented in this paper. Parallel machines which execute programs concurrently
on hundreds or thousands of processors provide far more computational power than does a uniprocessor.
However, designing parallel programs on parallel machines manually is very difficult and error-prone.
Due to these problems, many tools which help programmers translate sequential programs into parallelized
programs or even help them design parallel programs have been developed. The proposed environment
also has the same purpose. The major components of this environment include a parallelizing: compiler
system and simulators of the given target machimes. The parallelizing compiler system introduces new
and existing techniques for compiler-time analysis, and the simulator can simulate execution of the
translated parallelized program on the target machine and show the simulated performance reports. This
integrated environment attempts to provide convenience for users or programmers who can easily design
or write their desirable parallel programs based on a variety of assertions and information generated by

this environment.

Using our environment, programmers can avoid the necessity of designing parallel

programs and can obtain efficient parallelized programs from sequential programs easily.

Key Words: distributed memory multicomputers, interprocessor communication, parallel programming,
parallelizing compilers, shared memory multiprocessors, simulators

l. Introduction

Parallel processing is the most promising approach
to designing and establishing high-performance com-
puters. Parallel computers with hundreds of moderate-
sized processors or thousands of simple processors are
commercially available and are being used to solve
various practical problems. The programming environ-
ment, a collection of software tools and system soft-
ware, for parallel machines is more demanding than
that for sequential machines. This is because engineers
spend much time concentrating on designing the hard-
ware of parallel computers instead of that on program-
ming parallelism into programs running on parallel
computers. To reduce the gap between hardware and
software, we need a parallel programming environment
which offers better tools for users to extract parallelism
and to debug programs. The most important goal of
a programming environment is to design excellent
compilers with user-defined parallel constructs (par-

"To whom all correspondence should be addressed.

allel languages) or to develop parallelizing compilers
which automatically translate a sequential program into
a parallel executable form.

Therefore, several parallel programming environ-
ments, to be sure, have been designed and implemented
on a variety of parallel machines for the purpose of
saving the effort involved in developing parallel pro-
grams. The Parafrase-II project (Polychronopoulos et
al., 1989) was one of the first attempts to design and
implement a source to source multilingual restructuring
compiler which supports the C and FORTRAN lan-
guages. It is portable, easy to extend, and powerful
due to its compiling capabilities. The Parallel
TRANslator, PTRAN, (Allenet al., 1988) is a research
system used to develop technology for automatic
exploitation of parallelism. The tiny research tool
(Wolfe, 1991), which provides several elementary
transformations, allows a user to interactively restruc-
ture the loops in a program. The ParaScope project
(Kennedy et al., 1991) develops an integrated collec-
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tion of tools to assist scientific programmers in imple-
menting correct and efficient parallel programs. This
environment can build dependences, provide expert
advice, and perform complex transformations (Padua
and Wolfe, 1986; Wolfe, 1989) while the programmer
determines which dependences are valid and chooses
those transformations to be applied.

SUPERB is a semi-automatic parallelization sys-
tem which includes SIMD and MIMD parallelization
for the SUPRENUM multiprocessor (Zima et al.,
1988). This system is oriented toward the parallelization
of numerical programs which work in a mesh or mesh-
like data domain where the computations at the mesh
points are local. Rogers and Pingali (1989) worked
on compilation of the data flow language ID Nouveau
for distributed memory machines. They used a fixed
domain decomposition method to assign data to pro-
cessors and to automatically generate individual send
and receive pairs for passing of data blocks among
processors. The compiler of Fortran D (Hiranandani
et al., 1992) is used to compile a sequential program
with specification of data alignment and data distribu-
tion. Its goals are to provide a machine-independent
programming model for data-parallel applications and
to shift the burden of machine-dependent optimization
to the compiler. As described in Koelbel et al. (1990)
and Koelbel and Mehrotra (1991), KALI is a system
which compiles a functional language with a parallel
construct into a language which includes constructs for
explicit process creation, data storage layout, and
interprocessor communication. It is the first compiler
to support both regular and irregular computations on
MIMD distributed memory machines. However, KALI
still leaves the tasks of parallelism extraction and data
partition to the programmer since it only removes the
task of communication generation from the program-
mer. CRYSTAL (Li and Chen, 1991) is a high-level
functignal language having a parallel construct com-
piled to distributed memory machines using both
automatic data decomposition and communication
generation. This compiler tries to choose a data de-
composition so as to minimize the time spent on data
communication. To achieve this goal, a part of the data
layout will match the combination of the program
reference pattern and communication aggregates.

Recently, the PARADIGM project (Gupta and”

Banerjee, 1992; Su et al., 1993) has developed a fully
automated technique for translating serial programs for
efficient execution on distributed memory
multicomputers. In addition, the Stanford SUIF com-
piler system (Tjiang ef al., 1992; Wolf and Lam, 1991)
derives data and computation decomposition automati-
cally for distributed memory machines. It solves the
problem of global optimization for parallelism and data

locality. It can also handle more flexible data decom-
positions and find more opportunities for communica-
tion optimization (Amarasinghe and Lam, 1993; Ander-
son and Lam, 1993).

The parallel programming environment called
UPPER (User-interactive Parallel Programming
EnviRonment) is another attempt in this area. To
develop parallelized programs, it records a given se-
quential program’s the data and control information
and their relationships for users, and indicates the
effectiveness of various program transformations
through the user interface. Moreover, the programmer
can give a few suggestions to enable the parallelizing
compiler to look for more parallelism in programs.
This environment also provides convenience for pro-
grammers who can easily design desirable parallel pro-
grams. It differs from the other interactive environ-
ments mentioned above in its new compilation tech-
niques (Chen and Sheu, 1994; Sheu and Chen, 1995)
and simulators of parallel computers. For different
types of parallel machines, various program transfor-
mations have been deeply studied and designed (Chu,
1993; Ni, 1993). Based on the execution performance
as analyzed by simulators, programmers can decide
whether to leave the parallelized codes as the final
result or to apply different parallelizing techniques to
the programs.

The rest of this paper is organized as follows. An
overview of UPPER is briefly given in Section IL. In

* Section III, we present the detailed implementation as

well as the user interface responsible for interaction
and exhibition of various modules and graphics. The
machine-independent phase which deals with the pre-
processing of a source program, dependence analysis,
and our proposed compilation strategies, which have
appeared in Chen and Sheu (1994) and Sheu and Chen
(1995), is presented in Section IV. Section V states
the implementation issues of the machine-dependent
phase of the parallelizing compiler. During the ma-
chine-dependent phase, we handle mapping and sched-
uling of a transformed program onto target machines
specified by users. In Section VI, we describe the
simulators of shared memory multiprocessors and
distributed memory multicomputers in which the re-
sulting parall€lized codes are simulated and analyzed.
We finally give conclusions in Section~VII.

II. An Overview of UPPER

In this section, an overview of our parallel pro-
gramming environment, UPPER, is presented. The
whole integrated system has been implemented and
designed on DEC workstations with the MOTIF envi-
ronment. The interactive programming environment
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Fig. 1. The configuration of the parallel programming environment.

provides users with all of the information which is
available to the automatic environment. According to
the procedure for compiling a sequential program into
a parallelized code, the description of each module in
this environment and relations among the modules are
briefly stated as follows.

The main configuration of the parallel program-
ming environment is shown in Fig. 1. The flow of
control and data among the modules are represented
by solid and dashed lines, respectively. In the remain-
ing sections, we will only focus on descriptions of a
parallelizing compiler for multicomputers, excluding
the vector compiler enclosed in the dashed line in Fig.
1. The major components of this environment include
aparallelizing compiler system and simulators of given
target machines. The parallelizing compiler system
consists of two phases: a machine-independent phase
and a machine-dependent phase. The machine-inde-
pendent phase, including the preprocessing, depen-
dence analysis, and program transformation modules,
exploits the parallelism of a given sequential program,
regardless of machine topologies and properties. The
next phase, the machine-dependent phase, including
the data distribution and program scheduling, and code
generation modules, uses the input data and informa-
tion generated by the first phase to produce the parallel
execution code according to machine topologies, size,
and architectures. In addition, the database module
is designed for all of the data and information generated
or accessed by each module.

In this environment, the tasks of theuser interface
module are communication and interaction between the
environment and users. The user interface can be made

not only to easily use this environment such as by
editing a sequential or parallel program, by showing
the dependence information and the output results, etc.,
but also to interactively modify or restructure the se-
quential program into a parallelized or vectorized form
*§o that better execution code performance can be ob-
tained.

The preprocessing module with input from the
sequential program and the target machine is used to
scan, parse, and construct the program representation
and the information on data flow for later use. The
language used is FORTRAN. Currently, only its subset
has been considered for implementing this environment
since this parallelizing compiler is a research tool. The
grammars which we have considered are shown in
Appendix A. The structure of the procedures and
function calls and complex constructions will be in-
corporated into this parallelizing compiler in the future.
The major tools used here for scanning and parsing of
a given program are lex and yacc, respectively.

After preprocessing, some information is created
for use by the dependence analysismodule. The control
flow of a program is represented by a tree structure,
which is referred as the program representation
(Ferrante et al., 1987). A basic block in the program
is identified as a basic structure in the corresponding
program representation in order to clearly distinguish
the control flow and to easily manipulate this tree
structure. For each statement in the sequential pro-
gram, its representation with one or several complex
expressions is also incorporated into the program rep-
resentation. Based on this representation, information
about analyzed data dependence is also appended and
is reported to users in a graphic manner. The data
dependence information is used to guide subsequent
compiler analysis and optimization such as by report-
ing bottlenecks in the program parallelization and
opportunities for exploiting the parallelism of program.
The popular and well-known methods of data &epen-
dence testing, including the GCD test and Banerjee-
Wolfe test (Banerjee, 1988; Wolfe and Banerjee, 1987,
Wolfe, 1992), have been implemented in this system.
Several more powerful methods of data dependence
testing such as the A test (Li er al., 1990), power test
(Wolfe and Tseng, 1992), and omega test (Pugh, 1992)
will be studied and implemented in the future.

The program transformation module contains the
submodules of program parallelization, data
parallelization, data and program parallelization, and
program vectorization. This module utilizes the results
of dependence analysis to improve program perfor-
mance and to transform the sequential program, based
on the analyzed information about data dependence,
into its corresponding parallelized or vectorized form.
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The transformation techniques can be incorporated into
the program transformation module.

After program transformation, the transformed
program is mapped and scheduled onto the given target
machine using thedata distribution and program sched-
uling module. The specifications of the target machine
contain the topology, the number of processors, the
startup time of message transmission, buffer size, the
status of links, and so forth, of distributed memory
multicomputers, shared memory multiprocessors, or
supercomputers.

After the data distribution and program schedul-
ing module process, the intermediate code and the
parallelized or vectorized code are produced for dif-
ferent machines in the code generation module. The
intermediate code is simulated in the simulator of the
target machine module. The simulator plays two
important roles here. First, the simulator evaluates the
parallelized or vectorized code and monitor the target
machine. It may be difficult to carry out program
parallelizing and optimizing without evaluating the
performance of the compiled code. Thus, the
parallelizing compiler system performs parallelization
based on evaluation of the compiled codes running on
the target machine. Second, the simulator is a testbed
for the development of this environment and a research
tool for parallelizing techniques. The output of simu-
lators includes the behavior records of each processor

flle View Compile Elmula(e Optlons  Help

and statistical results. Based on the output results
generated by the simulator of the target machine module,
users can in advance predict whether the transformed
program on the target machine can produce better
performance or not. If the execution performance
occurred from the transformed program is poor, users
can interactively turn on the other transformation tech-
niques and apply them to the original sequential pro-
gram so that better execution performance can be
generated.

For all information generated or accessed by
modules, designing and implementing the database
module is desirable for this environment and program-
mers. This information and data are stored in the main
memory or on disk. In the main memory, there exist
a symbol table, program representation, internal infor-
mation about data dependence, loop restructuring in-
formation, and so on. On disk, there exist the source
sequential program, parallelized or vectorized program,
intermediate code, reported information about data
dependence, simulation results, statistical results ob-
tained after simulating the transformed program, a target
machine description, and so on.

More detailed implementations and their corre-
sponding complex data structures will be introduced
in later sections for the parallelizing compiler on UPPER.
In the next section, we will first describe the design
techniques and various modules of the machine-inde-

PROGRAM TestProgram
INTEGER 1, j, k

REAL A(20,20), B(20,20), C(20,20), INIT(30)
REAL VA(30,30,30), V8(30,30,30), VC(30,30,30)
REAL VD(30,30,30), VE(30,30,30), VF(30,30,30)

DO 10 -1, 10

F1| #inciude <stdio.h>

#include "math h*

#Include "/home/shi/project/upper/demo/par7.h"
inti;

INTT{1) =20 i
"= © tinear o
) ;\[(:léjil;_lfq :’ :(I. p+1o > sM Multiprocessors <> Ring ‘[[33311[[::]1[[::]]-
10 CONTINUE &) supercomputers <) Mesh :[30][301[30]:
[20)(20](30],
DO 101-1, 10 & Torus tesh 130][301[30],
DO 20 j=1, 10 +-§(30](301(30).
DO 30 k=1, 10 Node number: [2 X m - [:]
0] = €L + AGLK) * B(K,]) - 4
30 CONTINUE T
20 CONTINUE IL__ox_ Wl [ wee ]
10 CONTINUE -
DO 10 =3, 13 ParBegin(), /* Paralle! Begin */
DO 20 ]=3, 13 DOALL( 1, 10, 1), /*<——-DOALL*/
DO 30 k=3, 13 INITIi]-20,
VA(I,+1,K) = VB(I,],k+2) * VC(I,,k) + 2 for(j=1; J¢=10, [+=1)

VB(I+1,),K) = VAQL.],k+2) / 11
VC(i,),K) = 10 * VB(L,],k)
VD(,j+1,K) = VC(i-1,1,k) 7 3 + VE(,J-1,k+1)
VE(L],K) = VD(L,},k+3) *37 - 20
VF(L,Lk+1) = 1 - VE(I-1,j,k-1)
30 CONTINUE
20 CONTINUE
10 CONTINUE

DO 10 k=1, 10
DO 20i-1, 10
AlLK) = A(LK) / Ak K
DO 30 =1, 10
A(L) = A(L) - A(K.D*ACLK)
30 CONTINUE
20 CONTINUE

{
ctijij}-0.000000,
A= BN +10),
3

ENDDOALL(;
ParEnd(),

/* ¢<——— ENDDOALL */
/* varalel end */

for( i=1; ic=10, i+=1)

{ .
for( j=1; j<=10, J+=1)

for( k=1, k<=10, k+=1)

¢

E COMII=(CLGIHADIKIBIKIGDY;
3
]

Fig. 2. A snapshot of the parallel programming environment.
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pendent phase of our parallelizing compiler.

I1l. User Interface

In this section, we will describe the user-interface
module, the b?idge which enables users to communi-
cate with this environment. By means of the user
interface, users can easily edit and compile the sequen-
tial source program. Furthermore, several graphs and
tables derived from the analyzed results such as the
program construction, the dependency relationship
between data and control, execution performance evalu-
ation after simulation of parallel programs, and so on,
can be viewed by users. A snapshot of this environment
is shown in Fig. 2.

The main menu bar of this environment has six
selection items: File, View, Compile, Simulate, Op-
tions, and Help. All the functions of this environment
which have hierarchical structure are listed in Fig. 3.
For each function, some specifications are also de-
picted in Fig. 3.

The File selection item supports the functions of
Open, Editor, and Exit. At any time, users can open
a file to be compiled by using the Open function key.
When the Exit function key is chosen, all of the jobs
stop, and the system halts. The environment also
support an editor which can be used to edit a program
and can be selected by using the Editor function key.

(Oper) (Open an existing file)
.

R A Vi endence Graph - (Show the data dependence
"E‘é Dep: rap! PrevnousJ in a graphic manner)
i g,% (View the information (&)
: E‘; generated by this compiler)
N
D
“é? (Compile a sequential program using our proposed pil h )
;g§ Simulation of Shared (While simulating the parallclized code, the
.52 Memory Multip d system can show the status of

e m - L cach processor by means of different colors.
B Simulation of Distributed

=7 Memory Multicomputers Then, statistical results and some reports

EE P! are shown using the graphs and tables.)

S% (Simulate a resultant parallelized code on the simulator)

- g # » Linear
gz DM Multicomputers [>Ring
J=N - I Mesh
‘53 (DM: Distributed Memory) Ly Torus Mesh
:éi 'P[Sﬂ P B SM Multip ]

©

i _._m {SM Shared Memory)

e
! s bt - Supercomputers Copvex

=N (Setthe of the target mach Cray X-MP

)Sf and compilation technique to be applied )

o Comm.-Free without Duplicate Data
P3

W -F i

=5 Compilation Techniques Comm -Free with Duplicate Data

X Non-Comm.-Free Transformation

Vectorization Transformation
:“;_;é (Help users use this environment)
1 Display the sequential code and parallelized code,

Fig. 3. A list of all the functions in the parallel programming en-
vironment.

Within the View function, a data dependence graph
cart be shown by selecting the dependence graph se-

e e ey
ﬁg—x{:,‘. SOURCE CODE-Y:Zhotie/shi/project/uppet/detie/nar7 £ > f};‘ &

[23] DO 1013, 13
H[24] DO 20 j:3, 13

26] 0O 30 ks3, 13

[ 26] VAGI+1K) = VBEik42) * VC(K) + 2
iz VB{I+1,1K) = VAGJK+2) 7 11

|0 28] VGGK) = 10 * VB{LIK)

i 29] VDGI+1K) » VEG-11K) / 3 + VE(=1k1)
G 30 VEQJK) = VDGik+3) * 37 - 20

[ 31] VEJK+1) « 1 - VEG-1Kk-1)

[ 32) 30 CONTINUE

fi{33] 20 CONTINUE

DATA DEPENDENGE INFORMATION

inelne  varistie  [(d1,4d2,¢03)
26] 27)vA o 1, -2
27 26)vB 1, 0, )
26| 28}vm o, 0 2
27| 28ve 1, 0, 0
26| 26/vc o, o, 0
e : - - 26 29[vG 1,0, 0
SfEv, TP INFORMATION FOR DATA BEPENDENCE GRAPH (o % -~ 7 ] N 5ol =ole PR
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AT PN I T B K TS ) 29 % b

i
(R 2] ] | 29| 31|vE 1, -1, 2
1 F IS IR N N

30| 31fve 1,00 1)

Fig. 4. A snapshot of our developed data dependence viewer.
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lection subfunction. We can partition the sequential
program into several segments by relating a nested loop
to a segment of the program. Each program segment
has its own data dependence graph. A snapshot of a
data dependence graph is shown in Fig. 4. The main
window, titled the Data Dependence Viewer, is in the
top-left corner of Fig. 4. Each node of the graph
represents a statement in a program segment. The arc
between two nodes stands for the data dependence
relationship. The number on the arc is the number of
data dependences between two statements. In the menu
bar, we can choose Next (Previous) to show the data
dependence graph related to the next (previous) pro-
gram segment or choose Exit to quit. The window titled
Information for Data Dependence Graph is shown in
the bottom-left corner. The dependence relations in
the left hand table include forward data dependences.
The dependence relations in the right hand table include
backward data dependences. In each row of the table
with five entries, there are numbers of data depen-
dences associated with some arc. The first entry in-
dicates the arc number. The last four entries indicate
the number of true (flow) dependences, antidependences,
input dependences, and output dependences, respec-
tively. The window titled Source Code on the right-
hand side shows the corresponding program segment
and displays the line numbers on the leftside. Thedata
dependence information is depicted in a table below
the source code. Each row with four entries indicates
a data dependence relation between two statements
whose line numbers are the first two entries. That is,
a statement with the second line number is data depen-
dent on the statement with the first line number. The

@ -Cornunication ) ~Horking @ -1d1e

[Belay=t ]|  [Delay=s |  {[Delay=10 ]

third entry is the variable name, and the last entry
indicates the dependence vector or the dependence
distance. For example, consider arc 1 shown in Fig.
4. From the window titled Information for Data
Dependence Graph, we know that there is a true
dependence from the 26-th line to the 27-th line.
From the data dependence information, we know that
the 27-th line is true dependent on the 26-th line at the
variable VA and that its dependence distance is
0,1,-2).

When setting the machine environment and com-
pilation techniques, the user can select Compile to
compile the program. Atthe same time, the parallelized
code will be shown beside the sequential code. The
user can learn how the sequential code will be trans-
lated into parallelized code by comparing the parallelized
code with the sequential code.

By Simulate selection item, the user can simulate
execution of the parallelized code and simulation re-
sults can be displayed in the mean while. According
to the various types of machine environments, the
simulator will show different simulation results. For
example, the simulation results for shared memory
multiprocessors are shown in Fig. 5 and those for
distributed memory multicomputers are shown inFig.
6. In the simulation results, each node represents a
processing element. Each processing element can be
in an idle, working, or communication state. We use
different colors to represent the state of the processing
element to let the user easily recognize the state of the
processing element. Thé user can use the Delay=1
button to speed up or use the Delay=10 button to slow
down the simulation. Using thererun function, the user

Processor nunber

Fig. 5. A snapshot of the simulating results of the shared memory multiprocessor simulator.
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Fig. 6. A snapshot of the simulating results of the distributed memory multicoputer simulator.

can rerun the simulation.

The Options selection item includes two subitems:
Set Machine Environmentand Compilation Techniques.
After selecting a program, the user can set some aspects
of the machine environment such as the topology of
the target machine, the number of processors, and so
on by choosing the Set Machine Environment subitem.
In distributed memory multicomputers, the user can
select Linear, Ring, Mesh, and Torus Mesh as the
topology of the target machine. The user can also select
the Compilation Techniques subitem to choose the com-
pilation techniques. Presently, for distributed memory
multicomputers, there exist three compilation tech-
niques: Communication-Free without Duplicate Data,
Communication-Free with Duplicate Data, and Non-
Communication-Free Transformation, which have been
described in detail in Chen and Sheu (1994) and Sheu
and Chen (1995).

The most important point is that the system sup-
ports a Help function. Within each menu, Help in-
cludes explanations of the selection items in the menu
and can help the user use the system. The user can
gethelp immediately when itis needed. From the user’s
point of view, this is the most friendly part of the
environment.

IV. Machine-Independent Phase of
the Parallelizing Compiler

In this section, the machine-independent phase of
our parallelizing compiler system is described. The
implementation issues and internal data structures are
illustrated using the following example.

Example: Consider the following TEST program
“test.f”.

PROGRAM TEST
INTEGER 1, J
REAL A(10,10), B(10,10), C(10,10)
DO 10 I=2, 5
DO 20 J=2, 5
AQXI, D=C(L,))xT
B(J, I+1)=A(2xI-2, J-1)+C(I-1, J-1)
20 CONTINUE
10 CONTINUE
END

1. Preprocessing and Dependence Analysis

In this subsection, the preprocessing and depen-
dence analysis processes for a given sequential pro-
gram are discussed. We use lex and yacc, respectively,
as tools to scan and parse the sequential programs.
After scanning and parsing the sequential program
within the preprocessing module, the symbol table and
its program representation are constructed for easy
manipulation of subsequent modules.
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(c) Statement list node construction.

Fig. 7. Three types of constructions of basic blocks.

For each declared variable established in the
symbol table, its symbol table entry has the following
fields. Declaration type is a flag to indicate that this
variable is declared to be either INTEGER or REAL.
Variable name is a string to indicate the variable name.
Dimension indicates the array dimension; if dimension
is zero, this means that the variable is a scalar variable.
Declaration bounds of arrays indicates the user-de-
fined bounds of each array dimension. For example,
there are two scalar variables, I and J, with INTEGER
type and three two-dimensional array variables, A, B,
and C, with REAL type in the TEST program. The
ranges of these three array variables in each dimension
are declared from 1 to 10.

The program representation of a given program
can not only preserve the meaning of the original
semantics but also indicate the control flow with DO
and structured IF statements, assignment statements
and operations, and the relationship between the pro-
gram and symbols along with other information. There

are three construction types of basic blocks within a
program representation: IF statements, DO statements,
and other statements (assignment statement, function
call, and procedure call) whose graph constructions,
regarded as IF nodes, DO nodes, and statement list
nodes, are, respectively, shown in Fig. 7(a), (b), and
(c).

To clearly demonstrate the concept of program
representation, the following segmentation code with
complex structures is given. Its corresponding program
representation is depicted in Fig. 8.

S1
S2
DO 10 I=L, U
IF B THEN
S3
ELSE
S4
S5
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induction variable: I
lower bound: L
upper bound: U
step: 1

header of
program representation

T: B is true.
F: B is false.

S-node: Statement List Node

Fig. 8. The program representation of the given segmentation code.

ENDIF

S6
10 CONTINUE
S7

Within a given program, basic units consisting of
the three basic blocks are assignment statements, pro-
cedure calls, and function calls. The basic units con-
sisting of an assignment statement, a procedure call,
or a function call are expressions. However, the smaller
basic units consisting of an expression are operators
and operands. Detailed descriptions will be given
below. An assignment statement consists of two
expressions: the left one is a write operand, and the
right one consists of several operands and operators.
A procedure call or function call is composed of its
name and several arguments and is also expressed by
an expression or a function call. An operand may be
a scalar variable or an array variable composed of its
array name and several subscripts, which are also
expressed by an expression or a function call. Hence
the entire sequential program can be recursively con-
structed and represented by the three basic block
constructions and the small constructions described
above. The program representation of the TEST pro-
gram is shown inFig. 9 based on the above descriptions.

After preprocessing an input program, each loop
can be classified into one of the following four types.
The ALLDOALL type indicates that there exists no
dependence in this loop. The UNIFORMLY_NESTED
type indicates a nested loop with uniformly gene-

header of
program

lower bound: 2
loop I { upper lound: 5
step: 1

lower bound: 2
upper lound: 5
step: 1

assignment
statement

assignment
statement u

left-hand side right-hand side
of assignment of assignment
statement statement @ ©
a, b, c: operator or operand
L: left pointer from b to a

. . R: right pointer from b to ¢
2-dimensional

subscript
expression

1-dimensional
subscript
expression

Fig. 9. The graph view of the program representation of the TEST
program.

rated references (Gannon et al., 1988). The
STAND_NESTED type indicates a nested loop with
constant data dependence. Other loops are classified
in OTHERS. In the dependence analysis module,
applying the GCD test and Banerjee-Wolfe test pro-
duces the data dependence information, including
dependence or independence, the dependence type with
input, output, flow dependence and antidependence,
and the direction or distance vectors for each pair of
variables. Within the dependence analysis module, the
Banerjee-Wolfe test which extends the Banerjee’s
inequalities to find the dependence distance or direc-
tion vector (Wolfe, 1992) is also implemented when
the loop limits are triangular, meaning that the limits
of the inner loop depend on the outer loop indices. In
addition, we also extend the work to manipulate more
complex non-perfect loops. Consider the TEST pro-
gram again. There only exists one nested loop, iden-
tified as the UNIFORMLY_NESTED type. The data
dependence information is generated in two files with
the filenames “test.dep” and “test.var”.
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The format of each line in a produced file with
data dependence information is specified as follows:

LT Loop™ line; line, Var® i ling j line
—

VarPair
DT Flag n d, d,...d,.
R/_’/

d

The description and definition of each of the above
terms are described below. The symbol LT denotes
one of the loop types classified above. Loop™ denotes
the loop number arranged in a given program, auto-
matically produced by our compiler. The termslinegy,,,
and line,, , respectively, denote the start and end line
numbers within the given source program. Var" de-
notes the variable number in a given program, produced
by our compiler. VarPair indicates the variable pair
which is tested using dependence tests. For the first
variable, i denotes the number of Var” which is stored
in the i-th variable of the file whose filename has the
extension “var”. The line number of i-th Var” appear-
ing in the source file is denoted asline;. For the second
variable, j denotes the number of Var®. line; denotes
the line number of j-th Var”. The symbol DT represents
the type of data dependence, whether flow, input, output
dependence, and antidependence. The term Flag is a
flag to indicate either the dependence vector or depen-
dence direction for this data dependence relation. The
dimension of this dependence vector or direction is
denoted by n. d with n-tuple is either a dependence
vector or direction depending on the flag Flag. If d
is a direction vector, each d,, 1<i<n, is one value
depending on its direction specified within Table 1.
Hence, a data dependence viewer is designed in this
system to establish the data dependence graph of each
loop and then to display it to programmers based on
all of the information in these two files. To illustrate,
a snapshot of our developed data dependence viewer
with a source loop, its data dependence graph, and its
information concerning data dependence is shown in
Fig. 4.

2. Program Transformation
By using the generated information about data

Table 1. The Direction and Its Corresponding Value of Data De-
pendence in Each Dimension

IN
v
H

*

direction = < = >

value 0 1 2 3 4 5 6

dependence, we can apply to a program various com-
pilation techniques integrated into the program trans-
formation module so as to produce a parallelized or
vectorized code. Within the program transformation
module, we implement the submodules of program
parallelization, data parallelization, and data and pro-
gramparallelization. Within the program parallelization
submodule, a compilation technique aimed at partition-
ing for linear array multicomputers has been designed
(Sheu and Chen, 1995). Within the data parallelization
submodule, a compilation technique has been designed,
aimed at communication-free partitioning without
duplicate data during parallel execution (Chen and
Sheu, 1994). Within the data and program parallelization
submodule, a compilation technique has been designed,
aimed at communication-free partitioning with dupli-
cate data during parallel execution (Chen and Sheu,
1994). The three compilation techniques were origi-
nally proposed and designed on distributed memory
multicomputers to reduce the communication over-
head. However, they can be also applied to shared
memory multiprocessors so as to eliminate as much as
possible cache or local memory thrashing (Lu and
Fang, 1992).

Loops are the most time-consuming parts and
implicitly provide a large amount of parallelism in a
program. Therefore, we currently only consider loop
transformations within the program transformation
module. While a program is processed through the
program transformation module, a DO loop can be
translated into one of three types: DOSER, DOALL,
and DOACR. The DOSER type, which is not changed
in the original program, means that this loop via trans-
formation is still performed sequentially. The DOALL
type means that each iteration of this loop via trans-
formation is independently performed in parallel. The
DOACR type means that this loop can be performed
in parallel but still needs communication or synchro-
nization primitives to keep the relationship of data
dependence and preserve the semantics of the original
program.

For the program transformation module, an ex-
ample shown below is given to illustrate the designed
flow and the change of internal structures depending -
on different compilation methods. Through the com-
pilation techniques of communication-free partitioning

.with or without duplicate data, the DO loop within the

TEST program is translated into the following program
segment with a parallel construct, DOALL, written in
the form of FORTRAN:

DOALL 10 I'=-3, 3
DO 20 I=MAX(2, I’+2), MIN(5, I'+5)
J=I-I"
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ACXLN)=CI,J)x7
B, I+1)=A(2xI-2, I-1)+C(1-1, J-
1)
20 CONTINUE
10 CONTINUE

Within our parallelizing compiler, both the tree
structure (program representation) and the symbol table
are the heart or kernel. This is because all the infor-
mation such as the original program semantics, the
translated program representation, the mapped and
scheduled program representation, etc., are included
for the process of each module. While applying any
analysis or compilation technique, the tree structure
and internal structure of the symbol table are adjusted.
Each adjustment may cause a drop, insertion, or
movement of internal structures, for example, move-
ment of basic blocks, insertion of new basic blocks,
modification of expressions, or insertion of new sym-
bols. Therefore, the corresponding program represen-
tation has to be modified and translated into another
tree structure. By means of the above program seg-
mentation, an additional symbol, I’, must be incorpo-
rated into the symbol table. Two induction variables,
I and J, of DO constructs are changed to the new

header of
program

representation
e

> de) DOALL loop I' {

variable I’ and the original variable I, respectively.
Their loop lower bounds 'and upper bounds are
also modified. An additional statement is appended
to the original loop body. Hence, the program
representation is translated and is depicted in
Fig. 10. Depending on the different compilation
techniques within the program transformation module,
the tree structure (program representation) is, there-
fore, modified and changed to form another tree struc-
ture.

After transformation of a program, the most
important work is scheduling of tasks for the target
machine according to the type of parallel machine, the
architecture, and the number of processors. In the next
section, we will describe the implementation techniques
and various modules of the machine-dependent phase
of this parallelizing compiler.

V. Machine-Dependent Phase of the
Parallelizing Compiler

In this section, the implementation of each mod-
vle within the machine-dependent phase of our
parallelizing compiler is described, with respect to the
machine architecture, topology, and size.

lower bound: -3
upper lound: 3
step: 1

lower bound: MAX(2,I'+2)

DO ) DOSER loop I { upper lound: MIN(S, I'+5)”

Statement
List Node

step: 1

Fig. 10. The graph view of the program representation of the transformed program.
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1. Data Distribution and Program Scheduling

The data distribution and program scheduling
module is described in this subsection. For parallel
machines, data distribution, program partitioning and
scheduling significantly determine the execution be-
haviors and performance.

Now, we will discuss the approaches to partition-
ing on parallel computers. Because we currently only
consider the topology, mesh, for distributed memory
multicomputers, program scheduling for the commu-
nication-free partitioning and projection methods is
simple. The complex and optimal assignment algo-
rithms were presented in Chen and Sheu (1994) and
Sheu and Chen (1995). Generally speaking, the pur-
pose of these strategies is to eliminate or reduce as
much as possible interprocessor communication. The
communication-free data allocation technique can
totally eliminate interprocessor communication. An-
other strategy can reduce interprocessor communica-
tion by allocating necessary data to the location where
it is used or involve only neighbor-to-neighbor com-
munication. Hence, the methods we use can not only
reduce the communication overhead on distributed
memory multicomputers, but also increase the data
locality and cache hit ratio on shared memory multi-
processors. Thus, these methods are suitable for the
two categories of parallel computers, distributed
memory multicomputers and shared memory multipro-
cessors. It should be pointed out that, during program
scheduling on shared memory multiprocessors, we adapt
static partitioning.

When the process of compiling a sequential pro-
gram into a parallel form, maintained and represented

in the program representation, has been completed, the
program’s parallel intermediate form will finally be
produced by the code generation module.

2. Code Generation

In this subsection, the code generation module for
simulators of distributed and shared memory multipro-
cessors is described. By means of the intermediate
parallel form, users can easily understand the power
of parallelism extraction and the capability of program
transformation.

By using the program representation of a trans-
formed program, we can translate the transformed
program into an intermediate code written in the C
language. In addition to the constructs supported by
the original C language, we integrate the parallel
constructs and synchronization primitives shown in -
Table 2 into our specified intermediate code for shared
memory multiprocessors. Table 3 shows a list of
supported message-passing functions in the C language
for distributed memory multicomputers.

For more details, readers can refer to several
examples in references (Chu, 1993; Ni, 1993). In the
following section, the simulators of parallel computers
which simulate the above mentioned intermediate
parallel forms will be introduced.

VI. Simulator

In this section, the simulator of the target machine
module for evaluating and measuring performance
during execution of a parallel program is specified.

A simulator of shared memory multiprocessors

Table 2. The Parallel Constructs and Synchronization Primitives Supported in the Parallel Intermediate Code of Shared Memory Multi-

processors

Parallel Constructs and
Synchronization Primitives

The Description of Each Parallel Construct and Synchronization Primitive

ParBegin() Par End()
DOALL(L?, U®, §°) ENDDOALL()
DOACR(L, U, §) ENDDOACR()
WAIT(from-node)

within DOACR loops.
SIGNAL(t0-node)

DOACR loops.
ENTRY() EXIT()
BARRIER()

is performed.

The respective prologue and epilogue of a loop which is to be performed in parallel.

The respective prologue and epilogue of a loop without data dependence.

The respective prologue and epilogue of a loop with data dependence.

While a processor perfornis this sfatement, it must wait for a signal from the ffom-node processor

While a processor performs this statement, it must send a signal to the fo-node processor within

The entry and exit of a critical section within DOACR loops.
None of processors can perform the following statements until this statement within DOALL loops

“An expression of the lower bound in this loop.
?An expression of the upper bound in this loop.
“An expression of the step in this loop.
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Table 3. A List of the Message-Passing Functions Supported in the Parallel Intermediate Code of Distributed Memory Multicomputers

Function Names and Arguments

The Descriptions of Function Results

GetNodelnfo (&r, &c, &mr, &mc)

After calling, r and ¢ contain the respective row and column number of this PE. mr and mc contain

the respective total numbers of rows and columns in this mesh.

CircuitStartup(r, )
to the PE at (r, c).
Send(r, c, s, p, t)
ID.
SendNC(r, c, s, p, t)
SendDirection(d, s, p, t)

Perform circuit routing: from this PE to the PE at (r, ¢). The circuit will be built from this PE
Send a message with size s at the address p to PE (r, ¢). tis the type of message used as a message

The action of Send(), but the circuit will be not kept 1n the cache after the message is sent.
Send the message through link d. Links 0, 1, 2, and 3 are connected to the right, up, left, and

down neighboring PE, respectively.

Receive(&r, &c, &s, p, &t)

Receive a message and place it at address p. If this message can be accepted, the values of 1, c,

and t compared to the incoming message should be the same.

ReceiveNB(&r, &c, &s, p, &t)
. has been received.
Broadcast(s, p, t)

Non-blocked version of Receive(). If the function returns a non-zero value, a matched message

Broadcast the message at address p whose size is s and type.is t to all of other PEs#

presented in Chu (1993) is first discussed. In this
simulator, we integrate several parallel constructs and
synchronization primitives depicted in Table 2 into the
DLXsim (Hennessy and Patterson, 1990). The DLXsim
is a simulator for DLX which has a theoretical load/
store architecture and is derived from RISC architec-
ture. There exists a C compiler supported by DLX for
compiling a given program with appropriate parallel
constructs and synchronization primitives into DLX
assembly code. After simulating a given intermediate
code of shared memory multiprocessors, the executed
results include total execution cycles, processor utili-
zation, the amount and cycle time of communication,
etc.

The framework of the simulator of shared memory
multiprocessors is described below. In designing it,
many data structures are needed. The most important
one is a tree which is used to represent the relationship
among processors and to capture the information and
status while running a program. We model the execu-
tion flow of the program coded in the intermediate form
for our simulator as follows. Each node in the tree
indicates one processor. At the beginning, only one
processor executes the program, so it is modeled as the
root node in the tree. Once the processor deals with
aDOALL(L, U, S) (or DOACR(L, U, §)) construct, the
statements between DOALL(L, U, ) and ENDDOALLY()
(or DOACR(L, U, S) and ENDDOACR()) will be ex-
ecuted in parallel by [(U-L+1)/S] processors. Hence,
there [ (U-L+1)/S | nodes are generated as the children
nodes of the root node. Then, these processors begin
to execute the statements between the two parallel
constructs while the parent node plays two roles; one
‘is the root node and another is then one of the children.
Thus, each edge in the tree indicates the relation between
two index instances (processors) in the two contiguous

parallel loop constructs (DOALL or DOACR). While
processors execute the communication primitives, some
information and the status up to that point including
the total execution cycle time, the amount of synchro-
nization, the synchronous cycle time, and so on, have
to be recorded. If one parallel construct is met, the
actions described above will be recursively applied to
establish the tree. The detailed implementation can be
found in Chu (1993). A snapshot of the simulation
results is shown in Fig. 5. A shared memory multi-
processor with 8 processors and the statistical results
are shown in the table and in a graphic manner.

Next, a simulator of distributed memory
multicomputers presented in Ni (1993) will be dis-
cussed. Because the simulator we have developed can
simulate torus mesh architectures, all of the mesh,
linear array, and ring topologies can be simulated. The
overall schema of our simulator is illustrated in Fig.
11. An oblong shape represents a data structure or a
storage unit that keeps a particular set of data. A
rectangle represents a function, action, submodule, or
manipulation which executes some sort of operation on
a related data structure (oblongs). The rectangles with
shadows represent software modules of the simulator.
An arrow indicates the data flow and/or control flow
among the modules of the data structures.

The primary input of this simulator is a set of
programs running on each PE. The assembly source
programs are assembled by the assembler in the pre-
processing module. After that, the object codes are pre- -
coded and linked to the message-passing supporting
library to generate the simulator-executable object
codes. The object code loader loads the executable
codes into the object module (PE objects) and generates
initial events for the event-driven engine. The object
and event-driven engine modules perform the actual
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Input of the simulator
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Statistical results
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Fig. 11. The overall schema of the simulator of distributed memory multicomputers.

simulation tasks. The event-driven engine maintains
the ordered event list data structure, from which the
module picks out the current event for the object module
and the output generation module. The event-driven
engine also maintains a synchronizing object list which
keeps a list of objects that need to be synchronized.
When the object module receives a current event, it
simulates the actions of the activated objects. The
states of objects are updated. New events are generated
and sent to the event-driven engine, where the new
events are scheduled for future simulation.

In addition to the object module, the current events
(behaviors) are sent to the output generation modul€”
The current event is filtered by the event filter of the
output generation module to produce behavior records
of the interested behaviors of the simulated system.
The object statistic extractor generates statistical re-
sults from objects after the simulation is completed.
The detailed implementation can be found in Ni (1993).
A snapshot of a simulation of a matrix multiplication
program on a 4x4 torus is shown in Fig. 6.

Our designed simulators not only simulate a
parallelized code, but also evaluate and measure its
execution performance. If the performance is not
acceptable, the user can modify the source program or
apply other compilation techniques to produce more
efficient parallelized code.

VIl. Conclusions

We have described the implementation and design
issues of the parallel programming environment UP-
PER, including the user-interface, the parallelizing
compiler system with machine-indepéndent and ma-
chine-dependent phases, and the simulator. Playing the
most important role of communication between users
and the environment is the user-interface. The ma-
chine-independent phase of the parallelizing compiler
system deals with the preprocessing of a source pro-
gram, dependence analysis, and our proposed compi-
lation strategies. During the machine-dependent phase,
we first deal with the mapping and the scheduling of
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a transformed program onto the target machine speci-
fied by the user. Then, the simulators of shared memory
multiprocessors and distributed memory multicomputers
measure the execution performance of a resultant

parallelized code. This environment enables program-

mers to easily design parallelized programs by means
of interaction between the programmer and this system.

In order to implement our parallel programming
environment, the following approaches to compilation
and design aspects will be considered and adapted in
the future. The first goal will be to consider
interprocedural analysis (Burke and Cytron, 1986;
Triolet et al., 1986; Li and Yew, 1988). We will
construct a call graph to directly explore the parallelism
of procedure calls or functional parallelism in order to
extract a large amount of parallelism in a program.
Second, we will consider the model of several nested
loops together in a program. For multiprocessor sys-
tems, we will design an approach which minimize
parallel execution time by analyzing data dependence
and determining data layout. Third, due to the need
to manage data and information, the design of an efficient
database system will become our focus. Finally, we
will improve and enhance the applicability of user
interface by adding a new graphical demonstration
system and visualization system, and we will then
integrate each of these future works into UPPER so that
it will have powerful compiling capability.

Appendix A

In this Appendix, we list all of the grammars written in the
Backus-Naur Form (BNF) which we have used.

<program-start>: <program-front> <statement-list>
<program-end> | €

<program-front>: <newline0> “PROGRAM” ID

<program-end> : “END” <newline0>

<newline0> : <newline0> NLINE | €

<statement-list> : <statement-list> NLINE <statement>
| <statement>

: <var-declaration> | <do-stmt> | <if-stmt>
| <assign-stmt> | €

<var-declaration>: “INTEGER” <varl> | “REAL” <varl>

<statement>

<varl> : <varl> “” <var2> | <var2>

<var2> : ID I ID “(* <exp> <expl>")”

<do-stmt> : “DO” INTLIT <var> “=” <exp> “,” <exp> <step>
<statement-list> INTLIT “CONTINUE”

<step> T <exp> | €

<if-stmt> 1 “IF” <exp> “THEN” <statement-list>

<else-part> “ENDIF”
: “ELSE” <statement-list> | €
1 <var> “=" <exp>

| <array-var> “=" <exp>
: <exp> “.EQ.” <exp>

| <exp> “.LT.” <exp>

| <exp> “.LE.” <exp>

| “.NOT.” <exp>

<else-part>
<assign-stmt>

l<exp>

| <exp> “.GE.” <exp>

| <exp> “.GT.” <exp>

| <exp> “.AND.” <exp>
| <exp> “.OR.” <exp>

I “(“<exp>")"

| <exp> “+” <exp>
| <exp>

“.7 <exp>
| “-” <exp>
| <exp> “*” <exp>
| <exp> “/” <exp>
<exp> “**”’ <exp>
<exp> “MOD” <exp>
“MAX” “(“<exp> <exp2>")"
“MIN” “(“<exp> <exp2>")"
“SQRT” “(“<exp>")”
“FLOOR” “(“<exp>")"
“CEILING” “(“<exp>")"
<array-var>,

| <var>

I INTLIT

| FLOATLIT
<array-var> 1 <var> “(“<exp> <expl>")”
<var> : ID
<expl> : <expl> “” <exp> | €
<exp2> © <exp2> “,” <exp> | €

Note that the lower-case words between the symbols < and
> are regarded as nonterminal symbols; the upper-case words and
the symbols between the symbols “ and > are regarded as terminal
symbols.

ID: A variable name with a legal string.
NLINE: A new line character.

INTLIT: An integer number.
FLOATLIT: A floating point number.

€: An empty symbol.
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