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ABSTRACT

An interface problem is tackled as a preconditioner for the nonlinear block Jacobi domain decomposition (DD)
approach.  Various preconditioners are investigated in solving convection-diffusion and incompressible Navier-Stokes
(NS) equations, with an optional fine level interface problem solved as a further preconditioner.  In addition, a (global)
coarse level problem is designed as a preconditioner.  Examined also is the relaxation type preconditioner.  The Successive
Over-Relaxation (SOR) type strategy, in simple or hybrid form, can be used to accelerate the convergence of the
interface variables, so as to provide an interface preconditioner for the global problem.  Furthermore, one can over-
relax the setup of the interface problems, resulting in an accelerated interface preconditioner.  The nature of these
preconditioners is quite different from that in linear DD theory and its application.  These preconditioned nonlinear
DD methods exhibit impressive improvement over the basic non-preconditioned parallel Newton-Jacobi method.
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I. Introduction

This paper is concerned with parallel computation for
solving the convection-diffusion equation (Morton, 1996) and
the incompressible Navier-Stokes (NS) equation (Ethier and
Steinman, 1994) via the Newton-Schwarz method, a nonlinear
domain decomposition (DD) method.

Many research efforts have focused on the DD method
(Glowinski et al., 1988, 1991, 1997; Chan et al., 1989, 1990;
Keyes et al., 1992; Quarteroni et al., 1994; Keyes and Xu,
1994; BjØrstad et al., 1997; Mandel, 1998; Lai et al., 1998).
While these studies have mostly focused on linear theory, there
has also been interest recently (Cai et al., 1996; Lee and Chen,
1998; Lee and Yu, 1999) in the application of DD in a nonlinear
setting.  A recent review on this topic is that of Gropp et al.
(1998).

We propose in this paper a nonlinear approach to solving
the (nonlinear) algebraic system resulting from finite-volume-
difference discretization of partial differential equation.  Our
proposed setup combines the advantages of the overlapping
and the nonoverlapping DD approach.  The basic parallel
Newton-Jacobi method and many preconditioning methods
are investigated here.  A comparative study on the accuracy
and efficiency of these methods is presented.  The model
equations considered in this paper are the convection-diffusion
and incompressible NS equations.

The governing equations are solved via a time marching

procedure.  To maintain use of only the compact scheme, the
fourth-order scheme (Lee, 1999; Jea et al., 1999; Lee and Yu,
1997) is adopted to achieve higher order accuracy, therefore
allowing for the possibility of a larger time step.  At each time
step, the associated pde is a boundary value problem, which
yields a nonlinear algebraic system.  Various methods have
been developed to solve this problem.  Among these are the
SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-
tions) scheme (Patankar, 1980) and many of its variants.  While
these methods focus on solving iteratively linearized versions
of the pde, we will solve the discrete algebraic system using
a Newton-like method (Brown and Saad, 1990).

Parallel computation is performed here via the DD
approach.  The nonlinear algebraic system can be solved using
the block Jacobi method, with or without overlap.  Nonlinear
Schur-complement type decomposition is also admissible,
which tackles the interface problem and actually yields more
accurate result (Lee and Chen, 1998), due to the capability
of providing global information update.  We note that the
interface variables were excluded from all the other subprob-
lems in the study of Lee and Chen (1998), as are usually
adopted in similar linear DD setup.  In the current paper, the
subdomain variables form a (nonoverlapping) partition of the
whole global system of equations.  The interface problem is
regarded as a preconditioner for the global discrete system.
Since it is able to produce ‘global update’, the coarse grid type
preconditioner has played an important role in the study of
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linear DD theory and application.  The nature of the coarse
level preconditioner, in the current nonlinear framework, is
quite different from that in the linear DD case.  Another two-
level preconditioner is investigated here by introducing a fine
level interface problem, with or without nonlinear defect
correction.  A relaxation type interface preconditioner is also
examined here.  The accuracy and efficiency of all these
methods and options are investigated in light of the model
problems, in hopes of yielding useful guidance for more
complicated applications.

We describe the problem formulation, finite volume
discretization and numerical method in Section II.  The non-
linear DD approach is introduced in Section III, together with
some details on the design of an interface preconditioner.
Described in Section IV are the test cases and numerical
experiments.  A brief conclusion is given in Section V.

II. Problem Formulation and Solution
Procedure

1. The Test Problems

We consider the two-dimensional incompressible NS
equation in primitive variables for a Cartesian coordinate
system in non-dimensional form as follows (Tannehill et al.,
1997):

(1) Continuity equation:

ux + vy = 0; (1)

(2) X-momentum equation:

  u t + uux + vu y = – p x + 1
Re

(u xx + u yy) ; (2)

(3) Y-momentum equation:

  v t + uvx + vvy = – p y + 1
Re

(vxx + vyy) . (3)

Here Re represents the Reynolds number, p is the pressure
variable, and u and v are variables for the horizontal and vertical
velocity, respectively.

A time marching procedure is assumed here.  The idea
in the PISO (Pressure-Implicit with Splitting of Operators)
method (Issa, 1985) is to replace the continuity equation with
a steady state pressure Poisson equation and to solve the
following system:

  u x
n + vy

n

h t
+ ( 1

Re
(u xx + u yy) – uux – vu y)x

  + ( 1
Re

(vxx + vyy) – uvx – vvy)y = p xx + p yy , (4)

  u n + 1 – u n

h t
+ uu x + vu y = – p x + 1

Re
(u xx + u yy) ,      (5)

  vn + 1 – vn

h t
+ uvx + vvy = – p y + 1

Re
(vxx + vyy) . (6)

For simplicity, we have reserved the spatial derivative
terms without expansion into differences.  We note that in our
work, a hybrid of upwind and central differences is used for
the spatial derivatives to yield a nonlinear discrete algebraic
system.

Note that the system consisting of Eqs. (1), (5) and (6),
or of Eqs. (4) − (6), can be recast in a form of properly defined
numerical fluxes:

Ut + Fx + Gy = Q. (7)

To double-check our numerical observation, we solved
both the coupled system, Eqs. (1), (5) and (6), and also solved
in a decoupled manner (PISO) the system of Eqs. (4) − (6),
and compared the results.

In addition to the NS equations, we tested the scalar
nonlinear Burgers equation, here with Q = 0, and with

  F = U 2

2
– 1

Re
Ux,

  G = U 2

2
– 1

Re
Uy,

in the above equation.

2. The Finite-Volume-Difference Method

The finite volume approach is adopted via the integral
conservation form.  We therefore rewrite the above system
in its associated integral form.  Following our previous works
(Lee and Chen, 1998; Lee and Yu, 1999), boundary-fitted cell-
center type finite volumes with collocated grids are assumed
for the purpose of geometry discretization.  When resolving
the temporal derivative term by means of the first order
backward difference, we obtain

   U n + 1 – U n

h t
dxdy

Ωi, j

+ Fxdxdy
Ωi, j

   + Gydxdy
Ωi, j

= Qdxdy
Ωi, j

(8)

with Ωi, j being a local cell.
All the definite integrals are discretized as weighted

averages involving the primitive (and the flux) variables at
neighboring cells.  The fourth-order scheme (Lee, 1999; Jea
et al., 1999; Lee and Yu, 1997) is adopted to achieve higher
order accuracy, therefore allowing for the possibility of a larger
time step.

We note that a time step is usually selected based on
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the Courant-Friedrichs-Lewy (CFL) conditions. However, as
we are using an implicit scheme, much larger time steps (Table
1) can be considered, thus providing great savings of resources.

We note that the discrete system of algebraic equations
can be the one derived using either Eqs. (1), (5) and (6), or
Eqs. (4) − (6).

FV discretization of the geometry and FV-FD (Finite-
Volume-Finite-Difference) discretization of the differential
equations can, thus, lead to serial computation, and also are
useful for solving subproblems in subdomains through parallel
computation as discussed in the next section.

III. Domain-based Newton-Schwarz
Method

The DD method is a technique for solving partial dif-
ferential equations based on decomposition of the spatial
domain into several subdomains.  We adopt in this paper the
nonlinear approach to solving the nonlinear algebraic system
resulting from finite-volume-difference discretization of par-
tial differential equations.  We solve the steady state discrete
nonlinear system by using an approximate matrix-free Newton’s
method, the Newton-GMRes (Newton Generalized Minimal
Residual) (Brown and Saad, 1990).  We note that overlapping
nonlinear DD methods which follow this approach, together
with some hybrid variants, were studied by the first author
in Lee and Chen (1998), and that a defect correction approach
was discussed by Cai et al. (1996).

1. The Global Discrete Problem

We will point out a key part of the setup here.  In view
of the discrete nonlinear algebraic system, we are concerned
with the nonlinear (nonoverlapping) block Jacobi iteration and
many preconditioned versions of this method.  However, in
the context of continuous geometry of this problem, this
actually corresponds to overlapping subdomains because our
setup assumes Dirichlet type interior boundary conditions.
Therefore, in our setup, an interface-preconditioned Newton-
Schwarz method actually corresponds to a nonlinear analogy
of a combination of a Schwarz type and a Schur-complement
type linear DD method.

2. Block Newton-Jacobi Method

The setup assumes that the discrete global nonlinear
system is decomposed into partition of (nonoverlapping) blocks
of equations.  Parallel computation corresponding to the non-
linear block Jacobi method can thus be carried out.  This is
the basic Parallel Newton-Jacobi (PNJ) method studied and
compared later with preconditioned methods.

We will next outline the PNJ procedure with conver-
gence checking on the global domain, with an unknown vector
X for a steady state problem:

Procedure PNJ.
Do while {|Xnew − Xold| ≥ global − tolerance}

Step 1: Solve subproblem F(x) = 0 at each subdomain in
parallel.

Step 2: Carry out the Boundary Condition-Update proce-
dure for all subproblems.

End Do

The above pseudo code, although sketchy, is quite general.
For the current simple block Jacobi method, Step 2 actually
becomes

Step 2: Each worker cpu receives the updated interior
boundary variables from neighbors.

We note that Step 2, as stated above, can be proceeded with
processing of one or several preconditioners, as we will explain
in the rest of this section. We will see that Step 2 can split
up, as a generalization, into the solving of one (or several)
preconditioner(s) and the Boundary-Condition-Update proce-
dure for subsequent subproblems.

We note that from a purely algebraic point of view, the
PNJ procedure is simply a nonoverlapping block Jacobi method
applied to the global nonlinear discrete algebraic system.

3. Interface Preconditioner

We propose below an interface preconditioner for solving,
on the interface B, the interface problem prior to each nonlinear
block Jacobi iteration.  We note that in our actual implementation,
the interface preconditioner is squeezed into positions after
and before two consecutive block Jacobi iterations.  We will
use the same notations for the set of continuous variables and
for that of discrete variables.  We describe below the Interface-
Preconditioned Parallel Newton-Jacobi (IPPNJ) method:

Procedure IPPNJ.
Do while {|Xnew − Xold| ≥ global − tolerance}

Step 1: Solve the discrete algebraic nonlinear system
Fi(x) = 0, x ∈ Ωi for all subdomain problems in
parallel.

Step 2a: Set up the interface problem, with information
communicated among subdomains.

Step 2b: Solve the nonlinear system for the interface
problem

FB(x) = 0, x ∈ B.

Step 2c: Update via communication the interior boundary
conditions for all the subproblems with the in-
terface variables just solved.

End Do

We note that the interface problem is relatively small
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in size and easier to solve using a Newton-like method, and
that the solution should offer more accurate interior boundary
conditions at the interface variables in a more efficient way.
This is the goal of our preconditioned parallel nonlinear
procedure.  That is, acceleration on (only) the interface vari-
ables yields a preconditioner for subsequent DD iterations.  We
are, therefore, led naturally to the next topic.

4. Over-Relaxed Interface Preconditioner

Interface preconditioners are proposed here for solving
the interface problem prior to each nonlinear block Jacobi
operation.  We can as well apply the idea of Successive Over-
Relaxation (SOR) to the computed solution for these interface
variables.  Relaxation can be applied to all the subproblems
and to the interface problem.  Furthermore, the setup for the
interface problem can be accelerated on the interior boundary
conditions.  Investigations on various relaxation parameters
and combinations of mixing strategies are conducted here
based on the basic Newton-SOR-Schwarz method and over-
relaxed interface preconditioner.  The observed numerics and
dynamics indicate that the hybrid performs better than either
parent method in terms of convergence and also accuracy.  It
is seen that this is true in both three-dimensional and two-
dimensional vortex flows, and in three-dimensional traveling
waves.  The experimental results presented later will be useful
in more general practical applications.

Among the various options mentioned above, we will
describe in some detail only the case of an interface pre-
conditioner set up by means of over-relaxation:

Procedure PORIP (Parallel Over-Relaxed Interface
Preconditioner).
Do while {|Xnew − Xold | ≥ global − tolerance}

Step 1: Solve discrete algebraic nonlinear system Fi(x)
= 0, x ∈ Ωi for all subdomain problems in parallel.

Step 2a: Set up the interface problem, via information
communicated from each subdomain, with relax-
ation of the interior boundary condition and op-
tionally also of the interface variables.

Step 2b: Solve the nonlinear system for the interface
problem

FB(x) = 0, x ∈ B.

Step 2c: Update via communication the interior boundary
conditions for all subproblems by the interface
variables just solved, with an optional relaxation
type acceleration.

End Do

5. Preconditioned Block Newton-Schwarz Procedure

For general application, we recast the discrelized non-

linear algebraic system of equations as

Φ(u) = rhs,

where Φ = (Φ1, …, Φnd)
T, u = (u1, …, und)

T, with ui ∈ Rds

≡ Xs.  Here, s denotes a subdomain (and a subproblem), and
ds denotes the dimension of the subproblem (on subdomains).
In the case of our boundary-fitted cell-center finite-volume-
difference setup, ds equals the product of the degrees of
freedom at a node and the number of (internal) grids in each
subdomain.  We assume equal size subproblems for simplicity.
The space Xs is, therefore, where a solution to the discrete
subproblem resides.  Consider the subproblems

   Φi(u i) = rhs i

and

   J(Φi, u i) =
∂Φi

∂u i
.

We assume regularity of this portion of the global Jacobian.
With the notations introduced, we will describe in some

detail the Preconditioned Parallel Newton-Jacobi (PPNJ)
procedure, based on partitions of nonoverlapping subdomains
and a specific order of the equations and variables:

Procedure PPNJ.
Do while (global convergence is achieved or the maximum
number of DD iterations is exceeded).

(1) Do i = 1, …, nd (in parallel)
(i) set u i  by means of u and canonical projection;
(ii) set  rhs i ;
(iii) obtain an approximated solution to

   Φi(u i) = rhs i ;

(iv) evaluate for local convergence the residual

   r i = rhs i – Φi(u i) ;

(v) evaluate for local convergence the difference

  diff i = u i – u i sav
.

(2) Update global u by communicating u i among relevant
processors.

(3) Check global convergence by evaluating

maxidiffi or ||Φ(u)|| on   X n s
n d .

(4) If global convergence is satisfied, then break.  Oth-
erwise
(i) Do an optional accelerator or preconditioner, such
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as an interface preconditioner or global coarse
level preconditioner.

(ii) Update the interface variables through communi-
cation and approximation schemes in the case of
a two level preconditioner.

(5) Update the DD iteration counter.
End Do

This specializes to a more detailed version of our pre-
vious method provided that an interface problem is solved as
an interface preconditioner in Step 4(i) above.

6. Other Preconditioners

We note that the interface problem can be solved op-
tionally with a fine-level interface preconditioner.  This is
usually affordable since the two level setup for the interface
problem is still comparatively cheaper than the other sub-
problems, in terms of both storage and computation.  It is,
therefore, a natural iterative refinement procedure based on
consideration of the load balance in some applications.

We note that a global coarse level preconditioner is also
a good choice because it hopefully produces global informa-
tion update, as motivated by the linear DD theory.  However,
we will not discuss these details here but will examine the
test results in next section.

IV. Numerical Results and Discussions

All the cases were tested on a PC cluster with 16 Intel
Pentium II 400 MHz cpus, 256 MB RAM and the Linux
operating system with MPI parallel environment at the Na-
tional Center for High-Performance Computing (NCHC).  The
parameters and methods for all the test cases are listed in Table
1.  The physical domain of x, y and z was (0.0, 1.0) in cases
1, 10, 11 and 12; the physical domain of x and y was (1.0,
1.66) in cases 2, 3, 6 and 8; (1.0, 2.0) in cases 4, 5, 7, 9 and

13.  Some statistics concerning the cpu time are shown in Table
2.  Accuracy and convergence results are shown in Figs. 1−
30.  We explain these results in some detail below.

Case 1. A very severe stopping criterion was applied here for
solving Burgers’ equation.  Convergence up to nine digits was
enforced.  The maximum number of DD-iterations, whether
needed or not, was set to be as large as 100, just to examine
the stability in a long run.  However, in practical time marching,
this may be as small as five or twenty.

Four DD methods were tested here: PNJ, IPPNJ, the
Coarse-level-Preconditioned Parallel Newton-Jacobi (CPPNJ),
and the Fine-level Interface-Preconditioned Parallel Newton-
Jacobi (FIPPNJ).  Shown in Figs. 1 and 2 are the accuracy
and convergence results in relative sense.  These numerics
indicate that all four DD methods yielded very stable discrete
dynamics.  CPPNJ converged fastest while the basic PNJ was
the slowest.  The other two, IPPNJ and FIPPNJ, converged
at about the same rate, with the latter slightly faster as can
be seen from the produced output.

As far as accuracy is concerned, the coarse preconditioner
was the least accurate, in contrast to its fastest convergence.
The basic interface preconditioner IPPNJ could achieve the
same level of accuracy, both in absolute and relative terms,
and took only about half the number of iterations as did the
basic PNJ method.  This is similar to the comparison between
the classical point Gauss-Seidel and the point Jacobi iterations
for solving a linear system.

We note that the precision achieved with the two-level
preconditioners, CPPNJ and FIPPNJ, clearly depended on
local interpolation or approximation and, therefore, was re-
stricted by the spatial grid resolution.  Noted here is the fact
that the FIPPNJ preconditioner saturated at an earlier stage
in absolute convergence and, therefore, was forced, unneces-
sarily, to iterate up to the required 100 maximum DD iterations.
This hurt in every way the cpu-time result (Table 2).  However,

Table 1. Parameters of Test Runs with Supnorm

case eq. Re DD_iter ht ht_CFL nx, ny, nz nsub PISO method

  1 2D Burgers 1 100 1e-3 9.00e-06 60, 60 9 0 various
  2 2D NS 10 20 1e-3 5.62e-06 240, 240 4 0, 1 PNJ
  3 2D NS 10 20 1e-3 5.62e-06 240, 240 4 0, 1 IPPNJ
  4 2D NS 10 20 1e-3 5.62e-06 240, 240 9 0, 1 PNJ
  5 2D NS 10 20 1e-3 5.62e-06 240, 240 9 0, 1 IPPNJ
  6 2D NS 10 20 1e-3 5.62e-06 240, 240 4 0 various
  7 2D NS 10 20 1e-3 5.62e-06 240, 240 9 0 various
  8 2D NS 10 20 1e-3 5.62e-06 240, 240 4 1 various
  9 2D NS 10 20 1e-3 5.62e-06 240, 240 9 1 various
10 3D NS 10 20 1e-3 2.31e-04 30, 30, 30 8 0 PORIP
11 3D NS 10 50 1e-3 2.31e-04 30, 30, 30 8 0 PORIP
12 3D Burgers 10 20 1e-3 2.31e-04 30, 30, 30 8 0 PORIP
13 2D NS 10 30 1e-3 1.13e-05 120, 120 9 0 PORIP
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the relative convergence history (Fig. 2) does verify the sta-
bility in computation.  In any case, the FIPPNJ result seems
to be poorer than that of IPPNJ.  Therefore FIPPNJ was
excluded in test Cases 2 − 9 described below, which are
concerned with the NS equations.

Case 2. We validated the basic Newton-Jacobi method (PNJ)
applied to both the decoupled and the coupled approach,
i.e., with or without PISO.  Then we tested in Cases 6 − 9
our proposed preconditioners using these two different

approaches.

The absolute accuracy of the variables p and v is shown
in Figs. 3 and 4, respectively.  Validation of our algorithms
and implementation, with or without PISO, is provided by the
numerics here.  The accuracy for the case without PISO is
only slightly inferior to the case with PISO.

Case 3. The basic interface-preconditioner (IPPNJ) was ap-
plied here, similar to Case 2, using the two approaches with

Table 2. CPU Time in Cases 1 − 9

average total averate total sub. other total cpu
case iter

commu. commu. sub. solver solver overhead time

PNJ 81 5.00e+00 4.05e+02 5.58e+00 4.52e+02 9.00e+00 8.66e+02
IPPNJ 38 6.39e+00 2.43e+02 5.45e+00 2.07e+02 3.00e+00 4.53e+02

1
CPPNJ 11 9.90e+00 1.01e+02 6.33e+00 6.96e+01 2.40e+00 1.81e+02

FIPPNJ 100 1.88e+01 1.88e+03 4.34e+00 4.34e+02 6.00e+00 2.32e+03

PISO 0 20 6.40e+01 1.28e+03 7.05e+01 1.41e+03 3.00e+01 2.72e+03
2

PISO 1 20 1.00e+02 2.00e+03 2.95e+02 5.90e+03 7.00e+01 7.96e+03

PISO 0 20 5.50e+01 1.10e+03 6.35e+01 1.27e+03 5.00e+01 2.42e+03
3

PISO 1 20 1.64e+02 3.28e+03 5.40e+02 1.08e+04 3.00e+01 1.41e+04

PISO 0 20 1.45e+02 2.90e+03 1.64e+02 3.28e+03 8.00e+01 6.26e+03
4

PISO 1 20 1.71e+02 3.42e+03 6.70e+02 1.34e+04 8.00e+01 1.69e+04

PISO 0 20 1.25e+02 2.50e+03 1.39e+02 2.78e+03 8.00e+01 5.36e+03
5

PISO 1 20 2.28e+02 4.56e+03 1.19e+03 1.38e+04 1.50e+02 2.84e+04

PNJ 20 6.21e+01 1.24e+03 6.80e+01 1.36e+03 4.00e+01 2.64e+03
6 IPPNJ 20 5.40e+01 1.08e+03 6.15e+01 1.23e+03 4.00e+01 2.35e+03

CPPNJ 20 1.75e+02 3.50e+03 7.35e+01 1.47e+03 5.00e+01 5.02e+03

PNJ 20 1.43e+02 2.86e+03 1.61e+02 3.22e+03 9.00e+01 6.15e+03
7 IPPNJ 20 1.22e+02 2.44e+03 1.37e+02 2.74e+03 9.00e+01 5.25e+03

CPPNJ 20 6.15e+02 1.23e+04 1.74e+02 3.48e+03 1.20e+02 1.59e+04

PNJ 20 1.00e+02 2.00e+03 2.95e+02 5.90e+03 7.00e+01 7.97e+03
8

IPPNJ 20 9.55e+01 1.91e+03 2.87e+02 5.74e+03 7.00e+01 7.71e+03

PNJ 20 1.67e+02 3.34e+03 6.70e+02 1.34e+04 1.10e+02 1.69e+04
9

IPPNJ 20 7.60e+02 1.52e+04 7.20e+02 1.44e+04 1.00e+02 2.97e+04

Fig. 1. Relative accuracy in solving Burgers’ equation in Case 1. Fig. 2. Relative convergence in solving Burgers’ equation in Case 1.
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or without PISO.  The findings, shown in Figs. 5 and 6, are
similar to those for Case 2.

Cases 4 and 5. These are similar to Cases 2 and 3.  Nine
subdomains were taken here, instead of four subdomains as

in Cases 2 and 3.  We note that the spatial grid resolutions
are the same as those for Cases 2 − 5.  The results, shown
in Figs. 7 − 10, are similar to those for Case 2.

Cases 6 and 7. The coupled system, without PISO, was solved

Fig. 3. Accuracy in p with or without PISO in Case 2.

Fig. 4. Accuracy in v with or without PISO in Case 2.

Fig. 5. Accuracy in p with or without PISO in Case 3.

Fig. 6. Accuracy in v with or without PISO in Case 3.

Fig. 7. Accuracy in p with or without PISO in Case 4.

Fig. 8. Accuracy in v with or without PISO in Case 4.
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here, with an interface preconditioner (IPPNJ), with a coarse
level preconditioner (CPPNJ), or without a preconditioner
(PNJ).  The partition of the global region consists of four
subdomains in Case 6 and nine in Case 7.  It is clearly seen,
in Figs. 11 and 12, that CPPNJ was most accurate, and that
IPPNJ was also more accurate than PNJ.  Although not as

smooth as in the case of the normalized two-norm, the numerics
for the maximum norm shown here do indicate the relative
spirits in these DD methods.  Results for the case of nine
subdomains are similar, as shown in Figs. 13 − 15.

We note that very heavy communication was observed

Fig. 9. Accuracy in p with or without PISO in Case 5.

Fig. 10. Accuracy in v with or without PISO in Case 5.

Fig. 11. Accuracy in p with or without preconditioner in Case 6.

Fig. 12. Accuracy in v with or without preconditioner in Case 6.

Fig. 13. Accuracy in p with or without preconditioner in Case 7.

Fig. 14. Accuracy in u with or without preconditioner in Case 7.
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in the coarse preconditioner in the pre- and post-data process-
ing of solving the global coarse problem.  Therefore, we
omitted CPPNJ from the subsequent test cases.

Cases 8 and 9. Here we solved the discrete system, via PISO,
and compared the PNJ and IPPNJ methods.  There were four

subdomains for Case 8 and nine for Case 9.  The interface
preconditioner is seen (Figs. 16 − 21) to converge faster and
to be more accurate.

The remaining Cases, 10 − 13, are related to relaxation
technology with the parameters shown in Table 1.  Detailed

Fig. 15. Convergence in u with or without preconditioner in Case 7.

Fig. 16. Accuracy in p with or without preconditioner in Case 8.

Fig. 17. Accuracy in u with or without preconditioner in Case 8.

Fig. 18. Convergence in u with or without preconditioner in Case 8.

Fig. 19. Accuracy in p with or without preconditioner in Case 9.

Fig. 20. Accuracy in u with or without preconditioner in Case 9.
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description follows.

Case 10. We conducted tests here with under-, over- and no
relaxation.  The observation then lead us naturally to a hybrid.
Precisely, the relaxation parameter took the values 0.7, 1.0,
1.2 and 1.5.  Convergence of the pressure variables and z-
component velocity W is shown in Figs. 22 and 23, respectively.

The exact accuracy achieved is shown in Fig. 24 for W.  These
three figures show the results up to 20 subdomain level
iterations.  The numerical results indicate a monotonic rela-
tionship between the accuracy and the relaxation parameter
α.  The α = 1.5 test run was the most accurate one, and under-
relaxation (α = 0.7) was the worst one.   As far as convergence
is concerned, the test runs with no relaxation (α = 1.0) and

Fig. 21. Convergence in u with or without preconditioner in Case 9.

Fig. 22. Convergence in p with or without relaxation in Case 10.

Fig. 23. Convergence in w with or without relaxation in Case 10.

Fig. 24. Accuracy in w with or without relaxation in Case 10.

Fig. 26. Convergence in w with or without relaxation in Case 11.

Fig. 25. Convergence in p with or without relaxation in Case 11.
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low relaxation (α = 1.2) were the two winners.  However,
notice that the α = 1.5 case converged fastest at the second
DD iteration, right after the over-relaxation applied once.

This suggests a combination of relaxation with different
relaxation parameters.  We are, thus, led to a combination
strategy, which includes three times of over-relaxation with
α = 1.5 and then no relaxation (α = 1.0) afterwards.  It is
amazing to see that the hybrid beated both of the parent
methods (α = 1.5 and α = 1.0), not only in convergence, but
also in accuracy.  Actually, the combination strategy won the
accuracy and 6-digit convergence contest at DD-iteration 11.

Case 11. The test runs for Case 11 extended up to DD-iteration
50.  The results for convergence (Figs. 25 and 26) and accuracy
(Fig. 27) indicate the amazing stability of the algorithms, the
software implementation, and the observed dynamics.

Case 12. With the three dimensional nonlinear Burgers equation,
seven test runs were conducted with relaxation parameters α
= 1.0, 1.1, 1.2, 1.3, 1.4 and 1.5, and with the hybrid specified

in Case 10.  Results for convergence are shown in Fig. 28,
and in Fig. 29 for accuracy.  Again, we observe that both the
convergence and the accuracy results exhibit monotonicity
with respect to the relaxation parameter, and, a pleasant surprise,
that the hybrid outperformed all the cases in terms of both
convergence and accuracy.  The physics of the convection-
diffusion type flow are certainly different from those in the
previous case of a vortex.  It is amazing, therefore, to observe
the very similar phenomenon in both.

Case 13. The effect of a relaxed interface preconditioner was
examined here.  Two dimensional NS equations were taken.
Both the interface-preconditioned Newton-Jacobi method,
relaxed or not, and the Newton-SOR-Schwarz method, as in
Cases 10 − 12, were tested.  The results show advantages of
the preconditioned class and also advantages of the subclass
of a combined mixed relaxation strategy.  Only accuracy of
V is presented as Fig. 30.

One point should be noted about the performance.  Over-
relaxation and our hybrid trials required no extra communi-

Fig. 27. Accuracy in w with or without relaxation in Case 11. Fig. 29. Absolute error in solving the 3D Burgers’ equation with or without
relaxation in Case 12.

Fig. 28. Absolute convergence in solving the 3D Burgers’ equation with
or without relaxation in Case 12.

Fig. 30. Absolute error in v in solving the 2D NS equation with or without
relaxation in Case 13.
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cation at all and cost only one additional vector update in terms
of computation.

V. Conclusion

We have designed several natural candidates for
preconditioners of the interface (sub)problem in the Newton-
Schwarz approach.  Compared with the basic parallel nonlinear
block Jacobi procedure, these preconditioners are more ac-
curate for the Burgers and NS equations.  The choice of
preconditioner certainly depends on, among others factors, the
spatial resolution and required precision of computed results.
Based on our experiments, the IPPNJ method converges faster
while achieving the same or better accuracy and requiring less
computation time.  The other preconditioners, CPPNJ and
FIPPNJ, may achieve moderate precision and converge faster
in terms of the number of DD iterations, but both apparently
require heavier communication.  We believe that further tech-
nology improvement in system architecture will resolve this
communication inefficiency to a large extent.  We also in-
vestigated the SOR type domain decomposition precondi-
tioner, which exhibits very monotonic behavior both in con-
vergence and in accuracy.  A combination strategy showed
very good results, better than those of both parent methods.
Our implementation yielded very stable numerics and dynam-
ics in terms of long time DD-iterations.  These are observed
on flow of either a wave type or a vortex type.
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平行流力計算區域分割方法之界面預優化研究

李天佑　游輝宏

行政院國家科學委員會國家高速電腦中心計算數學小組

摘　要

本文設計並探討非線性區塊迭代式區域分割方法以處理界面變數問題（interface problem）。並利用所設計之各種
不同的預優化子（preconditioner）針對Navier-Stokes（NS）方程組進行非結構化（unstructured）非均勻網格（non-
uniform grid）流體數值模擬（numerical fluids simulation）平行計算方法之研究與探討。此外，將預優化子本身經過鬆
弛(relaxation)之前處理以加速收斂，可啟發實用之混合式方法，獲致更佳效果。


