
I. Introduction

In the structure-from-motion problem proposed by
Tomasi and Kanade (1992), the shape (the relative posi-
tion of feature points) on “one” moving object can be
obtained from a sequence of the images using the singular
value decomposition (SVD) approach.  The generalization
to the paraperspective projection case was introduced in
Poelman and Kanade (1997).  Morita and Kanade (1997)
proposed a sequential factorization method to obtain shape
and motion information in real-time applications.  Re-
cently, Marugame et al. (1999) proposed a framework to
recover the structure of an object using a scaled ortho-
graphic and perspective views.  In these studies, there is
only one moving object in the image sequence.  In this
paper, we consider a generalized situation when there are
multiple moving objects in the image sequence.  The
image sequences from several cameras are also discussed.
The study is based on the assumption of orthographic
views.

The multi-target motion-shape-estimation (MSE) pro-
blem is: Given a sequence of 2-D video images of multiple
moving targets, the goal is to compute the 3-D motion of
the targets and reconstruct their 3-D shapes.  This can be
further extended to multi-camera-multi-target MSE, with

potential application to the 3-D occlusion problem.  After
collecting feature points (FPs) which are sequentially
tracked by a video system, the SVD may be applied to a
measurement matrix formed by the FPs.  The distribution
of singular values will first reveal the information about
the number of objects at hand.  Then, using an algebraic
method based on the subspace clustering method and
Principal Singular Vector (PSV) analysis, the FPs may be
mapped onto their corresponding objects.  Thereafter, the
motion and shape may be estimated from a matrix factor-
ization using SVD.

Our method hinges upon the numerical effectiveness
and stability of SVD factorization.  Also, a robust algo-
rithm is proposed for tracking feature points in a sequence
of images.   Block matching techniques provide a reliable
method for estimating the motion of an object.  However,
implicit in this method is the assumption that distinctive
features, e.g., corners, can be located unambiguously be-
tween frames for each block.  The correlation between
features in image blocks provides the basis for estimating
the quality of the match and the motion of the object.  We
propose a technique that enhances the reliability of the
block matching techniques.  This method can improve the
algorithmic robustness for a broad class of tracking sce-
narios.  We will demonstrate the effectiveness of the algo-
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ABSTRACT

Three-dimension shape reconstruction is one of the important research areas in object recognition and
image understanding.  A structure-from-motion problem as originally proposed by C. Tomasi and T. Kanade in
1992 has attracted a lot of attention.  It is based on the singular value decomposition (SVD) approach.  In this
paper, it is extended to cope with the multi-target case.  That is, given a sequence of 2-D video images of multiple
moving targets, the goal is to compute the 3-D motion of the targets and reconstruct their 3-D shapes.  This is fur-
ther extended to the multi-camera-multi-target problem.  First, a robust algorithm which enhances the reliability of
the block matching techniques is proposed for fast tracking of feature points in a sequence of images.  Then the
feature points are mapped onto their corresponding objects using an algebraic method based on the subspace clus-
tering method and principal singular vector (PSV).  Thereafter, the motion and shape may be estimated from a
matrix factorization using SVD.  We demonstrate the effectiveness of the algorithms in tracking and reconstruction
of the shape information using both artificially created data and a real image sequence in somewhat controlled
environments.
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rithms in tracking and reconstruction of the shape infor-
mation using both artificially created data and a real image
sequence in somewhat controlled environments.

This research can serve as a basis for many potential
applications.  For example, in parking lot (or airport) sur-
veillance applications, it can be used to separate and then
recognize different moving targets, so the type and speed
of an object can be obtained.  Also, it can be utilized to
determine the camera motion (reflected in the motion of
the background) and the motion of the targets.

This paper is organized as follows: Section II pro-
vides the mathematical background and describes some
previous works.  A discussion of feature point tracking is
provided in Section III.  Section IV presents the shape
from motion method based on the split-and-merge sub-
space clustering algorithm and principal singular vector
analysis.  Section V concludes the paper.

II. Background and Previous Works

1. Feature Point Tracking

Robust selection and tracking of feature points is a
crucial preprocessing step in this application as well as in
many other surveillance applications.  For tracking of
some moving objects in a video sequence, selection of
robust feature(s) of the objects in the initial image is
essential.  By a robust feature we mean a feature that can
be easily detected and accurately located in successive
images in the sequence.  Many feature selection algo-
rithms have been proposed in the literature.  Moravec
(1981) proposed an interest operator which can find cor-
ner points in an image.  Thorpe (1984) improved Mora-
vec’s interest operator by first finding edge direction with-
in the window and then computing the directional vari-
ance perpendicular to the edge direction.  This local vari-
ance can be used to select robust feature points. Several
other algorithms have been proposed to detect corners.
For example, some corner detection operators based on
surface fitting were studied in Kitchen and Rosenfeld
(1982), and a robust corner detection using curvature scale
space was proposed in Mokhtarian and Suomela (1998).
Tomasi and Kanade (1991) proposed a elegant feature
selection operator that uses a tracking equation to deter-
mine if a particular point in an image sequence is track-
able.

In this paper, we assume that the feature points are
available.  Therefore, we concentrate here on fast tracking
of the feature points in the image sequence.  Block match-
ing techniques for feature point tracking estimate the new
position of a feature point when the matching error be-
tween blocks is minimized.  If the feature point of an
object is located on the boundary of the object, and if the
background changes between frames, then the block

matching algorithm is influenced by the changing back-
ground.  This motivates the use of a weighting mask to
emphasize the object instead of treating the background
and the object equally.  In Section III, we propose a tech-
nique to enhance the reliability of the block matching
techniques.

2. SVD Analysis of a Single Moving Target

In this section, SVD is adopted to analyze a set of
feature points from a sequence of images in order to
recover the shape of a moving object.  This is called an
MSE problem.  Figure 1 shows a coordinated world model
for a video-camera imaging system with a target.  Here,
for convenience of notation, we assume that the rotation
center coincides with the (local) coordinate system per-
taining to Target A.  Let a denote the position vector of
one of the P feature points of the target.  Moreover, we
assume an orthographic projection of the feature points
onto the image plane.  Projecting this feature point onto
the camera’s image plane, we have the x-coordinate’s
value as

(1)

where i denotes the vector [1 0 0] and Ra( f ), ta( f ), respec-
tively, denote the rotational matrix and the translational
vector for frame f.  By means of a simplified notation, we
obtain

(2)

Now we can construct an expanded matrix Wi
a by

expanding along two directions. (1) Along the horizontal
direction, we gather all the feature vectors of Target A. (2)

w f f t fa
i

a
i

a
i( ) ( ) ( ).= +R a

w f f fa
i

a a( ) ( ) ( ),= +iR a it
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Fig. 1. A coordinated world model for a video-camera imaging system
with a target, where a denotes the position vector of one of the P
feature points of the target.



Along the vertical direction, we cascade the i-coordinate
projected feature positions at time f =1, 2, …, F.  This
yields a matrix:

(3)

where

Ea = [1 1 … 1] (4)

is a 1 × P vector.
The dimensions of the Wi

a, Ri
a, Ti

a, and Sa matrices
are F × P, F × 3, F × 1 and 3 × P, respectively.  The shape
matrix Sa = [a(1) a(2) … a(P)] is formed from all the P
column feature vectors belonging to Target A.  The matrix
Ri

a is a cascadation of the rotational matrices of different
times, i.e.,

Similarly,

For the y-coordinate in the image plane, we have

(5)

(6)

where j denotes the vector [0 1 0].  For the y-axis, we have
another expanded matrix:

(7)

Now let us stack the x- and y- image measurement matrices:

(8)

where

The dimensions of the  matrices Wa, Ra and Ta are 2F × P,
2F × 3 and 2F × 1, respectively.

Furthermore, without loss of generality, we can al-
ways set the rotation center to be the (moving) centroid of
the feature points on the target.  (Consequently, for the
single and multi-target cases, the rotation center of each

object coincides with its individual mass center.)  From
now on, our discussion will be based on this representa-
tion; i.e., the origin of the (local) coordinate system is at
the center of mass of the feature points of the target.
Under this coordinate system, –Sa = 0, where –Sa denotes the
average of Sa.  This in turn implies that the average (or the
sum) of the columns of Sa will be equal to zero.
Therefore, it is obvious that the rows of the matrix Sa in
Eq. (8) are orthogonal to Ea, i.e.,

Sa ET
a = 0.

In the following, this property will be exploited to separate
the rotational component from the translational component.

For the single target case, the measurement matrix

(9)

≡ MS, (10)

where M2F×4 and S4×P are defined in an obvious way.  The
measurement matrix W is usually corrupted by noise,
whose existence is due to the measurement noises, other
acquisition errors, or the assumption of orthographic pro-
jection.  The SVD technique permits a large number of
points and frames (possibly corrupted by noise) to be pro-
cessed in a computationally efficient and numerically sta-
ble way:

W = UΣΣ1/2ΣΣ1/2V.

If the SNR is sufficiently large, then the number of pre-
dominant singular values in ΣΣ should be less than or equal
to 4; i.e., the dimensions of U and V should be  consistent
with those of M and S.  Note also that

W = MQ–1QS

for some invertible matrix Q.  Therefore, the matrices S
and V are related by a transformation  matrix Q:

S = Q–1ΣΣ1/2V.

It follows that

M = UΣΣ1/2Q.

In the single target case, the translational component
can be removed by subtracting the (horizontal) average of
the measurement matrix (which will not be so easy for
multiple target case):
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(12)

(13)

where –
Sa = SaE

T
aEa/P = 0 and  –

Ea denotes the average of
Ea.  Since the elements of Ea are all identical, the transla-
tional component TaEa is exactly cancelled by its average.
This yields a very simple formulation:

(14)

An important rank property suggested by Eq. (14) is
closely related to the fact that three pictures of four points
of a rigid body determine structure and motion under
orthography (Ullman, 1979).  This property was expressed
as a rank theorem by Tomasi and Kanade (1992).

Theorem II.1 (Rank Theorem for Noise-free Meas-
urement Matrix).  The matrix  ~

W given in Eq. (14) has a
generic rank of 3.

The rank theorem captures the nature of the redun-
dancy that exists in an image sequence.  This implies that
the best possible shape and rotation estimate can be
obtained by considering only the three greatest singular
values of  ~W, together with the corresponding left and right
eigenvectors.  Based on this, Tomasi and Kanade (1992)
developed a robust SVD-based factorization method,
which takes advantage of numerically well behaved SVD
routines.  Tomasi and Kanade (1992) proposed a scheme
to recover Q, based on known constraints on Ra, and to
subsequently find an exact solution of the motion and
shape matrices Ra and Sa.

III. Feature Point Tracking Using
Weighted Masks

Robust tracking of feature points is a crucial prepro-
cessing step in this application as well as in many other
surveillance applications.  The tracking results are usually
influenced by the following factors:

(1) Focus of the camera: If the objects are widely sepa-
rated, all the objects can not be in good focus at the
same time.  This may affect the accuracy of track-
ing, especially for complex objects.

(2) Type and speed of motion: The image of the object
near the feature point can change a lot during fast
rotation.  In this case, the feature point will proba-
bly drift away from the correct position.

(3) Background: If the selected feature point moves
close to the boundary of the object, some of the
background will be included in the computation of
the current position of the feature point.

(4) Perspective distortion: When the objects get close

to the camera, the distortion in perspective can be
serious enough to bias the tracking accuracy.

In the following, we will propose a technique for
tracking feature points which enhances the reliability of
the block matching technique.  The goal is to emphasize
the object region instead of treating the background and
the object equally (Taur, 1995).  This is useful when the
feature point is close to the boundary of the object.  To
locate the position with the minimum matching error, the
matching errors of the pixels in the block are weighted by
a mask obtained from the estimated quality of matching
and the motion of the feature point.  We will demonstrate
that this algorithm yields robustness in a scenario of track-
ing cars in a parking lot and in an image sequence contain-
ing two simple moving objects.

Weighted Block Matching. In order to reduce the influ-
ence of the background in the matching process, we esti-
mate which elements in the matching window belong to
the object under consideration and emphasize these ele-
ments by using a weighting mask.  The weighting mask is
updated frame by frame according to the following equa-
tion:

(15)

where α1 is the forgetting factor and the motion mask M1

is computed as follows.  First the difference between
image blocks from the current image and the reference
image is computed at the position of the feature point on
the reference image.  Let B denote the block region con-
taining the feature point:

Then Id is thresholded.  That is, if the difference is larger
than a certain amount, then the corresponding element in
the motion mask will be set to one, which means it is very
likely that the element is near a moving object.  Then dan-
gling points and small holes in the mask are removed.
W (i)

m is used to compute the best match.  Once the best
match is found, the new weighting mask is computed as
follows:

(16)

where α2 is a forgetting factor.
The match mask M2 is computed by setting a thresh-

old for the difference between the current image and the
reference image at the positions of the feature point.  That
is, assume that the image block Bm in the current image
matches best block B in the reference image under the
mask W (i)

m.  The difference between the positions of Bm and
B is described by an offset vector (dx, dy).  Then we have

W W Mi
m

i( ) ( ) * ,= +α 2 2

I abs I x y I x y x y Bd r c= − ∈( ( , ) ( , )), ( , ) . 

W W Mm
i i( ) ( ) * ,= +−1

1 1α

˜ .W R S= a a

= −[ ]R S Sa a a ,

= + − −R S T E R S T Ea a a a a a a a
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Then dangling points and small holes in the mask are
removed.  If the difference is smaller than a certain a-
mount, then the corresponding element in the match mask
will be set to one, which indicates a good match.  If the
background is changing a lot, the matching window will
have a good match with the object and a poor match with
the background.  Therefore, M2 will have ones in the re-
gion of the object.

In the simulation, we used an image sequence of a
moving car in a parking lot.  The lower right corner of the
windshield of the moving car was selected as a test feature
point.  (If the window of a feature point was totally on the
body of the car, e.g., the left corner, then the tracking task
would be easier.)  The window size was 13, and α1 = α2 =
0.6.  If simple block matching was used, the feature points
would not be tracked correctly due to the changing back-
ground.  After the weighting mask was applied, the feature
points could be tracked.  The tracking results are shown in
Fig. 2.  For the purpose of illustration, Fig. 2(a) and (b)
show the magnified pictures around the moving car in Fig.
2(c) and (d) with one feature point (indicated with white
dots).  Note that the background and the size and orienta-
tion of the car change considerably in different frames, yet
the algorithm is able to track the feature point.

In Figs. 3 and 4, we show some typical masks in dif-
ferent scenarios.  They show motion masks and matching
masks from the upper left to the lower right  correspond-

ing to the following situations: (1) a car is moving fast on
a uniform background, (2) a car is moving slowly on a
uniform background, (3) a car is moving fast on a chang-
ing background, and (4) a car is moving slowly on a
changing background.  From Figs. 3 and 4, we can see
that the mask covers the object region in most of the
cases.  In the case where the car is moving fast on a uni-
form background (the leftmost figures), the matching is
still valid since the background is uniform.

The same tracking algorithm was applied to the

x y B x d y d Bx y m∈ + + ∈( , ) ( , ) .                and 

I abs I x y I x d y dd r c x y= − + +( ( , ) ( , )),
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(a) (b)

(c) (d)

Fig. 2. (a) Starting position. (b) Ending position. (c) and (d) are magni-
fied images of the car.
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Fig. 3. Motion masks of the feature point in different situations. The
white and black elements denote 1’s and 0’s, respectively.
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Fig. 4. Match masks of the same feature point in Fig. 3 in different situa-
tions. The white and black elements denote 1’s and 0’s, respec-
tively.



image sequence recorded in a laboratory (sequence LAB-
2OBJ) with the following equipment.  The system for the
experiments is depicted in Fig. 5, which shows a personal
computer and a video grabbing system.  The video grab-
bing system is composed of three parts: a personal anima-
tion recorder, transducer, and high speed hard disk.  It can
record the video signals onto a hard disk in real time.  The
resolution is 480 × 740 and 256 gray levels per pixel.  The
source can be any S-Video or NTSC signal. The signal
from the camera is shown on a video monitor.  The video
signals are compressed before they are stored onto a hard
disk.  Therefore, the image quality is degraded a little bit.
In the experiment, there were totally 150 frames in the
sequence.  One solid object and one hollow object were
moving on a surface.  The gray levels in the background
were changing gradually.  There were also abrupt changes
of gray levels in the background.  Nine feature points were
selected manually. (In order to recover the shape and the
motion information, at least four feature points were re-
quired for each object.) The tracking results are shown in
Figs. 6 – 8.  The circles indicate the feature points.  We
can see that the positions of the feature points remain rea-
sonably accurate although the sizes and orientations of the
objects change a lot.

IV. Multi-Camera-Multi-Target Motion-
Shape Analysis

In this section, we consider the structure-from-mo-
tion problem in the situation where there are multiple
cameras and multiple moving objects in the image se-
quences.  That is, given long sequences of images, we
wish to construct a three-dimensional model of the mov-
ing targets.

1. SVD for the Multi-Target MSE Problem

For the single-object MSE problem, let us define M
= [Ta Ra] and S = [Ea/Sa] using the notation given in
Section II.2.  Then the measurement matrix can be ex-
pressed as W = Wa = MS.  This factorization suggests
that the matrix W has a generic rank of 4.  If we further
subtract the mass center from W, the resulting matrix

Feature Tracking & Motion Shape Analysis
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Fig. 5. Set-up of the equipment for image sequence grabbing.

Fig. 6. The first frame of LAB2OBJ in the experiment. The circle shows
the selected feature points.

Fig. 7. The 75th frame of LAB2OBJ in the experiment. The circle shows
the tracked feature points.

Fig. 8. The last frame of sequence LAB2OBJ. The circle shows the
tracked feature points.



will have a generic rank of 3 (Tomasi and Kanade,
1992).

For the multi-object MSE problem, a new challenge
arises since we have to distinguish the feature points of
adjacent objects so that they can be correctly classified
into their corresponding objects.  Let us, for simplicity,
concentrate on two targets, A and B, with their shapes
denoted by Sa and Sb.

Like the single-target case, the measurement matri-
ces for A and B can be  derived as follows: Wa = RaSa +
TaEa and Wb = RbSb + TbEb.  Concatenating these matri-
ces, we have

(17)

(18)

Let Pa and Pb denote the number of feature points in
Target A and Target B, respectively.  Then the sizes of W,
M and S are 2F × (Pa + Pb), 2F × 8 and 8 × (Pa + Pb),
respectively.  The rank of a noise-free non-degenerate
measurement matrix W should be exactly 8.  If there are k
targets in the image sequence, the rank of a noise-free
measurement matrix W should be exactly 4 × k.

A. Main Theorem for Reclustering of Feature Points

The representation in Eq. (18) assumes that the
columns from A and B are already separated in correct
clusters.  This may not be the case in reality.  When two
targets are close to each other, the FPs may not be pre-
aligned in the correct order.  Therefore, we have to  first
recluster the FPs such that the FPs for A are separated
from those for B.  Furthermore, it is realistic to assume
that the measurement matrix W is corrupted by noise and,
thus, has full rank.

Computing the  SVD of  the measurement matrix

W =
––
U

––ΣΣ ––
V = UΣΣV + U'ΣΣ'U'

and removing the “noise” singular values ΣΣ', we have

W ≈ UΣΣV = UΣΣ1/2ΣΣ1/2V. (19)

Let us assume that the SNR is sufficiently large (ideally
noise-free), and that  each (rigid-body) object consists of
at least 4 or more linear independent FPs and has total
freedom of 3-D (rotational and translational) motion.

Then the following theorem is valid:

Theorem IV.1 (Subspace Rank Property). Compute the
SVD of W and obtain U, ΣΣ, V as given in Eq. (19).

(1) Total Rank: The total number of (numerically)  non-
zero singular values in ΣΣ (i.e., those attributed to the
objects) will be 4k, where k is the number of objects.
Here an object is, by definition, a rigid body.

(2) Inclusive Rank Property: If the column vectors of
the matrix V (or, equivalently, ΣΣ1/2V) are correctly
grouped into k clusters, each corresponding to one
object, and if the correctly permuted matrix is re-
written as

V ≡ [Va Vb], (20)

then Va and Vb have (generically) a rank of 4.
(3) Exclusive Rank Property: Due to the mutual or-

thogonality property, any mixture of column vec-
tors from different objects will generally cause the
submatrix (comprising of columns from more than
one object) to exceed rank 4.  In other words, no
column in Va may fall in the span of the submatrix
of Vb, and vice versa.  Generally, any mixture of (5
or more) columns from Va and Vb will cause the
rank to exceed 4.  This property may be exploited
to prevent over-subscribing of alien columns into
an object.

(4) Uniqueness: The inclusive and exclusive rank prop-
erties together guarantee the uniqueness of the so-
lution.

Proof. The theorem can be proved by inspecting Eq. (18).
In particular, we note that ΣΣ1/2V = QS for some nonsingu-
lar matrix Q.  Therefore, Va = Q[ET

a ST
a 0 0]T.  Since Q is

nonsingular, Va must  have rank 4.  Equation (18) also in-
dicates the mutual rank independency between Va and Vb,
thus verifying Part (3). Part (4) follows naturally Parts (2)
and (3).

?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@ @@@@@@
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

B. Subspace Clustering Problem

The rank theorem prescribes the common bound
shared by FPs from  the same (rigid) object.  This leads to
a general algebraic framework formulated in the so-called
a  subspace clustering problem.

Definition IV.1 (Subspace Clustering Problem). Given a
set of feature vectors V = {υi}, the problem is to find all
the (rank-r) objects in V by identifying their correspond-
ing subsets of feature vectors.  Here a rank-r object is
defined as a subset of V which forms a rank-r subspace.
(For example, when applied to the multi-target MSE prob-
lem, r = 4.)
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Algorithm IV.1 (Subspace Clustering Method). For the
noise-free case, the following steps may be adopted:

(1) Determine a pool of basis vectors B as a maximally
linearly independent subset of V.  Generally, B
should contain exactly k × r basis vectors.

(2) A subset of r basis vectors in B will be incorporat-
ed into a partnership if there exists at least one vec-
tor in V, but not in B, which falls in the span of the
subset.  The justification for forming such a part-
nership is that, due to the exclusive rank property,
if r + 1 vectors fall in a span of rank-r subspace,
then they can not possibly be from a mixture of
two objects; i.e., they belong to the same object.
(For notational convenience, the r basis vectors
shall be called major members in the partnership.)

(3) Attract other minor members to join the partner-
ship.  By the inclusive rank property, a vector is
elected to membership if and only if it falls in the
span of the r basis vectors (i.e., major members).

(4) Continue the process until all the memberships of
the k objects (i.e., partnerships) are identified.

A Clustering Example (Noise-Free Case). For simplici-
ty, the object rank is now set to be r = 2.  Given a set of
vectors {υi, i = 1, 2, …} = {A1, B1, B2, C1, A2, A3, C2, B3,
A4, B4, C3, …}, from objects A, B and C, the clustering
process can be shown as follows:

Vector Dependence Basis Pool Partnership

1 No 1, -
2 No 1,2, -
3 No 1,2,3, -
4 No 1,2,3,4, -
5 No 1,2,3,4,5 -
6 Yes (So vector #6 is excluded from the pool.)
7 No 1,2,3,4,5,7 -
Basis pool is complete and new members are now added:
6 Yes(on 1,5) (1,5),2,3,4,7 (1,5 6)
8 Yes(on 2,3) (1,5),(2,3),4,7 (2,3 8)
9 Yes(on 1,5) (1,5),(2,3),4,7 (1,5 6,9)
10 Yes(on 2,3) (1,5),(2,3),4,7 (2,3 8,10)
11 Yes(on 4,7) (1,5),(2,3),(4,7) (4,7 11)

The final clustering result is that the vectors (1,5,
6,9, …) form one object (say, A), (2,3, 8,10, …) form
another object (B), and (4,7, 11, ...) form yet a third object
(C).

C. Discussion

In real-time applications, recursive extraction of
principal components using the adaptive algorithm be-
comes important.  For example, a parallel processing neu-
ral model, Adaptive Principal component EXtraction
(APEX), may provide a very attractive implementation

(Kung and Diamantaras, 1990).  Moreover, Morita and
Kanade (1997) proposed a sequential factorization method
using QR factorization to obtain the principal singular
vectors with one target for real-time processing.  The com-
putation complexity is reduced to O(P2), where P is the
number of feature points.  For the multi-target case, the
same approach can be used to obtain V.  Then the sub-
space clustering algorithm can be adopted to identify the
corresponding object for the feature points.  For each vec-
tor υυi not in the set of the basis vectors B, we have to
check which vectors in B can span υυi.  QR factorization
can again be used for this purpose.  However, if P is large,
the computation time may exceed the limit for real-time
applications.

In addition to the computation requirement, several
other factors need to be taken into account in practical
(real-time) applications.  For example, when the object is
moving, the feature points will sometimes be occluded
and reappear later.  The chang in the number of feature
points and the correspondence problem will make the
MSE more difficult.  When the number of feature points
becomes too small, a scheme to automatically select the
feature points is required.  Moreover, if the motion models
of the object degenerated then the subspace rank property
will not hold.  An example is the case in which the object
is moving in only one dimension. (We can move the cam-
era to make the relative motion non-degenerate if there is
only one target.) Another degenerate situation happens
when more than one object is moving with very similar
translation and rotation models.  Therefore, we sometimes
have to solve the MSE problem using a batch-type ap-
proach.  We will focus on these research topics in the
future.

2. Multi-Camera-Multi-Target MSE

In many application domains, images taken using
multiple cameras can offer vital information.  However,
one must keep FPs from different objects from being
mixed.  In this case, the subspace clustering method
offers a simple solution.

Without loss of generality, let us assume that the first
camera is (as before) located at the origin [0,0,0] with the
direction of the imaging plane defined by its normal vec-
tor [0,0,1].  A second camera, located at a new location,
m = [mi, mj, mk], has its own image plane defined by a
new normal vector k3 =[k1

3, k2
3, k3

3] (Fig. 9).  Since m is
known and remains constant, its shift effect can be
removed by first pre-shifting the FPs recorded by the sec-
ond camera.  Therefore, without loss of generality, we
simply pre-align the FPs of the second camera so that in
the following derivation, we consider in effect m = 0.

There exists a common viewing angle from the two
cameras since two image planes (assumed to be non-paral-
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lel) must intersect on one line, which is orthogonal to both
of the normal vectors.  Let the direction of the line be
denoted as l.  It is obvious that

This yields a solution:

Just as in Eq. (1), with orthographic projection onto the
line l, the FP is recorded as

(21)

and the measurement matrix for the first camera is

(22)

Similarly, for the second camera, we have another matrix:

(23)

Assuming that there are two objects (A and B), the total
measurement matrix becomes

Inspection shows clearly that all the multiple-object rank
properties in Theorem IV.1 and the same subspace cluster-
ing method remain applicable.  Therefore, we can identify
the set of FPs in the same object using different cameras.

Note also that when more than two cameras are
employed, we can cluster the FPs through fusion of im-
ages from any pair of cameras.  The final shapes of indi-
vidual objects can be constructed based on the results of
all the image pairs obtained using multiple cameras.

3. Simulation Results

Example IV.1 (Four Moving Targets). The targets con-
sidered in the simulation consisted of two cylinders, one
block and one pyramid.  There were 20 feature points on
the cylinders and the block, and 10 points on the pyramid.
The order of the feature points was randomly permuted.
During the duration of 50 frames, all the targets rotated
independently.  One frame of the orthographic projection
of the four objects is shown in Fig. 10(a), in which the FPs
of the objects can not be separated easily, at least not by
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Fig. 9. Coordinate system for two cameras with multiple moving targets.
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Fig. 10. A multiple target experiment. (a) The feature points of four tar-
gets, and (b) the reconstructed 3-D shapes.



conventional clustering algorithms.  The rank property can
be used to estimate the number of objects.  As shown in
Fig. 11, the singular values of the measurement matrix
indicate a substantial drop in the 17th singular value.
Therefore, the rank is 16, and the number of objects is 4,
just as predicted. (More details can be found in Kung et al.
(1994).)  By using the subspace clustering method, we
obtained four different groups of column vectors
[VaVbVcVd].  The translation-rotation decomposition was
used to obtain the shapes, which are shown in Fig. 10(b).

Example IV.2 (Two-Camera-Two-Target Case). Exper-
iments were performed on a 2-camera-2-targets motion-
shape problem.  Two objects (one cube and one pyramid)
were used.  The SVD approach was successfully applied
to separate the two targets and reconstruct their shapes.
Figure 12(a) shows the frames taken with the two different
cameras.  Their intersection vector l is (–1, –2, 0).  Figure
12(b) depicts the reconstructed objects obtained following
fusion of the image sequences obtained using both cam-
eras.

We observed that the 2-camera case was more sensi-
tive to noise than the 1-camera case.  We adopted a small-
er singular value threshold to find major basis members
and adopted a much larger threshold to find new (minor)
members.  Note also that when the rotation axis of the
object constantly coincided with the intersection vector of
the two camera planes, then 2-camera fusion was insuffi-
cient to reconstruct the shape. (This is a minor concern
since this is a very degenerate situation.)

Example IV.3. The results of the experiment on two mov-
ing objects in the sequence LAB2OBJ are shown in Fig.
13.  We can observe that the basic relationships among the
feature positions have been extracted.

4. Numerical Considerations

To improve the numerical behavior, the basis vectors

should be numerically as nonsingular as possible.  Here
the “numerical nonsingularity” is measured using the
smallest singular value associated with the basis vectors.
This results in a more stable linear dependency check.

A Confidence Measure. In a noisy situation, a confidence
measure for linear dependency may be very useful.  The
membership check should take into account the confi-
dence measure.  In a practical, noisy situation, it is more
meaningful to ask: “Is there an approximate linear depen-
dency, and if so, how close is it?” The answer is complex
and hinges upon the confidence criterion adopted.  One
popular approach is to have A perturbed by a perturbation
matrix ∆∆ so that linear dependency will exist.  Suppose
that the SVD of A = UΣΣVT = Σm+1

i=1 uiσiυυT
i.  Then, by  setting

∆∆ = –um+1σm+1υυT
m+1, we need

(24)

to have rank deficiency.  This further implies that [A + ∆∆]
is the closest approximation of A with rank no more than
m.  From Eq. (24), we note that [A + ∆∆]υυm+1 = 0, so the
“best” normalized null-space solution is simply x = υυm+1.
In summary:

(1) The last singular vector of A, υυm+1, reveals the
most likely linear dependency existing in A.

(2) The last singular value σm+1 gives a quantitative
measure of the confidence of such a linear depen-
dency. (The smaller σm+1 is, the higher is the confi-
dence since it is closer to linear dependency.)

It is not necessary to identify all the objects at one
time; they may be identified sequentially.  This is impor-

A +[ ] = =∑∆∆ i
m

i i i
Tu1 σ υ
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Fig. 11. The semi-log plot of the singular values in the simulation.
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tained using two cameras, and (b) the reconstructed 3-D shapes.



tant since the smallest singular values associated with the
basis vectors usually decrease (rapidly) with an increasing
number of  objects (or basis vectors).  Therefore, when the
number of objects is very large, it may be difficult to form
a complete set of basis vectors with a decent smallest sin-
gular value.  It is then advisable to use only a partial basis
set which offers a better and more comfortable “numerical
nonsingularity.” As long as the partial basis set contains
the r basis vectors needed for at least one object, all the
(minor) members of that object may be identified after-
wards.  The members of the first object may be removed
from the set V before the search process for the second
object is started.

A. Split-and-Merge Procedure for Noisy Data

When the noise level is high (or the tracking is not
accurate), it is not easy to determine the number of objects
from the rank property.  In Fig. 14, the singular values of a
set of feature points from four different objects are depict-
ed.  From the rank property, W should be a matrix of rank
12.  However, this is not obvious in the figure.  Moreover,

it is sometimes difficult to cluster the feature points into a
correct group in one shot.  In this case, a split-and-merge
procedure can be applied.  In this method, perhaps only
some of the FPs of the objects are separated from the set
of points in each subspace clustering iteration under a cer-
tain confidence measure.  After the splitting process is
completed, we try to merge the detected groups gradually.
For each possible combination of two groups of FPs, the
confidence measure of the combined group is computed.
If the best confidence measure is larger than a threshold,
the corresponding groups are merged.  The same proce-
dure is repeated unitl the best confidence measure is
smaller than the threshold.

B. Principal Singular Vector (PSV) Analysis

In this section, we will describe how principal singu-
lar vector analysis can be used to separate feature points
objects (Kung et al., 1996).  It is found that the PSV’s
have a very good noise-tolerance property.

The PSV Clustering Method consists of the follow-
ing main steps:

(1) The first k PSV’s from V form a k × P matrix,
where k is the number of objects and P is the num-
ber of feature points.

(2) Cluster the columns into k different groups.
(3) For each group of feature points, compute the mo-

tion and shape information using the algorithm de-
scribed in Section II.2.

This procedure is based on the fact that the transla-
tion components of the objects often dominate the rota-
tional component when the SVD of W in Eq. (18) is com-
puted.  If the translational components of each object are
quite different from each other, the feature points can be
separated by using clustering algorithms.  One example of
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Fig. 13. The shape information of the objects.

Fig. 14. The semi-log plot of the singular values of a noisy feature point.



the case is shown in Fig. 15 for a set of feature points
from three different objects.  We can observe that the clus-
ters are far away from each other, and that noise, inaccura-
cy of the tracker, or the perspective distortion hardly affect
the clustering.  However, the assumption of dominance is
sometimes not correct.  For example, the tracking results
of the sequence LAB2OBJ introduced in the previous sec-
tion are shown in Fig. 16.  Correct clustering is not guar-
anteed.  Also, the number of objects is sometimes difficult
to obtain in noisy environments.

Combined Procedure. The noise tolerance in the split-
and-merge approach is not as good as that in the PSV
approach especially when the number of objects is large.
However if the dominance property does not hold, the
PSV approach can not be applied.  Therefore a combina-
tion approach offers the advantages of both methods.
First, the PSV approach can be adopted to separate as
many clusters as possible.  Then, the split-and-merge me-
thod can be used to cluster the rest of the feature points.
Since the number of objects is smaller, the split-merge
method can achieve better performance.

V. Conclusion

Robust selection and tracking of feature points is a
crucial preprocessing step.  However, the tracking results
are often influenced by the following factors: the focus of
the camera, the type and speed of motion, the background
image, and distortion in perspective.  Thus, it is very diffi-
cult to design a universal tracker which can work well in
all kinds of environments.  In this paper, a weighted block
matching approach has been proposed to improve the
robustness of block matching techniques used for track-

ing.  Weighting masks are adopted to emphasize reliable
region in the matching procedure.  We have described the
work done by Tomasi and Kanade (1992), who focused on
the single target MSE problem.  Then, we extended the
formulation to cope with the multi-camera-multi-target
situation.  A combination procedure based on principal
singular vector analysis and split-and-merge subspace
clustering algorithms has been proposed to solve this
problem.  This research can serve as a basis for many
potential applications, such as surveillance applications.
Our approach can also be used to separate and then recog-
nize different moving parts, which may be useful in the
coding of video sequences.
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