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ABSTRACT

This paper deals with the task of parameter identification (point estimation) using the Bayes approach.
The calculation procedures are based on the kernel estimators technique. As a result of presented
considerations, a complete algorithm usable for obtaining the value of the estimated parameter is worked
out. An elaborated method is provided for numerical computations, including computer systems working
in the real-time regime.
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[. Introduction of independent measurements obtained experimentally.
For calculation procedures, the kernel estimators

One of the elementary issues in contemporartechnique is used. Since any sort of judgmental sta-

engineering is parameter identification, i.e., thdistical research has been eliminated here through

specification of the values of the parameters occurrinthe application of optimizing criteria, the proposed

in the model being used. If the measurements olmmethod may be successfully adapted to numerical

tained are treated as the sum of the “true” value dafalculational procedures. The speed of the algorithms

the parameter and the random disturbances, themakes it also suitable for systems working in a real-

the task from the mathematical point of view betime regime.

comes a typical problem for point estimatiena

fundamental discipline of mathematical statistics||, Bayes Estimation

The primary task here consists in calculating, on the

basis of the obtained measurements of the given  Assume the probability spac@,P), whereQ
parameter, an appraisal of its value, i.e., an estimatafeans the set of elementary eveiss its o-algebra,

In practice, simple procedures are typically used, €.gand P denotes a probability. Let the random variable
the least squares or the highest reliability method: Q _, IR represent the measurement process while its
However, the so-called Bayes estimation offers @ealizations will be interpreted as the particular results
number of important advantages (Lehmann, 1983kt the independent measurements obtained for the
This approach allows for a more universal use of astimated parameter. Consider also the loss function
cessible information about the subject of estimation;, |RxIR - IRO{+w}; its valuesl(x,x) denote the losses
also outside the statistical sample; in particular, it affordghich may be incurred by assumiRags the estimator

possibilities for taking into account the consequenceghereas, in reality, the estimated parametex. islf
of estimation errors, which has con-

siderable significance in modern engineering. Somf®" everyxtR the mtegraQI(X,X(w)) dP(w) exists,
of these errors often have only a minor impact ofet |,; IR IRO{+x} be a function of the Bayes
the quality of work of the device while others havggasses
far more profound influence, not excluding system fail-
ure.

The final result of the considerations presented in
this paper will be a complete usable algorithm for
specifying the value of the Bayes estimator on the bas®hen, every element, 0IR such that

160 = [ 16GX(@) dP(@). o

Q
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I5(&p) = inf 15() (2 1ll. Kernel Estimators

is known as a Bayes estimator. Note that with fixedl. Kernel Estimators of the Density Function
X, the value of the function of the Bayes losses con-
stitutes the expected value of losses after the value In this subsection, the basic elements associated
is assumed. with kernel estimators of the density function are pre-
In the present paper, consideration will be giversented, with particular attention given to aspects that
to a nearly intuitive non-symmetrical form of the losswill be used in further parts of this paper. lllustrative
function: considerations can be found in the book by Silverman
(1986) while the mathematical side is the topic of
/ R o Prakasa Rao (1983).
(kx)= | P¥=X) IFX=x<0 3) _ o
\ p,X—x) if X—-x=0, A. Basic Definitions
It will be assumed here that the distribution of the
wherep,p,>0. The constantp; and p, constitute, random variableX has the density functioh Its
therefore, the coefficients of proportionality of lossesestimatorf : IR - [0,0) is calculated on the basis of the
suffered after obtaining the value of the estimatoryalue of them-elements simple random sampig X,,
either smaller or greater than the “true” value of the  x OIR. (The dependence of samples and estimators
estimated parameter, respectively. on the random factowQ will not be explicitly noted
The quantile of order (0<r<1) of the random hereinafter.) The fundamental form of the kernel

variableX is defined as every numbgIR fulfilling estimator can be defined by the dependence
the conditions

o)=L X=X
Pl OQ : X(w)<q}) =r (4) f(x) mh igl K( h ) (8)
P wlQ : X(w)zq}) 21-r. (5) where
If the distribution functionF of this random variable h>0 (9)

Is continuous, the quantile is given by the equation, .. 1o measurable functidtt IR - [0,e) fulfills the

condition
F(g)=r (6)
while the strong monotonicity of this function in the 1K(x) dx=1 (10)
set F%((0,1)) indicates its uniqueness. R
In Appendix 1 can be found the proof that if the
quantile of order with and for everyxUIR:
P, K(X)=K(-x) (11)
= b= P2 (7)
P, *P, P, K(0)=K(X). (12)
D, +1

The functionK is called the kernel whereas the constant
is uniquely defined, then it constitutes the Bayes edh is known as the smoothing parameter. For an illus-
timator for the loss function given by Eq. (3). Thetrative description of this concept, see e.g. Section 2.4
second part of the above equality shows that the ord@f Silverman (1986).

r does not depend on the parameterandp, them-

selves, but rather on their ratio. B. Choice of Kernel and Smoothing Parameter
The next section will present the procedure for
calculating the value of the quantile of ordeusing The form of the kerneK and the value of the

the kernel estimators technique, which in accordancemoothing parametdr can be fixed on the basis of the
with the above, will complete the solution of the Bayegninimum mean squared error criterion. (More details
approach of the point estimation task considered in thigre found in Chapter 3 of Silverman (1986).) It is then
paper. additionally assumed th&fIC 2, and that the functions
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Bayes Parameter Identification

fandf' are bounded. Let the following finite and non- *2 :f _
zero quantities be given: K% A KOKE=y)dy . (22)
U(K):J x2K (X) dx (13) In practice, the quantityh; constitutes a sufficient
R approximation of the optimal value of the smoothing
parameterh,.
r Equality (17), on the other hand, provides indi-
V(K):J K dx (14) cations regarding the choice of the type of kernel, i.e.,
IR the form of the functiorK. In accordance with this
dependence, the minimized mean squared error is
W(f):jf"(x)z dx . (15)  proportional to the expressiot)(K)*V(K)%)", but for
R the types of kernels applied in practice, the values of
this expression do not much differ from each other, on
The minimum mean squared error occurs for which the exponent 1/5 also has an impact. As a result,
it becomes possible in choosing the type of kernel to
h = V(K) s (16) take into account primarily the properties of the esti-
° UK)WEHM mator obtained, e.g., the class of regularity or the

finiteness of the support, without significant worsening
the statistical quality of estimation. In what follows,

then, the value of the mean square functiahad )
the exponential kernel

U(K)V(K) W), ¥5 x
Iho) =2 o) - (17) K=& 23)
4 m e (1+e‘X)2

Equality (16) constitutes the basis for the proce- . . S
X will be applied. Its primitive assumes a form conve-

dure to calculate the value of the smoothing parameter. . o

. o . hient for further considerations:

h. The direct application of this formula encounters

difficulties, however, since the expressiov(f) de- | ()= 1 (24)

pends on a density function that is estimated, i.e., not eV T 1 ye

known a priori. . . _ _
The approximate value of the smoothing param-The convolution square, used in calculating the optimal

eter can be calculated by assuming that for normafalue of the smoothing parameter, is then expressed
distribution with the standard deviatioa, one by the formula

obtains
X+1
W(f)=%n—”20'—5. (18) ex(x(e 3— 2 5) for x#0
v -1 -1
. K= (25)
Then, from Eq. (16), the result is that 1 for x=0
6
. V(K 15
1= () 8l (19)

UK)? 3 . o
whereas the value of the quantity occurring in Eq. (19)

In the general case, however, one calculates th'é

valueh; which assumes the minimum of the function V(K 3 (26)
g: IR-[0,») defined as U(K)? Tomh

gm=-3 % 3 REH+2K@, (200 C. Strong Consistency Propert

meh 55 h mh , . Strong Consistency Property

where If the functionK is Borelian and fulfills the

~ condition

K(X) = K "2(X) — 2K (X) (21)

XIergo xK(x) =0 (27)

andK™ denotes the convolution square of the function
K, i.e., while the value of the smoothing paraméiés selected
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in such a way that

limh=0 (28)
n!ijnwmh =00, (29)

then at every point of continuity of the density func-

tion f, the kernel estimator is strongly consistent,

ie.,

P(lim, f6)=f())=1, (30)
and, therefore, also consistent:
mlipqmpq f“(x)-f(x)\ > =0 for everye>0.  (31)

The proof can be found in the fundamental workal

The considerations resulting from the criterion of
minimum mean squared error point to the value
-1

a==.

> (35)

Definition (8) is a particular case of Eq. (34) wha+0.

The concept of modifying the smoothing parameter
improves the quality of the estimation by respectively
differentiating this parameter in areas of greater and
lesser density of the random sample values. From the
practical point of view, another essential feature of the
estimator with the modified smoothing parameter
consists in its slight sensitivity to the exactness of the
choice of the constant. In practice, this property is
exceptionally advantageous, and when such an estima-
tor is applied, it often proves sufficient to accept the
pproximate valud, given by Eq. (19).

by Parzen (1962). Note also that if the value of the, |« -na| Estimators of the Distribution Func-

parameteth is defined on the basis of Egs. (16), (19)
or (20), then Egs. (28) and (29) are fulfilled.
Since kernel estimators are predominantly ap

plied when the sample size is rather large, the property,

of consistency is of fundamental significance in con
sidering estimators of this type.

D. Maodification of the Smoothing Parameter

In many applications, it proves to be particularly
advantageous to introduce the concept of modificatio
of the smoothing parameter (see Section 5.3 of Silverm
(1986) ).
done in the following manner:

(1)the kernel estimatof is calculated in accor-
dance with the procedure previously pre-
sented;

(2) the modifying parameteis>0 (i=1, 2, ...,m) are
stated in the form

[

whereall[0,1] while b is the geometric mean of
the numberd(x,), f(x,), ..., f(x,), given in the
form of the logarithmic equation

s (32)

log (6) =m-*2. log (<) (33)

(3) the kernel estimator with the modified smooth-

ing parameter is defined using the formula

$1

51 Si

X —=X;

1 i
hs; )

mh;

K(

f(x) = (34)

Construction of the estimator can then be

tion

To carry forward the concept presented in Sub-
on Ill.1, the natural estimator of the distribution
function is the mappind : IR - [0,1] defined by the
formula

Foo= | foay. (36)

%quality (10) guarantees the existence of the primitive
"R -[0,1] of the kernel, i.e.,

X

— 00

K(y)dy . (37)

(For the purposes stated in the next subsection, note
that the functionl is continuous while inequality (12)
implies that it also fulfills the Lipschitz condition with
the constant

L,=K(0).) (38)
Thus, due to the basic properties of integrals, the kernel
estimator of the distribution function can be finally
expressed as

~ X —X:

Feo=L 215, (39)
i=1

If the condition

n!ifnooh =0 (40)

is fulfilled, then kernel estimato(39) is strongly
consistent at the points of its continuity. The proof
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of the above fact, under very mild assumptions, is found — X=X
in Appendix 2. 9 igl I h ) (49)

In the case where the smoothing parameter is ) ) mL, . .
o tl th the slope; " in th hborhood
modified, definition(39) takes on the form IS notlinéar with the slopep = in the neighbornoo

of the quantile, then the above algorithm is also con-

~ m X =X
F(X):%izll( = Y (41) vergent when
- I
. . c=2n (50)
3. Kernel Estimators of the Quantile mL,

To continue with the considerations given in theFor the. majority of cases occurring in. practice, this
previous subsection: if value yields _the bes_t results for algonthl(m:ﬁ) and
(47). In particular, if the exponential kerng3) is

K(x)>0 for everyx(R, (42) applied, then, in view of Eqgs. (38) and (23), one obtains

ce:%. (51)

then the estimator of the distribution functibngiven
by Eq. (39) Is a strictly increasing mapping, whieh In the case when the smoothing parameter is

together with its continuity- indicates that the kernel dified. which ften be advant . timat
estimator of the quantile of orderdenoted hereinafter moditied, which can often be advantageous In estimat-

as @, may be uniquely defined by the equation ing the quantile, Eq. (44) takes on the form

E@=r; (43) igl |(qh_S “y=mr. (52)

therefore, finally, Then, formulag47)-(51) need to be changed, such that
g |(q_X‘ the constanh is replaced bys in Eqs. (47) and (49),
h

)=mr. (44) " put by hflsi in dependence®8), (50), and (51).

i=1

If the quantile of order is uniguely defined and . .
the Conditign auey IV. Final Comments and Conclusions

Formulas(7), (46), (47), and(24), (51), in con-
junction with the methods for fixing the smoothing
arameter described in the second part of Subsection

limh=0 (45)

is fulfilled, then the above designed kernel estimato )
of the quantile is strongly consistent. The proof of thisﬁl'1 (especially Egs. (19) and (26) when the procedure

fact, under very mild assumptions, is presented irﬁ)f modification(32)-(35) is used), provide a complete

. set of rules defining the algorithm used to calculate the
Appendix 3. Bayes estimator for the loss function given by Eq. (3)
In practice, the value of the quantile estimator. y 9 Y EQ. (3).

given by Eq. (44) can be calculated recurrently as th-elz-he achieved form renders this algorithm exceptionally

! kg ® . convenient for application using computer systems,
limit of the sequencéq’, ., defined by the formulas and also for working in the real-time regime. Accord-

ing to the principles of the Bayes approach, the elabo-

Xi (46)  rated procedure possibilities for taking into account the
consequences of estimation errors differing in sign and

m GK—x. size.
qk+1:qk+c[mr—i§1'(q h I for k=1, 2, ..., The previously proposed form of kerng23)

(47)  satisfies all the requirements assumed in the course of

] defining the method of quantile estimation: its primi-

wherecllIR; however, global convergence is guaran+jye has a form that is convenient for the calculational

Ms

-1
q m;=;

teed by the condition procedures, strictly increasing in its entire domain, and
oh not linear in any restriction of the domain. It should
O<C<iL, (48)  be emphasized, however, that there is considerable

latitude in using other forms of the kernel if this should
while the valuel, can be obtained using Eq. (38). prove to be advantageous for a given application.
Moreover, if the functiorg: IR - IR defined as Correctness of the algorithm presented here has
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3 | (markedwith oand «, respectively)

cki

Xo), o) precision is achieved fan=21 (Fig. 2). Finally, Fig.
o 3 illustrates the results fop;=1 andp,=6 (r=0.14),
1 . where the value of the estimator equalkk07 while

2 the minimal sample size has increasednte40. (It is

o o o o obvious that, in order to assure proper precision of

1°° o o ° ° estimation, a sufficient number of sample values lo-

I A A N RN DU U N R U

0 10 20 30 40 50 60 70 80 90 100

g oo s . . 0® 00 o cated on either side of the quantid.e., greater and

\/\ """"""" DU— H S A R lesser— is necessary. As orderapproaches O or 1,
1°6 o ° 0o P g @ ° there is an increase in the random sample size essential
° o ° o from the point of view of precision requirements.)

The presented algorithm has also been success-

° o o fully applied to the positional time-optimal control

system described in Kulczycki (1996a, 1996b). This
task consists in bringing the object state to the target
set in a minimal and finite time. In the event that the
estimator of the values of resistances to motion is
understated, sliding trajectories appear in the controlled

Fig. 1. Results of numerical simulation fay=1 andp,=1. system, increasing the time needed to reach the target
proportionally to the magnitude of the underestimation.
If, however, this estimator is overstated, over-regula-

X@), (o)

tions occur in the system, with a much greater impact

3 —| mankedwinoand -, respectva) on the increase in the time to reach the target (likewise

] proportionally to the value of the overestimation), in

2 ° ° the extreme case threatening failure of the device. The

{\IH\|\\‘HHIII\I‘IIIII|IIFlllIII]IIIVH\\IIH|II\Hl\\IliI||\H\I‘\Il\|\\HII[HHIH'HHHIH'

0 10 20 30 40 50 60 70 80 90 100

Fig. 2. Results of numerical simulation fgr=1 andp,=3.

been verified using a numerical simulation. The value
of the Bayes estimator was calculated with a precisior
to 0.2 of the standard deviation for a minimal sample
size of 10-50, or in favorable cases even beginning
with 4. The precision increased significantly when the
value of the estimator was located in the areas of greate
density of obtained sample values.

Suppose, for example, that the estimated param-

eter has a normal standard distribution. pg+l and
p>=1 (r=0.5), the value of the Bayes estimator is 0. The
results obtained for this case are showrFig. 1. A
precision of 0.2 is now obtained for the sample size
m=6. If, in turn,p;=1 andp,=3 (r=0.25), then the value
of the estimator comes t60.67 whereas the above
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estimator of the values of resistances to motion was

oo o ° calculated by using the above elaborated procedure for
o o7 e . 0° ° p:1=1 andp,=6; in such case, sliding trajectories clearly

o o © 0% o o @ o o o dominated in the controlled system. The speed of the

I E N o o e 0] method presented in this paper allowed for frequent
VARV, pa—— T o PR adaptation of the control algorithm, consisting in suc-

o ° ° ° cessively updating the value of the calculated Bayes

o ° ° ° estimator of resistances to motion, following the chang-
ing work conditions of the controlled positional sys-

tem.

X}, §)

| tmarked with 0 and + , respectively)

° o o ° ° © ° ® 5 °
o
o
[} 0 © o
470 o ° ° 9 %@ o
,/\ ° ) o % oo
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Fig. 3. Results of numerical simulation fgr=1 andp,=6.
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Appendix 1

In the following, it will be shown that for loss functid8),
the quantile of order given by Eq. (7), if unique, constitutes the
Bayes estimator.

By inserting Eqg. (3) into Eqg. (1), one obtains

16® =01 +P) [ X(@ = g
Q

(=X g(X()] dP(cd)
=(P1*Py) f X(@) =R =X (e gX(@))] dP(c) , (53)
Q

where x, denotes the characteristic function of the AetAlso for
the unique quantile, the following is true:

@ =@, +py) f X(@) = A = X(— o g)(X()] dP() - (54)
Q

The combination of the above formulas yields

1) —1p(@)

=0, +P) [ |X(@ =% Do (X(@) X o X))

* g X)) = X(_ag(X())] dP(e)

=3+ P) [ | X(@ LXK K() + X K@)
Q
- K@) = X g K@) dP(@)
=01+ [ [X(@-% g aX(@)
Q

+ X(— o0 AL = X( o (X (e))] dP(c)

=1 +P)) [ [X@ %[
o
# XK@Y K@) P (55)
finally leading to
10 =10@ =0, +P) [ | XXX X
* XX dP(@)20. (56)

Inequality (56) proves that the Bayes loss function assumes

the global minimum wherk=q.
Finally, if the quantile of order given by Eq. (7) is unique,

defined on the common probability spade,I,P), as well as the
corresponding sequence of its realizatifrg>_,. For an arbitrarily
fixed mOIN{0}, the mappingPn: B(IR) - [0,1] given by the formula

Pm(B)=m#{i0{L, 2, ... ,m} : x0B}, (57)
where #A denotes the power of the s&tandB(IR) represents the
family of real Borelian sets, is known as the empirical distribution
of the sequencgX;}; ;. Also letP_: B(R)-[0,1] be the distribution
of a probability measure. The sequence of random variék(k(}:g:l
is called the empirically ergodic sequence with the liRitif the
condition

Jim PH(E)=P_(E) (58)
is fulfilled with probability 1 (with respect to the measWR§ for
every setkE of the form ¢,e], whereP_({e})=0.

As results from the Glivenko-Cantelli Theorem (Billingsley,
1979), this condition is more general than the assumption frequently
formulated in the theory of estimation concerning the identity of the
distributions and the independence of the random variaXjlesp-
resenting the random sample. In the case where such an assumption
is accepted, the measuPe is nothing other than the distribution
of the variablesx;, i.e.,

P_(B)=P(x;B) (59)

for anyi=1, 2, ... andBOB(IR).

Lemma 1.Let the sequence of real random variakég ;" ,, defined

on the common probability spac®,&,P), be empirically ergodic

with the limit P_, which has the distribution functioR. If the

estimator of this functio is given by Eq. (39), and dependencies

(9), (10), and(37) are fulfilled, then for everx’ 0IR such that
P-({x'})=0 (60)

with probability 1 (with respect to the measu?g the following

equality is true:

hliinomliqmwlf(x*)zF(x*). (61)

Proof. From Eq. (57), it can be directly obtained that

55 ot [ x99 or any B (©2)

where xg denotes the characteristic function of the BetSince the
linear and continuous operators equal in dense spaces are identical,
for any measurable functiogt IR — IR the above equality yields

then it constitutes the desired Bayes estimator for the loss function

defined by Eq. (3).

Appendix 2

4 2 900= [ 909 dPuco. (63)
IR
In particular, on the basis of Eq. (39), the formula
Fix') = J &) dP (64)

IR

In this appendix, the strong consistency of the kernel estimatogan be obtained. Therefore, Eq. (58) implies, due to the properties
of the distribution function defined by Eq. (39) will be shown. For of weak convergence of the distribution functions (Billingsley, 1979),

this purpose, consider the sequence of random varidigs._

that with probability 1
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o X=X Proof. It suffices to demonstrate that the convergence wherwo
M) =) 1) dP ). (65)  occuring in Eq. (61) is uniform with respect to the variable
R Let F, denote the distribution function of the measkge For

an arbitrarily fixedmOIN\{0}, it is obvious that
The consequences of Eqgs. (10) and (37) are:

iim_19=0 (66) Jim 1) Fo-FI0= 0 (75)

and X —X
lim 1) Fn=F)®)= 0. (76)
JimIe=1, (67) T

Applying to the Stielties integr# the integration by parts proce-

which, thanks to conditiof9), gives dure, one obtains

. 1 for x<x” X =X X" =X
h|ipno|(X h_x)zfm) for x=x" (68) J'( h )dpm(x)_J'( ) dP-X
\0 for x>x". iR R
In turn, the following equality is true: =ﬁ|(x h_X)d(Fm_F)(X):_ﬁ(Fm_F)(X) d|(x h_X)' 77)
iR iR

X" =X
[l( ) PG
R Since, regardless of the value of the variablehe saltus of the
function| equals 1 (is finite) whereas from the Glivenko-Cantelli

Theorem (Billingsley, 1979) it results that

=f (0P 9 10 P(x)) + [ 0P . (69)

(=eo,x") ) up | (F = F))| M = 0, (78)
XUOR

;I'ehseurﬁlotrﬁétfrom the Lebesgue Dominated Convergence Theorem, Eqs. (64), (65), and (77) finally prove Theorem 1. 0

. N Note that if the distribution of the measuite has a density
,'J”gj'(x h—X)dR(X):J dP.0) +1Q) P.4X}), (70) function, then assumption®$0) and (73) are obviously fulfilled.

iR (~o0.x") Appendix 3

i.e., taking into account assumpti¢&o): The strong consistency of the kernel estimator of the quantile
defined by Eq. (44) will be shown below. (The notion of the em-

pirically ergodic sequence is found in Appendix 2.)

lim [l(x ;X)dR(x):J dP.(¥). (71)

R (—eo,x"] Lemma 2.Let the sequence of real random variatjlég ;"_ ,, defined

on the common probability spac®,&,P), be empirically ergodic

Applying Eq. (65) to the above formula, one ultimately with the limitP_. If the quantile of order is defined uniquely with

obtains the thesis of Lemma 1. O respect to the measuPe, its estimator is defined by Eq. (44), and
dependencief9), (10), (37), and(42) are fulfilled, then with prob-
Theorem 1. Let the sequence of real random variab{¥s};”_,, ability 1 (with respect to the measuPg the following equality is

defined on the common probability spad¢e,X,P), be empirically  true:
ergodic with the limitP_, which has the distribution functidp. If
the estimator of this functiok is given by Eq. (39), and depen- hliinomlifnmq=q. (79)
dencies(9), (10), and(37), as well as the condition
Proof. In order to demonstrate Eq. (79), it is sufficient to show that
Jimh=0 (72)

O&>0 [h,>0 : Oh<h, Om,OIN\{0} : Om>m, |G-ql<e. (80)
are fulfilled, then for ever)'0IR such that

Let any e>0 be fixed. Since the measupe is finite, the set

P_({x"})=0, (73) of real numbers of positive measure can be at most countable.
Thus, there exisk™, X O IR of zero measur®. and fulfilling in-
with probability 1 (with respect to the measw?g the equality equalities
Jim F(¢) =F(x") (74) <X <QRX"<GHE. (81)

is true, which means the strong consistency and, therefore, also tAde distribution function is a non-decreasing mapping; therefore, due
consistency, of the kernel estimator of the distribution function ato the assumed uniqueness of the quantile, it can inferred that there
the points of its continuity. exists >0 such that
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F(X7)+0<F(q)<F(x¥)-9, (82) is true, which means the strong consistency and, therefore, also the
consistency, of the kernel estimator of the quantile.
whereF denotes the distribution function of the measire Lemma

1 states that Proof. As results from the proof of Theorem 1, the vaimgeintro-
duced by formulg83) does not depend on the variahleThis means,

0&>0 [h,>0 : Oh<h, Om,0OIN\{0} : Om>m, thanks to Lemma 2, that the convergence wimreneo is uniform,
which finally proves Theorem 2. O

FX)<FX)+d
Note that if the distribution of the measute has a density

FO)>F(X)-03; (83) function with a connected support, then its quantile is uniquely
defined.
therefore, by combining the last two dependencies, one obtains It should also be emphasized that condit{@f) required in
the estimation of the density function in order to assure the con-
O&>0 Ch,>0 : Oh<h, Om, OIN\{0} : Om>m, sistency property, is not necessary in the cases of the distribution

function and the quantile.
F(<) <F@) <F(). (84)
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