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ABSTRACT

This paper deals with the task of parameter identification (point estimation) using the Bayes approach.
The calculation procedures are based on the kernel estimators technique.  As a result of presented
considerations, a complete algorithm usable for obtaining the value of the estimated parameter is worked
out.  An elaborated method is provided for numerical computations, including computer systems working
in the real-time regime.
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I. Introduction

One of the elementary issues in contemporary
engineering is parameter identification, i.e., the
specification of the values of the parameters occurring
in the model being used.  If the measurements ob-
tained are treated as the sum of the “true” value of
the parameter and the random disturbances, then
the task from the mathematical point of view be-
comes a typical problem for point estimation − a
fundamental discipline of mathematical statistics.
The primary task here consists in calculating, on the
basis of the obtained measurements of the given
parameter, an appraisal of its value, i.e., an estimator.
In practice, simple procedures are typically used, e.g.,
the least squares or the highest reliability methods.
However, the so-called Bayes estimation offers a
number of important advantages (Lehmann, 1983).
This approach allows for a more universal use of ac-
cessible information about the subject of estimation,
also outside the statistical sample; in particular, it affords
possibilities for taking into account the consequences
o f  e s t i m a t i o n  e r r o r s ,  w h i c h  h a s  c o n -
siderable significance in modern engineering.  Some
of these errors often have only a minor impact on
the quality of work of the device while others have
far more profound influence, not excluding system fail-
ure.

The final result of the considerations presented in
this paper will be a complete usable algorithm for
specifying the value of the Bayes estimator on the basis

of independent measurements obtained experimentally.
For calculation procedures, the kernel estimators
technique is used.  Since any sort of judgmental sta-
tistical research has been eliminated here through
the application of optimizing criteria, the proposed
method may be successfully adapted to numerical
calculational procedures.  The speed of the algorithms
makes it also suitable for systems working in a real-
time regime.

II. Bayes Estimation

Assume the probability space (Ω,Σ,P), where Ω
means the set of elementary events, Σ is its σ-algebra,
and P denotes a probability.  Let the random variable
X: Ω→IR represent the measurement process while its
realizations will be interpreted as the particular results
of the independent measurements obtained for the
estimated parameter.  Consider also the loss function
l : IR×IR→IR∪{ ±∞}; its values l(x,x) denote the losses
which may be incurred by assuming x as the estimator
whereas, in reality, the estimated parameter is x.  If

for every x∈IR the integral    l(x,X(ω))
Ω

 dP(ω) exists,

let l b: IR→IR∪{ ±∞} be a function of the Bayes
loasses

   l b(x) = l(x,X(ω)) dP(ω)
Ω

. (1)

Then, every element  xb ∈IR such that
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   l b(xb) = inf
x ∈IR

l b(x) (2)

is known as a Bayes estimator.  Note that with fixed
x , the value of the function of the Bayes losses con-
stitutes the expected value of losses after the value x
is assumed.

In the present paper, consideration will be given
to a nearly intuitive non-symmetrical form of the loss
function:

   
l(x,x) =

– p 1(x – x) if x – x ≤ 0

p 2(x – x) if x – x ≥ 0 ,
(3)

where p1,p2>0.  The constants p1 and p2 constitute,
therefore, the coefficients of proportionality of losses
suffered after obtaining the value of the estimator,
either smaller or greater than the “true” value of the
estimated parameter, respectively.

The quantile of order r  (0<r<1) of the random
variable X is defined as every number q∈  IR  fulfilling
the conditions

P({ ω∈Ω : X(ω)≤q}) ≥r (4)

P({ ω∈Ω : X(ω)≥q}) ≥1−r . (5)

If the distribution function F of this random variable
is continuous, the quantile is given by the equation

F(q)=r (6)

while the strong monotonicity of this function in the
set F−1((0,1)) indicates its uniqueness.

In Appendix 1 can be found the proof that if the
quantile of order r  with

  

r =
p 1

p 1 + p 2
=

p 1
p 2

p 1
p 2

+ 1
(7)

is uniquely defined, then it constitutes the Bayes es-
timator for the loss function given by Eq. (3).  The
second part of the above equality shows that the order
r  does not depend on the parameters p1 and p2 them-
selves, but rather on their ratio.

The next section will present the procedure for
calculating the value of the quantile of order r  using
the kernel estimators technique, which in accordance
with the above, will complete the solution of the Bayes
approach of the point estimation task considered in this
paper.

III. Kernel Estimators

1. Kernel Estimators of the Density Function

In this subsection, the basic elements associated
with kernel estimators of the density function are pre-
sented, with particular attention given to aspects that
will be used in further parts of this paper.  Illustrative
considerations can be found in the book by Silverman
(1986) while the mathematical side is the topic of
Prakasa Rao (1983).

A. Basic Definitions

It will be assumed here that the distribution of the
random variable X has the density function f.  Its
estimator   f : IR→[0,∞) is calculated on the basis of the
value of the m-elements simple random sample x1, x2,
..., xm∈  IR .  (The dependence of samples and estimators
on the random factor ω∈Ω will not be explicitly noted
hereinafter.)  The fundamental form of the kernel
estimator can be defined by the dependence

   f(x) = 1
mh

K(
x – x i

h
) ,Σ

i = 1

m
(8)

where

h>0 (9)

while the measurable function K:  IR →[0,∞) fulfills the
condition

  K(x) dx = 1
IR

(10)

and for every x∈  IR :

K(x)=K(−x) (11)

K(0)≥K(x). (12)

The function K is called the kernel whereas the constant
h is known as the smoothing parameter.  For an illus-
trative description of this concept, see e.g. Section 2.4
of Silverman (1986).

B. Choice of Kernel and Smoothing Parameter

The form of the kernel K and the value of the
smoothing parameter h can be fixed on the basis of the
minimum mean squared error criterion. (More details
are found in Chapter 3 of Silverman (1986).)  It is then
additionally assumed that f∈C 2, and that the functions
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f and f′′ are bounded.  Let the following finite and non-
zero quantities be given:

  U(K) = x2K(x) dx
IR

(13)

  V(K) = K(x)2 dx
IR

(14)

  W(f) = f"(x)2 dx
IR

. (15)

The minimum mean squared error occurs for

  
h o = (

V(K)

U(K)2W(f)m
)
1/5

; (16)

then, the value of the mean square functional J is

  
J(h o) = 5

4
(
U(K)2V(K)4W(f)

m 4
)
1/5

. (17)

Equality (16) constitutes the basis for the proce-
dure to calculate the value of the smoothing parameter
h.  The direct application of this formula encounters
difficulties, however, since the expression W(f) de-
pends on a density function that is estimated, i.e., not
known a priori .

The approximate value of the smoothing param-
eter can be calculated by assuming that for normal
distribution with the standard deviation σ, one
obtains

   W(f) = 3
8

π – 1/2σ – 5 . (18)

Then, from Eq. (16), the result is that

   
h o

* = (
V(K)

U(K)2
8
3

π 1/2 1
m )

1/5
σ . (19)

In the general case, however, one calculates the
value  h o

~  which assumes the minimum of the function
g: IR→[0,∞) defined as

   
g(h) = 1

m 2h
K(

x j – x i

h
)Σ

j = 1

m

Σ
i = 1

m
+ 2

mh
K(0) , (20)

where

  K(x) = K *2(x) – 2K(x) (21)

and K*2 denotes the convolution square of the function
K, i.e.,

  K *2(x) = K(y)K(x – y) dy
IR

. (22)

In practice, the quantity  h o
~  constitutes a sufficient

approximation of the optimal value of the smoothing
parameter ho.

Equality (17), on the other hand, provides indi-
cations regarding the choice of the type of kernel, i.e.,
the form of the function K.  In accordance with this
dependence, the minimized mean squared error is
proportional to the expression (U(K)2V(K)4)1/5, but for
the types of kernels applied in practice, the values of
this expression do not much differ from each other, on
which the exponent 1/5 also has an impact.  As a result,
it becomes possible in choosing the type of kernel to
take into account primarily the properties of the esti-
mator obtained, e.g., the class of regularity or the
finiteness of the support, without significant worsening
the statistical quality of estimation.  In what follows,
the exponential kernel

  K e(x) = e – x

(1 + e– x)2
(23)

will be applied.  Its primitive assumes a form conve-
nient for further considerations:

  I e(x) = 1
1 + e – x

. (24)

The convolution square, used in calculating the optimal
value of the smoothing parameter, is then expressed
by the formula

   

K e
*2(x) =

ex(
x(ex + 1)

(ex – 1)3
– 2

(ex – 1)2
) for x ≠ 0

1
6

for x = 0
(25)

whereas the value of the quantity occurring in Eq. (19)
is

   V(K e)

U(K e)
2

= 3
2π 4

. (26)

C. Strong Consistency Property

If the function K is Borelian and fulfills the
condition

   lim
x → ∞ xK(x) = 0 (27)

while the value of the smoothing parameter h is selected
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in such a way that

   lim
m → ∞h = 0 (28)

   lim
m → ∞mh = ∞ , (29)

then at every point of continuity x of the density func-
tion f, the kernel estimator is strongly consistent,
i.e.,

   P( lim
m → ∞ f(x) = f(x)) = 1 , (30)

and, therefore, also consistent:

   lim
m → ∞P( f(x) – f(x) ≥ ε) = 0  for every ε>0. (31)

The proof can be found in the fundamental work
by Parzen (1962).  Note also that if the value of the
parameter h is defined on the basis of Eqs. (16), (19)
or (20), then Eqs. (28) and (29) are fulfilled.

Since kernel estimators are predominantly ap-
plied when the sample size is rather large, the property
of consistency is of fundamental significance in con-
sidering estimators of this type.

D. Modification of the Smoothing Parameter

In many applications, it proves to be particularly
advantageous to introduce the concept of modification
of the smoothing parameter (see Section 5.3 of Silverman
(1986) ).  Construction of the estimator can then be
done in the following manner:

(1) the kernel estimator f  is calculated in accor-
dance with the procedure previously pre-
sented;

(2) the modifying parameters si>0 (i=1, 2, ..., m) are
stated in the form

  
s i =

f(x i)
b

– a

, (32)

where a∈[0,1] while b is the geometric mean of
the numbers   f(x 1),   f(x 2), ...,   f(xm), given in the
form of the logarithmic equation

   log (b) = m – 1 log (f(x i))Σ
i = 1

m
; (33)

(3) the kernel estimator with the modified smooth-
ing parameter is defined using the formula

   f(x) = 1
mh

1
s i

K(
x – x i

hs i
) .Σ

i = 1

m
(34)

The considerations resulting from the criterion of
minimum mean squared error point to the value

  a = 1
2

. (35)

Definition (8) is a particular case of Eq. (34) when a=0.
The concept of modifying the smoothing parameter
improves the quality of the estimation by respectively
differentiating this parameter in areas of greater and
lesser density of the random sample values.  From the
practical point of view, another essential feature of the
estimator with the modified smoothing parameter
consists in its slight sensitivity to the exactness of the
choice of the constant h.  In practice, this property is
exceptionally advantageous, and when such an estima-
tor is applied, it often proves sufficient to accept the
approximate value  h o

*  given by Eq. (19).

2. Kernel Estimators of the Distribution Func-
tion

To carry forward the concept presented in Sub-
section III.1, the natural estimator of the distribution
function is the mapping   F : IR→[0,1] defined by the
formula

 
   

F(x) = f(y) dy
– ∞

x

. (36)

Equality (10) guarantees the existence of the primitive
I :  IR →[0,1] of the kernel K, i.e.,

   
I(x) = K(y) dy

– ∞

x

. (37)

(For the purposes stated in the next subsection, note
that the function I  is continuous while inequality (12)
implies that it also fulfills the Lipschitz condition with
the constant

LI=K(0).) (38)

Thus, due to the basic properties of integrals, the kernel
estimator of the distribution function can be finally
expressed as

   F(x) = 1
m I(

x – x i

h
)Σ

i = 1

m
. (39)

If the condition

   lim
m → ∞h = 0 (40)

is fulfilled, then kernel estimator (39) is strongly
consistent at the points of its continuity.  The proof
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of the above fact, under very mild assumptions, is found
in Appendix 2.

In the case where the smoothing parameter is
modified, definition (39) takes on the form

   F(x) = 1
m I(

x – x i

hs i
)Σ

i = 1

m
. (41)

3. Kernel Estimators of the Quantile

To continue with the considerations given in the
previous subsection: if

K(x)>0 for every x∈IR, (42)

then the estimator of the distribution function F  given
by Eq. (39) is a strictly increasing mapping, which −
together with its continuity − indicates that the kernel
estimator of the quantile of order r, denoted hereinafter
as q , may be uniquely defined by the equation

  F(q) = r ; (43)

therefore, finally,

   I(q – x i

h
) = mrΣ

i = 1

m
. (44)

If the quantile of order r  is uniquely defined and
the condition

   lim
m → ∞h = 0 (45)

is fulfilled, then the above designed kernel estimator
of the quantile is strongly consistent.  The proof of this
fact, under very mild assumptions, is presented in
Appendix 3.

In practice, the value of the quantile estimator
given by Eq. (44) can be calculated recurrently as the
limit of the sequence    {q k}k = 1

∞
 defined by the formulas

   q 1 = 1
m xiΣ

i = 1

m
(46)

   
q k + 1 = q k + c[mr – I(

q k – x i

h
)Σ

i = 1

m
]  for k=1, 2, ...,

(47)

where c∈IR; however, global convergence is guaran-
teed by the condition

0<c<   2h
mL I

(48)

while the value LI can be obtained using Eq. (38).
Moreover, if the function g:   IR → IR defined as

   g(x) = I(
x – x i

h
)Σ

i = 1

m
(49)

is not linear with the slope  mL I

h
 in the neighborhood

of the quantile, then the above algorithm is also con-
vergent when

  c = 2h
mL I

. (50)

For the majority of cases occurring in practice, this
value yields the best results for algorithms (46) and
(47).  In particular, if the exponential kernel (23) is
applied, then, in view of Eqs. (38) and (23), one obtains

  c e = 8h
m . (51)

In the case when the smoothing parameter is
modified, which can often be advantageous in estimat-
ing the quantile, Eq. (44) takes on the form

   
I(

q – x i

hs i
)Σ

i = 1

m
= mr . (52)

Then, formulas (47)-(51) need to be changed, such that
the constant h is replaced by hsi in Eqs. (47) and (49),

but by    h s iΣ
i = 1

m
 in dependences (48), (50), and (51).

IV. Final Comments and Conclusions

Formulas (7), (46), (47), and (24), (51), in con-
junction with the methods for fixing the smoothing
parameter described in the second part of Subsection
III.1 (especially Eqs. (19) and (26) when the procedure
of modification (32)-(35) is used), provide a complete
set of rules defining the algorithm used to calculate the
Bayes estimator for the loss function given by Eq. (3).
The achieved form renders this algorithm exceptionally
convenient for application using computer systems,
and also for working in the real-time regime.  Accord-
ing to the principles of the Bayes approach, the elabo-
rated procedure possibilities for taking into account the
consequences of estimation errors differing in sign and
size.

The previously proposed form of kernel (23)
satisfies all the requirements assumed in the course of
defining the method of quantile estimation: its primi-
tive has a form that is convenient for the calculational
procedures, strictly increasing in its entire domain, and
not linear in any restriction of the domain.  It should
be emphasized, however, that there is considerable
latitude in using other forms of the kernel if this should
prove to be advantageous for a given application.

Correctness of the algorithm presented here has
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precision is achieved for m=21 (Fig. 2).  Finally, Fig.
3 illustrates the results for p1=1 and p2=6 (r=0.14),
where the value of the estimator equals −1.07 while
the minimal sample size has increased to m=40. (It is
obvious that, in order to assure proper precision of
estimation, a sufficient number of sample values lo-
cated on either side of the quantile − i.e., greater and
lesser − is necessary.  As order r  approaches 0 or 1,
there is an increase in the random sample size essential
from the point of view of precision requirements.)

The presented algorithm has also been success-
fully applied to the positional time-optimal control
system described in Kulczycki (1996a, 1996b).  This
task consists in bringing the object state to the target
set in a minimal and finite time.  In the event that the
estimator of the values of resistances to motion is
understated, sliding trajectories appear in the controlled
system, increasing the time needed to reach the target
proportionally to the magnitude of the underestimation.
If, however, this estimator is overstated, over-regula-
tions occur in the system, with a much greater impact
on the increase in the time to reach the target (likewise
proportionally to the value of the overestimation), in
the extreme case threatening failure of the device.  The
estimator of the values of resistances to motion was
calculated by using the above elaborated procedure for
p1=1 and p2=6; in such case, sliding trajectories clearly
dominated in the controlled system.  The speed of the
method presented in this paper allowed for frequent
adaptation of the control algorithm, consisting in suc-
cessively updating the value of the calculated Bayes
estimator of resistances to motion, following the chang-
ing work conditions of the controlled positional sys-
tem.

Fig. 1. Results of numerical simulation for p1=1 and p2=1.

Fig. 2. Results of numerical simulation for p1=1 and p2=3.

been verified using a numerical simulation.  The value
of the Bayes estimator was calculated with a precision
to 0.2 of the standard deviation for a minimal sample
size of 10-50, or − in favorable cases − even beginning
with 4.  The precision increased significantly when the
value of the estimator was located in the areas of greater
density of obtained sample values.

Suppose, for example, that the estimated param-
eter has a normal standard distribution.  For p1=1 and
p2=1 (r=0.5), the value of the Bayes estimator is 0. The
results obtained for this case are shown in Fig. 1.  A
precision of 0.2 is now obtained for the sample size
m=6.  If, in turn, p1=1 and p2=3 (r=0.25), then the value
of the estimator comes to −0.67 whereas the above Fig. 3. Results of numerical simulation for p1=1 and p2=6.
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Appendix 1

In the following, it will be shown that for loss function (3),
the quantile of order r given by Eq. (7), if unique, constitutes the
Bayes estimator.

By inserting Eq. (3) into Eq. (1), one obtains

   l b(x) = (p 1 + p 2) (X(ω) – x)
Ω

[rχ(x,∞)(X(ω))

   – (1 – r)χ( – ∞,x](X(ω))] dP(ω)

   = (p 1 + p 2) (X(ω) – x)
Ω

[r – χ( – ∞,x](X(ω))] dP(ω) , (53)

where χA denotes the characteristic function of the set A.  Also for
the unique quantile q, the following is true:

   l b(q) = (p 1 + p 2) (X(ω) – q)
Ω

[r – χ( – ∞,q](X(ω))] dP(ω) . (54)

The combination of the above formulas yields

  l b(x) – l b(q)

   = (p1 + p2) X(ω) – x
Ω

[χ(x,∞)(X(ω)) – χ( – ∞,x](X(ω))]

   
• [χ( – ∞,q](X(ω)) – χ( – ∞,x](X(ω))] dP(ω)

   = (p 1 + p 2) X(ω) – x
Ω

[χ(x,∞)(X(ω))χ( – ∞,q](X(ω)) + χ( – ∞,x](X(ω))

   
• (χ( – ∞,x](X(ω)) – χ( – ∞,q](X(ω)))] dP(ω)

   = (p 1 + p 2) X(ω) – x
Ω

[χ(x,q](X(ω))

   + χ( – ∞,x](X(ω))(1 – χ( – ∞,q](X(ω)))] dP(ω)

   = (p 1 + p 2) X(ω) – x
Ω

[χ(x,q](X(ω))

   + χ( – ∞,x](X(ω))χ(q,∞)(X(ω))] dP(ω) , (55)

finally leading to

   l b(x) – l b(q) = (p1 + p2) X(ω) – x
Ω

[χ(x,q](X(ω))

   + χ(q,x](X(ω))] dP(ω) ≥ 0 . (56)

Inequality (56) proves that the Bayes loss function assumes
the global minimum when x=q.

Finally, if the quantile of order r  given by Eq. (7) is unique,
then it constitutes the desired Bayes estimator for the loss function
defined by Eq. (3).

Appendix 2

In this appendix, the strong consistency of the kernel estimator
of the distribution function defined by Eq. (39) will be shown. For
this purpose, consider the sequence of random variables    {X i}i = 1

∞

defined on the common probability space (Ω,Σ,P), as well as the
corresponding sequence of its realizations    {xi}i = 1

∞ .  For an arbitrarily
fixed m∈IN\{0}, the mapping Pm: B  (IR)→[0,1] given by the formula

Pm(B)= 1
m #{ i∈{1, 2, ... , m} : xi∈B}, (57)

where #A denotes the power of the set A and B  (IR) represents the
family of real Borelian sets, is known as the empirical distribution
of the sequence    {X i}i = 1

∞ .  Also let P~: B  (IR)→[0,1] be the distribution
of a probability measure.  The sequence of random variables    {X i}i = 1

∞

is called the empirically ergodic sequence with the limit P~, if the
condition

    lim
m → ∞Pm(E) = P~(E) (58)

is fulfilled with probability 1 (with respect to the measure P) for
every set E of the form (−∞,e], where P~({ e})=0.

As results from the Glivenko-Cantelli Theorem (Billingsley,
1979), this condition is more general than the assumption frequently
formulated in the theory of estimation concerning the identity of the
distributions and the independence of the random variables Xi rep-
resenting the random sample.  In the case where such an assumption
is accepted, the measure P~ is nothing other than the distribution
of the variables Xi, i.e.,

P~(B)=P(xi∈B) (59)

for any i=1, 2, ... and B∈B(IR).

Lemma 1. Let the sequence of real random variables    {X i}i = 1
∞ , defined

on the common probability space (Ω,Σ,P), be empirically ergodic
with the limit P~, which has the distribution function F.  If the
estimator of this function F  is given by Eq. (39), and dependencies
(9), (10), and (37) are fulfilled, then for every x*∈IR such that

P~({ x* })=0 (60)

with probability 1 (with respect to the measure P) the following
equality is true:

   lim
h → 0

lim
m → ∞F(x*) = F(x*) . (61)

Proof. From Eq. (57), it can be directly obtained that

    1
m χB(xi)Σ

i = 1

m
= χB(x) dPm(x)

IR

 for any B∈B  (IR), (62)

where χB denotes the characteristic function of the set B.  Since the
linear and continuous operators equal in dense spaces are identical,
for any measurable function g:   IR → IR the above equality yields

    1
m g(xi)Σ

i = 1

m
= g(x) dPm(x)

IR

. (63)

In particular, on the basis of Eq. (39), the formula

   F(x*) = I(
x* – x

h
) dPm(x)

IR

(64)

can be obtained.  Therefore, Eq. (58) implies, due to the properties
of weak convergence of the distribution functions (Billingsley, 1979),
that with probability 1
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Proof. It suffices to demonstrate that the convergence when m→∞
occuring in Eq. (61) is uniform with respect to the variable h.

Let Fm denote the distribution function of the measure Pm.  For
an arbitrarily fixed m∈IN\{0}, it is obvious that

   lim
x → ∞ I(

x* – x
h

) (F m – F)(x) = 0 (75)

   lim
x → – ∞

I(
x* – x

h
) (F m – F)(x) = 0 . (76)

Applying to the Stielties integral  the integration by parts proce-
dure, one obtains

   I(
x* – x

h
) dPm(x)

IR

– I(
x* – x

h
) dP~(x)

IR

  = I(
x* – x

h
) d(F m– F)(x)

IR

= – (F m– F)(x) dI(
x* – x

h
)

IR

. (77)

Since, regardless of the value of the variable h, the saltus of the
function I equals 1 (is finite) whereas from the Glivenko-Cantelli
Theorem (Billingsley, 1979) it results that

   sup
X ∈IR

(F m– F)(x) m → ∞ 0 , (78)

Eqs. (64), (65), and (77) finally prove Theorem 1. ❏

Note that if the distribution of the measure P~ has a density
function, then assumptions (60) and (73) are obviously fulfilled.

Appendix 3

The strong consistency of the kernel estimator of the quantile
defined by Eq. (44) will be shown below. (The notion of the em-
pirically ergodic sequence is found in Appendix 2.)

Lemma 2. Let the sequence of real random variables    {X i}i = 1
∞ , defined

on the common probability space (Ω,Σ,P), be empirically ergodic
with the limit P~.  If the quantile of order r is defined uniquely with
respect to the measure P~, its estimator is defined by Eq. (44), and
dependencies (9), (10), (37), and (42) are fulfilled, then with prob-
ability 1 (with respect to the measure P) the following equality is
true:

   lim
h → 0

lim
m → ∞q = q . (79)

Proof. In order to demonstrate Eq. (79), it is sufficient to show that

∀ε>0 ∃h
*
>0 : ∀h<h

*
  ∃m

*
∈IN\{0} : ∀m>m

* 
 |q −q|<ε.  (80)

Let any ε>0 be fixed. Since the measure P~ is finite, the set
of real numbers of positive measure can be at most countable.
Thus, there exist x~,    x≈ ∈ IR of zero measure P~ and fulfilling in-
equalities

q−ε<x~<q<x≈<q+ε. (81)

The distribution function is a non-decreasing mapping; therefore, due
to the assumed uniqueness of the quantile, it can inferred that there
exists δ>0 such that

    lim
m → ∞F(x*) = I(

x* – x
h

) dP~(x)

IR

. (65)

The consequences of Eqs. (10) and (37) are:

   lim
x → – ∞

I(x) = 0 (66)

and

   lim
x → ∞I(x) = 1 , (67)

which, thanks to condition (9), gives

   

lim
h → 0

I(
x* – x

h
) =

1 for x < x*

I(0) for x = x*

0 for x > x* .

(68)

In turn, the following equality is true:

   I(
x* – x

h
) dP~(x)

IR

    = I(
x* – x

h
) dP~(x)

( – ∞, x *)

+ I(0) P~({x*}) + I(
x* – x

h
) dP~(x)

(x *, ∞)

. (69)

Therefore, from the Lebesgue Dominated Convergence Theorem, it
results that

    lim
h → 0

I(
x* – x

h
) dP~(x)

IR

= dP~(x)

( – ∞, x *)

+ I(0) P~({x*}) , (70)

i.e., taking into account assumption (60):

    lim
h → 0

I(
x* – x

h
) dP~(x)

IR

= dP~(x)

( – ∞, x *]

. (71)

Applying Eq. (65) to the above formula, one ul t imately
obtains the thesis of Lemma 1. ❏

Theorem 1. Let the sequence of real random variables    {X i}i = 1
∞ ,

defined on the common probability space (Ω,Σ,P), be empirically
ergodic with the limit P~, which has the distribution function F.  If
the estimator of this function F  is given by Eq. (39), and depen-
dencies (9), (10), and (37), as well as the condition

   lim
m → ∞h = 0 (72)

are fulfilled, then for every x*∈IR such that

P~({ x* })=0, (73)

with probability 1 (with respect to the measure P) the equality

   lim
m → ∞F(x*) = F(x*) (74)

is true, which means the strong consistency and, therefore, also the
consistency, of the kernel estimator of the distribution function at
the points of its continuity.

S

S

S
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F(x~)+δ<F(q)<F(x≈)−δ, (82)

where F denotes the distribution function of the measure P~.  Lemma
1 states that

∀ε>0 ∃h
*
>0 : ∀h<h

*
 ∃m

*
∈IN\{0} : ∀m>m

*

   F(x~) < F(x~) + δ

   F(x≈) > F(x≈) – δ ; (83)

therefore, by combining the last two dependencies, one obtains

∀ε>0 ∃h
*
>0 : ∀h<h

*
 ∃m

*
∈IN\{0} : ∀m>m

*

   F(x~) < F(q) < F(x≈) . (84)

Thus, if the quantile estimator q  is calculated in accordance with
Eq. (44), then since the monotonicity of the function F  and due to
dependence (81), Eq. (84) implies the truth of formula (80), which
concludes Lemma 2. ❏

Theorem 2. Let the sequence of real random variables    {X i}i = 1
∞ ,

defined on the common probability space (Ω,Σ,P), be empirically
ergodic with the limit P~.  If the quantile of order r  is defined uniquely
with respect to the measure P~, its estimator is defined by Eq. (44),
and dependencies (9), (10), (37), and (42), as well as the condition

   lim
m → ∞h = 0 (85)

are fulfilled, then with probability 1 (with respect to the measure
P) the equality

   lim
m → ∞q = q (86)

is true, which means the strong consistency and, therefore, also the
consistency, of the kernel estimator of the quantile.

Proof. As results from the proof of Theorem 1, the value m
*
 intro-

duced by formula (83) does not depend on the variable h.  This means,
thanks to Lemma 2, that the convergence when m→∞ is uniform,
which finally proves Theorem 2. ❏

Note that if the distribution of the measure P~ has a density
function with a connected support, then its quantile is uniquely
defined.

It should also be emphasized that condition (29) required in
the estimation of the density function in order to assure the con-
sistency property, is not necessary in the cases of the distribution
function and the quantile.
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