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ABSTRACT

.In this paper, we outline the recent development of the theory of Jacobi forms over Cayley numbers,
initiated by the author in 1991, and the theory of Jacobi forms of degree two over Cayley numbers was
developed. A family of Eisenstein series is constructed via a group representation derived from the
transformation formula of a family of theta series. This provides another example of Jacobi forms besides
natural examples from Fourier-Jacobi expansions of modular forms on the exceptional domain of 27

dimensions.
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l. Introduction

The theory of Jacobi forms on HxC 4, the product
space of the upper half plane and Cayley numbers over
the complex field €, was initiated by the author (Eie,
1991) in order to construct the Maaf space on #,, the
Hermitian upper half plane of degree two over Cayley
numbers. They are of particular interest since they are
related to modular forms on the exceptional domain
developed by Baily (1970, 1973).

In 1993, Kim constructed a singular modular form
of weight 4 on the 27 dimensional exceptional domain
(Kim, 1993) using the analytic continuation of a non-
holomorphic Eisenstein series. Therefore, it is desir-
able to investigate Jacobi forms on 5{2><C(2I more thor-
oughly since they appear naturally as Fourier-Jacobi
coefficients of modular forms on the exceptional do-
mains. Indeed one is able to reconstruct the singular
form more easier using the theory of Jacobi forms on
HxCq (Krieg, 1997) or on #,XCg.

In this paper, we shall first outline the theory of
Jacobi forms on HXC g developed by the author and A.
Krieg (Eie and Krieg, 1992, 1994). Then, we will
proceed to construct a family of Eisenstein series
which are examples of Jacobi forms on ﬂzxcé. Unlike
the case on HXC,, we are unable to write down the
Eisenstein series explicitly. Instead, we will produce
a family of theta series and obtain a group represen-
tation Y, from I'; to a unitary group through the trans-
formation formula for the theta series. Here, I'; is a

discrete subgroup of the group of bi-holomorphic
mappings from #, onto itself. In the final sections,
we will construct the vector-valued modular forms
corresponding to the Eisenstein series using this group
representation.

A related problem concerning singular modular
forms on %, as well as the 27 dimensional exceptional
domain will also be investigated. On the Siegel upper
half plane, each singular modular form is a linear
combination of theta series (Freitag, 1991). However,
it is still an open problem to construct theta series on
the 27 dimensional exceptional domain since Baily
initiated the study of automorphic forms. On %3, a theta
series was constructed in Eie and Krieg (1992) which
is a singular modular form of weight 4 as well as a
modular form in the Maaf} space.

Il. Jacobi Forms over Cayley Num-
bers

The study of the theory of Jacobi forms began in
1985 with a textbook written by M. Eichler and D.
Zagier (Eichler and Zagier, 1985). Let k and m be a
pair of non-negative integers. A holomorphic function
¢: Hx@C—( is called a Jacobi form of weight k and index
m with respect to the modular group SL,(ZZ) if it satisfies
the following conditions:

ab

(J1-1) For all cd

} in SL,(7Z2),
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az+b w
¢(cz+d ’cz+d)

=(cz+d)'exp{2nimew?/(cz+d) Y p(z,w).
(/1-2) For all integers A and y,
O(z,w+Az+ ()=exp {2 wim(Az+2 Aw) } @(z,w).

(/1-3) o(z,w) has a Fourier expansion of the form

Pz )= & 2

n=0rez, r2<4nm

o n,r) e2ﬂi(nz+rw) .

In 1989, Ziegler (Ziegler, 1989) considered Fou-
rier-Jacobi expansions of Siegel modular forms of higher
degrees and defined Jacobi forms of several variables
on H,xC"", the product space of the Siegel upper half
plane H,, and the vector space €. A. Krieg also gave
a general treatment for other kinds of Jacobi forms of
several variables (Krieg, 1996).

In 1991, the author introduced the theory of Jacobi
forms on HXC g, the product space of the upper half
plane H and Cayley numbers over the complex field
field, and proved that there is an one-to-one correspon-
dence between modular forms of weight k in the Maaf3
space and elliptic modular forms of weight k—4 on the
upper half plane. To describe Jacobi forms over Cayley
numbers, we need notations concerning Cayley num-
bers (Eie, 1991).

Let F be a field. The Cayley numbers Cp over
F is an eight dimensional vector space over F with a
standard basis ey, €1, €2, e3, €4, s, €6, €7 satisfying the
following rules of multiplication (Baily, 1970):

(D) xeg=epx=x for all x in Cp,

(2)e}=—eo, j=1, 2, ..., 7,

(3) ere2es=ere3e5=€3€4€6=€4€567=€5€6€ 1=€cC7€7
=e€7€e1€3=—¢y.

For x=,§0 xe; and y=i§) yie; in Cr, we define the
following operations on Cg:

(1) Involution: x—x =xpeg— .il xje;,
ji=
(2) Trace operator: T(x)=x+x =2xy,
(3) Norm operator: N(x)=xx =x x= 'io x}.
j=
(4)Inner product: 6: CpXCr—F, ¢ {(x,y)=T(xy )=
T(yx )=2,§:0 Xy

Note that we have the property: N(x+y)=N(x)+N(y)

+0(x,y).
Denote by o the Z-module in Cgq, generated by
o(j=0, 1, 2, ..., 7), as follows:

Op=ep, 1=€1, 0h=€), Oz=—¢y,

1 1
= (e1+ex+es—ey), ) (—eg—e1—eq+es),
a6=%(—e0+e1—e2+e6), oc7=% (—eg+er+eqter).

Elements in o are referred as integral Cayley
numbers. This module o was denoted by J in Coxeter
(1946) it satisfies the following conditions:

(1)N(x)e ZZ and T(x)e Z for each x in the set,
(2)the set is closed under substraction and multi-
plication,
(3)the set contains 1.
As shown there, o is maximal among those modules
which have these properties.

Now we are ready to formulate the definition of
Jacobi forms on HxC4. Let k and m be a pair of non-
negative integers. A holomorphic function ¢: HXC ;—C
is called a Jacobi form of weight k and index m with
respect to SLy(Z) if it satisfies the following condi-
tions:

(J,~1) For all [‘c’ Z] in SLy(Z),

az+b w
¢(cz+d ’ cz+d)

=(cz+d)*exp{2nimcN(w)/(cz+d) } p(z,w).
(Jo—2) For all 4, i in o,
Pz, w+Az+)=exp{-2mim[N(A)z+ 5(A,w)] } (z,w).

(J2—3) ¢ has a Fourier expansion of the form

Q(z,w)= i >

am, 1) eZIIi[nz+ o(w)] .
n=0t€a nm2NGE) '
lll. Examples of Jacobi Forms over
Cayley Numbers

Natural examples of Jacobi forms over Cayley
numbers come from coefficients of Fourier-Jacobi
expansions of modular forms of degree two on #,, the
Hermitian upper half plane of degree two over Cayley
numbers. More precisely, we have

H,={Z=

X112 X2 Yo Y2

Xy X .
—1 12]_'_1

Y1 )’12’

lx1,%2,¥1,Y2€ R, X12,¥12€ C» ¥2>0, ¥1¥2—-N(¥12)>0}.
1)

Given
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|z w
Z_[Tv‘ e | €7

Z is invertible and

gzl =
w-Nw) -w z

-1 (z* _w)eﬂr Q)

Denote by I'; the discontinuous subgroup of the
group of bi-holomorphic mappings from #, onto itself,
which is generated by transformations as follow:

() pg: Z—>Z+B, B=| 2 U | nmeZ, teo,
t m
)ty Z='U ZU, U= _01 (1) ot [(1) ! ] teo,

B3 Z--Z7\
Let k be an integer. A holomorphic function f:
H,—C is called a modular form of weight k£ with respect
to I'; if it satisfies the following conditions:

(M.1) AU ZU+B)=f(Z) for all B=| ! | n.meZ,
tco, rm
01 1t )
U= , b
10 or 0 1 €0

M.2) A-Z"=(det 2)'(Z).
Here, we will give an example of a modular form
of weight 4 on #,. We use (T,Z) to denote the inner
product of two Hermitian matrices T and Z; (T,Z)=

ty t
tz+t 28+ 0(tp,w) if T= _t 121 and Z=[i M:k ]
It Wz
Proposition 1. The function
yREN
fa@)= L *"ORD, zes, 3)

heo

is a modular form of weight 4 with respect to T's.

nt
tm

Proof. For all B=
see that

, n,meZZ, teo, it is easy to

Ji(Z+B)=f(Z).

Also for U= 0 1 or 1 t,teo, we have
-10 0 1

®'h,UZU)=(Uh('h'U) 2.

Note that the lattice o? is invariant under the
transform h—Uh. Thus, we have

£ ZU)=1y(2).
It remains to prove the transformation formula
A=Z"N=(det Z)'f(Z).
It is enough to prove that the formula holds for
Z=iY since functions of both sides are holomorphic

functions in Z. However, it follows directly that the
Fourier transform of the function

- 54 2
g)=e 2 X1, yecf
is given by
- _ T ov—1
gW)=(det ) 4g-20W W, Y ), We ch

as well as the classical well-known Poisson summation
formula

2 st)= X ®. O
heo Re o?
Let

Ar={B=

2t \nmeZ, tco}
t m

stand for the lattice of integral Hermitian matrices of
size 2x2 over Cayley numbers. Suppose that fis a
modular form of weight k on #,; then, f processes a
Fourier expansion of the form

0T & 25TD
Te/ETzo e > £, @

f@)=

due to the Koecher effect. A rearrangement yields the
Fourier-Jacobi expansion of f:

@)= 2 guiew)e™ 3)

with

Oz w)= i > a/( nt ) e 2z + 0w (g)

n=0t€o,nm2N() tm

where ¢,,(z,w) is called the m-th Fourier-Jacobi coef-
ficient of f.
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Proposition 2. Suppose that f is a modular form of
weight k on 3{, with the Fourier-Jacobi expansion

@)= mz:"o Pz W) e

Then, @,(z,w) is a Jacobi form of weight k and index
m.

Proof. It suffices to prove that @, (z,w) satisfies
(J3-1) and (J,-2). The mapping

az+b w
cz+d cz+d
Nw)c

cz+d

.
L.ZW}__)
| T A%

LWz * * _

{ab
d

]E SL)Z), (7)

is an element of I',. From the transformation formula

AL@)=(cz+d)A(Z),

i OuBED W i (2 mimNw)l(czad) Je T

m=0 cz+d’cz+d

=(cz+ d)k 20 0, (z,w) e 2"

By comparing the coefficients of ¢*®* on both sides,
we get (J,—1). On the other hand, fis invariant under
the transform

Z—'U ZU+B
with .

U=[ (1) )1‘ and B= 701 'g] AUE 0.
This leads to (J,—2). Consequently, ¢,,(z,w) is a Jacobi
form of weight k and index m. O

Let

T aen T
TeA,

be the Fourier expansion of f4(Z); then,

a(? ;)z {(g)eozlnﬂ(a), =B, m=N(B)}.

In view of N(a B )=N(a)N(pB), we have a(T)=0 if det
T7>0. Also, \

10

573 _ |1 ¢
o U TU)=a(T) for U_[ 0 1] or 1

|: <o

By Lemma 3.2 in Baily (1970), we are able to reduce
T to the form

n 0

0 0f
by means of a finite number of the transform 7—' U TU
when det T=0. It is easy to see that

n=>0

al? O)=24 3 >1.
(o 0) Od|2nd for n>1

For Te A,, let &(T) be the largest positive integer

d such that éTe A,. Then, we have
o/(T) =240 d|zmd3 if T#0 and det T=0. 8)
&

Therefore, the Fourier coefficients of f4(Z) satisfy the
MaaP condition:

2
a{ﬁ t ): Y 3o T td )
tmj d@me tld 1

Here, d|(n,m,t) means that d is a positive common
divisor of the integers m and n, and Leo. Hence, f4(Z)

is indeed a modular form of weight 4 in the Maaf} space
over Cayley number considered by the author (Eie,
1991). Also, f4(Z) is a singular modular form since
a(T)=0 for det T=0.

Other examples of Jacobi forms are given explic-
itly by a family of convergent series. Given ge o with
N(gq)=0 (mod m), we define the Jacobi-Eisenstein series

Ek,m(Z’W;q)
2@2 z+dy* X >, exp {2nim[N(1)‘C’JZI—s
w cNw)
+ o, 7+d) cz+d]} (10)
Here,
Ag)= {t+ Iteo} and d]GSLZ(Z).

The Jacobi-Eisenstein series Ej, was first con-
sidered by the author (Eie, 1995) for the case ¢g=0 and
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then extended to general cases by the author and Krieg
(Eie and Krieg, 1994). The series used to define Ey ,
is absolutely convergent for k>10; hence, it defines a
Jacobi form of weight k and index m as shown in
Eie and Krieg (1994). As we shall see in Section
V, we are able to determine the vector-valued modular
form corresponding to E;, and to then conclude
that £y, is indeed a Jacobi form of weight k and index
m.

IV. Theta Series and a Group Repre-
sentation

Given a positive integer m and an integral Cayley
number ¢ in o, we define the theta series

2 e 2mmN() 7 + o(,w)]

3, @ w)=
ma@ W) 1 €Ag)

= z e2mm[N(l+%)z+ o‘(/l+%, w)] .

ico (a1

Directly from the above definition, it is easy to
see that
(1) O gzt 1, W)= Ny, (2, w),
(2) B g(& W Azt pr)=e PmIWreimly (o 1),
(3) Vg, @W)=Vm,2W) if §1=q2 (mod m).
We are able to decompose a Jacobi form into-a
finite linear combination of theta series with coeffi-
cients which are elliptic modular forms.

Proposition 3. Let f be a Jacobi form of weight k and
index m with the Fourier expansion

O t) e 2Pz + O]

few)=

n=0¢t€0,nm2N()

Then, f has the unique expression
R,
where

Fq (Z)= af(n,q)eZIEi[n—N(q)/m]z .

n2N@)m

Proof. Note that for all ¢, Aco,
afdn+o(t,A)+mN(L),t+mA)=0f(n.1).

In other words, a(n,r) depends only on ¢ (mod m) and
nm—N(t). Set r=g+mA with ¢q ranges over a set of
representatives of o/mo and A ranges over all integral
Cayley numbers in the second summation of f. It
follows that

fiz,w)

= % > adn, g +ml g2mlnz+ 0 + mAdw)]
"ZN(lI*'ml)/mq:o/molgo 0. q )

Z Z af(n - o(q’j’)_mN(A’)’ Q)

" 2N(g +mA)/ m q:oimo A €0
e 27t [nz + O(q + mA,w)]

Let n’=n—0(q,A)-mN(A) be a new variable in place of
n. Then,

n’2N(q)/m if and only if n>2N(g+mA)/m

and

faw)= L X o, q)e @ -N@)m)z

q:0/mo n' 2N@gym

.;LZ e 27m[N (A + %)Z +00”+%’ w)l
€0

= NZMO F,@8,,&w).

The vector-valued function

F@)="(F,@)

q'0/mo’

af(n’ q)e27l'i(n—N(q)/m)Z

F,@)= (12)

n 2N2(q)/m

is called the vector-valued modular form corresponding
to the Jacobi form f. Its component F,(z) is a modular
form of weight k~4 with respect to the principal con-
gruence subgroup

T'[m)={ye SLy(Z)|7=E, (mod m)}.
Consequently, we can realize the vector space of Jacobi
forms of weight k and index m as a subspace [A(k—4,
F[m])]"‘s, where A(k-4, I'[m]) is the vector space of

modular forms of weight k—4 with respect to I'[m].

In the following, we shall prove the transforma-
tion formula of ﬁm'q(—%, %) and W, 4(z,w).

Proposition 4. Let v, o(z,w) be the theta series defined

in (11). Then,
1w
0m,q(__z‘a7

4 ; .
-l B DN, ).

Proof. It suffices to prove that the equality holds for
z=iy and w=iv. We have
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q q
ﬂm’q(iy,iv) = E e 27amNA + o+ oA+ Lo 13)
o
and
e | v
ﬁm,q(ly 3 y)
LS sl b a9

teo
Let S be the matrix corresponding to the quadratic form
in g;(j=0, 1, ... ,7) of 2N(_i0 8;%), i.e., S=(a( 0, 0))osi j<7>
and let g,V be the représ_entations of ¢,v with the basis
oy, &1, ..., &;. Then,

gy, )

-20nNO)y Y e—nmS[£+é/m-iﬁ]y-1
rez?

=e (15)

S is a positive definite symmetric integral matrix and
det S=1. By direct calculation, the Fourier transfor-
mation of the function

f(x) = e~ ™Sk +gim—ivy—1
is given by
f(z) = (l)4e” 25i(GIm ~ i9,2) p— MyS” L1 im ]
m

Here, <, 3> is the inner product of ¢, f in IR®. Then,
the Poisson summation formula implies that

gy )

_2;rm1v(v)/y(1)4 3 e-zm(q/m-iv‘,z)e-nyS"[z]/m
m zelg

=e

= o= 2mmNG)/ y(%l_ )4 Y o~ 27i0lghm ~ ivi),— 2N (16)

t€o0

Now, letting t=p+mA with p ranges over all coset rep-
resentatives of o/mo and A ranges over all integral
numbers, we get our assertion. a

Fix a set of representatives gy, g3, ..., g% of o/
mo and let

0=, 0

m,qlv m,q2’ seey ﬂm,qms)‘

Proposition 5. There exists a unique group homomor-
phism y: SLy(ZZ)—>U(m®) such that

@(a;+b w )
cz+d  cz+d

= (cz +d) e 2MmeNwY ez + d)W([ ‘CI Z ])@ zw)

a b
¢ d

(a) W(T)=diag(e >™Nam

for all €SLy(ZZ). In particular, we have

-27iN(g,Simy T 1 1
e )s [0 1},

0 -1
1 o]

Proof. y(T) and y(J) are determined from the defini-
tion and the previous proposition. Note that SLy(ZZ)
is generated by T and J. This proves our assertion.

O

(b) Y(N)=m~ (20N oy s T=

Now, we shall employ an argument similar to that
in Chapter IX of Schoenberg (1974) to obtain the explicit
expression of y from Ww(7T) an y(J).

Lemma 1. For any interger c#0, we have
0m,q(z’w) = /1:%‘0 ﬂmc,q +mACZW) .

Pr;)of. From the definition
O g@w) = téo exp{27im[N( + %) Z+00+ % w)},

we let t=A+cp with A ranges over all coset represen-
tatives of o/co and p ranges over all integral Cayley
numbers, and get the identity. 0

a b

Proposition 6. For d

] € SL,(ZZ) with c#0, we have

-2

a b||_, -4 7
)_(mc) /1:02/00 exp{ e [aN(g +mA)

c d

W‘H’(

- 0lg +mAp)+dNp)]}.
Proof. By Lemma 1, we get

9 (az+b _w
ma( cz+d’ cz+d)

claz+b)

=2 0 ,
Aolco T4 mil cz+d cz+d

)

=Y B - 1 W
Aolco . mc’q+m/1( cz+d cz+d

= 2, exp{2maN(g +mA)/ mc}
Aolco
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.9 1
cz+d cz+d

me.q + m/l( -

'n the other hand,

1 w )

19 b
cz+d cz+d

me,g + m/l( -

= (cz+d) me) ‘exp2mNGw)c/cz + d)}

2 exp{27iog +mAp) Imc}0,,. ez +d, w).

proimco
JIso, we have
Byeplez +d,w) = exp2MdNQp) Imc}0,,. ,(czw) .

lence, we get

8 (_az+b _w
mi~ rrd czvd)

=(cz +d) me) *expRANW)c/cz + d)}

X 2

pio/mco

Dpeplezw), T explat laN(q +mh)

- Olg +mAp)+dNQ)]}.

Denote by S(p,q) the sum in the second summa-
on. If we can prove that S(p+mL,q)=S(p,q), then our
ssertion will follow since

Y Dy czw)S(.q)

prolmco
=p'o/;nm ,ll'o/zco 19mc,p +m/t(csz) S(P + mﬂ’CI)

= X By,@w)Sp.q).

p:oico

ewrite S(p,q) as
exp{ZZ [aN(q)- 0lg.p)1}
i .
,‘tgéo exp{ﬁgé—‘ [amZN(l) - mO‘(/l,p —aq)+ dN@)1}.

ince (c,d)=1, we can replace A with dA in the sum-
1ation. Therefore,

S@.q)=exp(2E [aN(g) - 0lg.p)]}
o2 xplL NG - mop ~ ag)+ Np)]}

=exp(ZZ{p op.g) - abN @)}

2 ex MNA_E.la_q .
gl exp{= T N )

From the above, we can see that S(p,q) is invariant
under the transform p—p+mf; hence, our proof is
complete. O

V.Jacobi Forms as Vector-Valued
Modular Forms

As shown in Proposition 3, we are able to decom-
pose a Jacobi form into an inner product of a vector-
valued modular form and the vector of theta series in
(11). Here, we will discuss the necessary and sufficient
conditions for a vector-valued modular form corre-
sponding to a Jacobi form.

Proposition 7. Let gy, g3, ..., qms be a set of repre-
sentatives of o/mo and

F(z):’(Fql(z), qu(z), vees By 8(2))
with

>

a(n,q) ezm(n -N@@)m)z .
n2Ngym

F @)=

Then, the following statements are equivalent:
(A) f(z,w)="F(z)+O(z,w) is a Jacobi form of weight
k and index m.

Ccl Z])F(z) for all

az+b~ _ k-4
(B)F(c7+d)—(cz+d) 1//(

[ “ Z}GSLQ(Z).

Proof. Given a Jacobi form f of weight k£ and index

m and ? Z € SLy(Z), we have
p@tby oazth _w
(cz+d)®(cz+d cz+d)

=(CZ+d)keznimCN(w)/E”d)tF(Z)'G)(Z,W)-

By Proposition 5, we get

tF(M).V/([Z Z} O(z,w)

cz+d

=(cz+d)* 'F(2)+0(z,w).
Since the components of the vector-valued theta func-

tion ©(z,w) are linearly independent and W([ Z Z])
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is unitary, we conclude that

a b
c

d F(2).

F<M>=(cz+d>’°“‘w(
cz+d

This proves that (A) implies (B). The converse is a
direct verification. O

Let I')=SL,(Z) and

r;":{i |n€Z}.

With the transformation formula in Proposition 4,
we can rewrite the Jacobi-Eisenstein series Ey ,(z,w;q)
in (10) as -

1 n
0 1 an

Eym(zZ,w3q)= >

, 4_k -
v :
P oviee M2) p%,,o ¥, oDV, @)

(18)

a b

Cdand

Here, j(M,z)=(cz+d) if M=

l/’(Iu)=[l//p,q(M)]p,q:o/mo-
Suppose that
Eem(z:9)="(Eq (2:9), .. Eq (239))

is the vector-valued modular form corresponding to
E;m(z,w;q). Then,

Efzia)=,, X V,,00j01" . 19)

It is clear that the above series is absolutely convergent
for k7. In the following, we will prove that Ey ,,(z;q)
is indeed a vector-valued modular form corresponding
to a Jacobi form.

Proposition 8. For all KeI'|=SLy(Z), we have
Em(K(2):9)=J(K,2)* *W(K)E (. m(2:9)
if N(¢)=0 (mod m).

Proof. Consider the matrix of modular functions de-
fined by

G()= X _yM)jiMz' ™", k7.

M:T{/TT

The function G depends on the choice of the coset
representatives of T')/I'7. Indeed, we have

17

a+c b+d
c d D=1//(T)‘/’(

)

However, its g-th row is independent of the choice since

—Zn‘iN(qms)/m]

Y(T)=diag[e2Naim ¢
and N(q)=0 (mod m). Note that ‘E} ,(z;q) is precisely

the g-th row of G(z). ‘From the group properties of I'y
and the cocycle condition of j,

J(M,K(2))=j(MK,2)j(K,2)™",

we conclude that

B m(K (@)= (K,2) Ep m(2,@) WK )

for all KeTI';. Since y(K) is unitary, it follows that

E m(K(2):9)=j(K,2) WK E m(2;9)- o

Proposition 9. For k27, the Fourier expansion of
Ey(z;q) is given by

Ep(z:0)=[ W, p(E)+(=1) yy p(—E)]

+ X

a(n,p)ezm(n —N@p)m)z
n>NQ@)m

with

(—2m)* =4

5im (n — Npym)* ~>

anp)=

4-k a b
4 (4
c#0 1<d <m|c| q,p( c d )
@e)=1

exp{2ni(mn—N(p)d)/mc}.

Proof. According to ¢=0 or not, we have
Ey(z;9)=[y, J(E)+(-D*y, ,(—E)]

+ Xtk Y 1//,”,(
¢ #0 cd=1 7

Let d=d'+Imc with 1<d'<m|c|, (d',c)=1 and le ZZ. Also,
note that

a
c

b 4-k
d )(Z+d/c) .

It follows that
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a b 4k
(C,§=l Wq,p([ c d])(z+d/c)

_ 4k a b
= 15d§m|c|wq’p([c d’DIEZZ

do)=1

m  mc

_mtRom &
- & - 5)! z

k—5627tinz/m
n=1

Z a b: 27rind'/mc.
1<d'<m|c| y/q’p c d ¢

@o)=1

On the other hand, by Proposition 8, we have
E,(z+1;q9)=e""P'"E(z;q).

This forces the coefficient of ¢*™¥™ to be zero unless
n+N(p)=0 (mod m). Let n'=[n+N(p))/m be a new variable
in place of n. Then,

a b 4-k
(63)2:1 l//qp([ . d])(z+d/c)

_(=2m)k*

- k=5 2m@n’ -~ Npym)z
= N
C=S)m s Fioym " NPIm)" e

’

x a b )exp[27ri(mn'—N(p)) d'Ime].

c d

Z
1<d" <m|c| b
@e)=1

This proves our -assertion on the Fourier coefficient
a(n.p) of E,(z;9). O

From the definition of E} ,(z,w;q), we can see that

(1) Ex m(z,w39)=Ei m(z,w3q") if g=¢' (mod m),

(2) Ex (2. Wi—@)=E m(2,~w;9)=(— 1) Ep m(z,W;9)-
Thus Ej ,,(z,w;q)=0 if and only if k is odd and 24=0
(mod m). Fix a set of representatives gy, g, ..., £q,,
qri1s ---» qr+s Of the set ‘

{g€ 0/mo|N(g)=0 (mod m)}
such that 2g;¢ mo for 1<j<r and 2g;e mo for r+1<j<r+s.

Then, the set

{Exm@w;tq) |15 <r}, if k is odd,

{E mw;tq)

1<j<r+s}, if k is even;

’ 4k
&+d 4

are linearly independent sets. Thus, the number of
independent Jacobi-Eisenstein series is

Lo X 2D, _ifw,,
2 d[m d4
where

1if m=1 @mod 2)
136 if m=2 (mod 4)
256 if m=0 (mod 4).

N, =

Remark. The formula

{ge o/molN(g)=0 (mode m)}|=m7d|2 (P(_‘Z)
m
follows as a corollary of Karel (1974).

VI. Modular Forms on the Excep-
tional Domain

Let 7; be the set of 3x3 Hermition matrices over
real Cayley numbers. Jg consists of matrices of the
following form:

¢ X12 X13
X=Xy 52 Xo3 | &1, &, &ER, x12, X143, X236 Cg»
X13 Xo3 63 (20)

For Xe jg as given in (20), we define
(D) tr(X)=&1+ &+ &5,
(2)det(X)=8185283-E 1N(x23) =8N (x13)—
EN(x12)+T((x12%23) % 13),

(3)XXX:XZ—tr(X)X+%(tr(X)Z—tr(XZ))E

X12%23 —éles
X12%13 —§1x23 .

6152 -N(x5)

6283 —N(xy;) X13 %23 =63%1,
13X 158631, §163-Ny)

X23 x12—§2x13 X13%12 - X23

Note that X is invertible if and only if det X#0. In this
case, the inverse is given by

x =1
detX

X XX).
Also, we set
rank X=1 if and only if X#0, XxX=0,

rank X=2 if and only if XxX=0, det X=0,
rank X=3 if and only if det X#O0.

We supply 7, with a product defined by
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X o Y=%(XY+YX), (21)
where XY is the ordinary matrix product. Then, 7,
becomes a real Jordan algebra with this product. Define
an inner product on J; by
X, )=tr(X ° Y). 22)
Finally, we let R be the set of squares X o X of
the elements of 7, and R* be the interior of R. The
exceptional domain in @ is, then, defined by
H={Z=X+iY|X,Ye g , YeR"}. (23)
Set 7,=9, N"M3(0). Here, M;(0) is the set of 3x3
martices over the integral Cayley numbers. For 1<i,
J<3, let ¢; be the 3x3 matrix with 1 at the ij-position
and O elsewhere. When i#j, te C, we let Uy(f)=E+tey,
where E is the 3x3 identity matrix.
The group of holomorphic automorphisms G of
# is a Lie group of type E; (Baily, 1970). Let I be
the discrete subgroup of Gy generated by the following
automorphisms of #:
(1) 1: Z>-Z",
(2) ps: Z—Z+B, BEJ,,
(3) ty: Z—Z[U)='U ZU, U=Uy(1), teo.
Let k be an even integer. A holomorphic function
f defined on % is a modular form of weight & with
respect to I' if it satisfies the following conditions:
(2) f(=Z)=(det(-2))(2),
(b) f(ZIU]+B)=f(Z) for all BeJ, and U=Uy(1), teo.
In particular, from (b), a modular from f on # has
a Fourier expansion of the form

_ 2mi(T,Z)

f(Z)—T%%a(De .

fis a singular modular form if a(T)=0 unless det 7=0.
Baily (1970) considered the Eisenstein series

E2)= rez iv.2), Ze . (24)

T,
Here T’y is the subgroup of I" generated by pp, fy with
Bej,, U=Uy1), teo. j(%Z) is the determinant of the
Jacobian matrix of y at Z, and it has the following
properties:

(1) j(pp,Z)=1 for all Beig,

(2) j(ty,Z)=1 for all U=Uy(1), teo,

(3) j(L2)=[det(-2)1"*.

For any positive even integer, the series in (24)
converges absolutely and uniformly on any compact
subset of #. Hence, E; is a modular form of weight
18/ with respect to I on A and has a Fourier ex-
pansion:

E@2)= Te%ﬁm a ) e? D, (25)

Baily proved that the Fourier coefficients afT) of E(Z)
are rational numbers and concluded that the Satake
compactification of #/T" has a biregularly equivalent
projective model defined over the rational number field
Q (Baily, 1970).

VIl. Jacobi Forms of Degree Two over
Cayley Numbers

By a Jacobi form of degree two over Cayley
numbers, we mean a Jacobi form defined on ﬂzxcé.
Let k and m>1 be non-negative integers. A holomorphic
function f: #,xC3—Q is called a Jacobi form of weight
k and index m with respect to I'; if f satisfies the
following conditions:

-1 f(Z+B,W)=f(Z,W) for all Be A,,
(J-2)f(Z[U1,"' U W)=f(Z,W) for all U=[} (1)] or

0 1

-10
(J-3)f(=Z", Z"'W)=(det Z)exp{2mimZ [W]}FZ,W),
J-Hf(Z,W+Zq+p)=exp{-2nim[(Z,q'q)+0(w,
q1)+0(wy, g)1}AZ,W)=for all q="(q1, g2), p=(p1,

P20’
(J-5) f has a Fourier expansion of the form,

, t€ o,

fz,w)
=2 >

G(T,q) eZ?Ti[(T,Z)+ O(g ;W 1)+ 0(g 2w )} .
qeo? TeA, T2 qim

(26)

21 Zp

Here, for Z=
212 4

w 2
e, aTld W=[W;]GC¢ , we

let
Z[W]=z;N(w1)+22N(W2)+0(212, w1 W 2).

a A
b

to mean a=0 and ab=N(A4). Also, A>B if and only if
A-B>0.

From the above definition, we are able to decom-
pose a Jacobi form of degree two into an inner product
of a vector-valued modular form and a vector-valued
theta series.

, we write A=0

For a 2x2 Hermitian matrix A=[

Proposition 10. Let (Z,W) be a Jacobi form of degree
two with Fourier expansion (26). Then,

fewy= X F@b,@W),

q:(0/mo)
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where

Fq(Z) = 2 al,ge 27T - o q/m,Z)

T2qq/m

and
1'9m,q(Z,VV)

= X

h=/1+q/m,

Proof. Set p=q+mA with q ranges over all represen-
tatives of (0/mo)” and A ranges over o in the first
summation of f{Z,W). Then, our assertion follows from
(J-4) and direct verification. O

For each q=‘(é1,q2)e 0%, consider the theta series
Vm,q(Z,W) defined by

l’m,q(Z:W)
= X exp{2mim(t b, Zy00 |, w  +OU pw )}
h= /1+q/m, Aeg? (27)
Obviously, we have
ﬂm,q(Z +B,W)= e21tim(q’ i»B)/mlgm‘q(Z,W)
for all Be A,, (28)
Omq(ZLUL U W)=, ug(Z,W),
for U=[ 1 0] or| 0 1 J tco. 29)
t 1 -10

Here, we shall prove the transformation formula
between 9, o(—Z', Z'W) and ¢, 4(Z,W). We need the
following.

Lemma 2. For each h="(hy,hy)e C3, A=diag[£,,&], £>0,
£)>0, we have

(h'h , A[UD=((Uh)("h" U ),A)
41 t 10 01
for all U_[O 1]’[t l]or[_l 0

01

We have

, teCp.

Proof. It is obvious for U= . Here, we will

1 ¢
0 1|

(h'h , A[UD= & \N(h))+&E,0(t,hy hy)

prove the case U=

exp(2im{h h Z}0Th 1w )0t W)}

+(&+ SIN(D)IN(hy).

On the other hand,

Uh=

h,+th,
hy |

It follows that
(U D'T), M)=EN(hy+thy)+EN (o)
=81N(h1)+&10(h,thy)
+(EIN(t)+E)N(hy).
Hence, our assertion follows form the fact that
ott,hy hy)=T(t(hy b))
=T((thy) hy)
=0(hy.thy). O

In exactly the same way, we can prove the fol-
lowing.

Lemma 3. For h='(hj,hy)eCh, V='(vi,v)eCp,

A=diag[£,&), >0, E0and U=| L tlor |1 Of,
01 t 1
teCRr, we have

i [T wy=1("huThHaT T,
Proposition 11. Suppose that ¥, ((Z,W) is defined as
in (27). Then,

Vma(-Z7", Z7'W)

=(det Z)*exp{2mimZ'[W]}

x-L ¥ -270G 1)+ 0Grpimy sZW). (30)
m8 . 2 >
p:o/mo)

Proof. It suffices to prove that (30) holds for Z=iY and
W=iV since both sides are holomorphic functions in Z

and W. Let Y=A[U] with A=diag[&,, &] and U= (1) i
Then,

Y—1=A_1[tU_1].
It follows that

B, 07, Y 'V)
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= h exp {— 27Tm(htF, Yy 1)
h=A+gm, Aeo?
+2mmTC Ry~ ')

= > exp{—27m@ h, A~ (U]
h=A+gm. Aco?
w2mimTC XA T T v

= X

= exp(-2m('U”'"W ("h U™ ), A™")
h=A+qgm, A€o?
2mmT(Chu" YA 1T " vy
(By Lemma 2 and 3)

- -y -t 4 _
= e 2T €6 m™*

2 exp{=2mm (WU ('h'U) A

heo?
(R T (T HA-iv)) By 4-4)

== 7Y 'Videt )*m—8 T exp{-2mm~ @R, ¥)

h €0

~2mio(El iy, h )= 27 OCE2 — iv,, hy)}

-1
= e~ 2" Vet v)'m~8

2 exp{-27[0G ,p,)+ OGp,)Vm}

P (o/mo)2

exp{ - 27m’ h, Y)
h=A+pm, A €o?

_27m(OW k) + O 2))}
(Set h=p+mA, p:(0o/mo)*, A:0%)

-1
=~ 2mY Vet Y)4m_ 8

2 exp{-27[0lq,,p,) + Og,p)Ym}

p: (0mo)?
U, p(iY,iV).
This proves our assertion. |
We then have a result similar to Proposition 5.

Proposition 12. There exists a group homomorphism
Vo T U(m'®) (unitary group of size m'®) determined
by

(1) yn(pp)=diag [6_2”'(qtq'3)]q: oimoy?» BE Ag,

1 if q=Up,
2) l//2(tU)=[~5‘p,q]p,q:(o/mo)2\’ sp,q=<0 otherwise,
|1 ¢ 01
U—[O 1 or 10 ],teo,

3) ‘/’2(1)=$[62’"“’“""“’“’(”2"’”]""]p,q;(o/moy-

VIII. Jacobi-Eisenstein Series

As shown in Proposition 10, we are able to de-
compose a Jacobi form of degree two into an inner
product of a vector-valued modular form and a vector-
valued theta series. Now, with the properties (27), (28)
and (29) of the theta series defined in (26), we can
characterize a Jacobi form as a vector-valued modular
form.

Proposition 13. Let q, qs, ..., Qs be a set of repre-
sentatives of (o/mo)? and

F(2)="(Fq (2), Fo(D). .... Fq () 31

OZW)="(Un,q(Z.W), ..., Umq,1(Z.W)) (32)

With Up.q(Z,W) as defined in (26) and
— 21T - q/m, Z)
F@= L a@ge?mT-dam2,

TeA, T2qq/m

Then, the following statements are equivalent:
(1) AZ,W)="F(Z)+O(Z,W) is a Jacobi form of wieght
k and index m with respect to T';.
(2) F(Z) satisfies the following conditions:
(1) F(Z+B)=y(pp)F(Z) for Be A,,

(i) FZIUD=w:()F(2) for U= 1 1 or
0 1 } teo,
-1 0

(iii) F(=Z")=(det Z)**yu(DF(Z).

Proof. It is similar to the proof of Proposition 7, so
we will omit it here. 0o

Corollary. For a positive integer k24, the correspon-
dence

F(Z)—-F(Z)v1,0(Z,W)
establishes an one to one correspondence between
modular forms of weight k—4 on %, and Jacobi forms

of weight k and index 1 on ﬂzxcﬁ.

Now, we will use the group homomorphism v,
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to construct a vector-valued modular form correspond-
ing to a Jacobi form of degree two. Let j(g,Z) be a
factor of the determinant of the Jacobian matrix of
geT, at Ze 7, determined by the following:

(1) j(pp.2)=1 for all Be A,,

(2) j(ty,Z)=1 for all U=[ 1 ¢

0 1
(3) j(1L,Z)=det(=2),
(4) j(8182:2)=j(81,82(2))j(82.2)-
Also, let T be the subgroup of I, generated by

01
-10

qe 0® with q"'q=0 (mod m), we define

or

pg and ty, Be A,, U=[ 1ot or , teo. For each

01

Ek,m(z, W;q)

="(Eq,q,(2); Eqq,(2); s Eqq,(2))O(Z,W) (33)

with

Egd)= E/rgj(M»Z)4_kW2,q,p(1‘4), (34)
where

Y (M)=( l//2,q,p(M))q,p'(o/mo)z- (35)

The series in (34) converges absolutely and uniformly

on compact subsets of #, if k>22. Here, we shall prove
that the vector-valued modular form corresponding to
Eym(Z,W;q) satisfies condition (2) of Proposition
13. Consequently, E;,,(Z,W;q) is indeed a Jacobi
form of weight k and index m for k>22 and q"'q=0 (mod
m).

Proposition 14. For k>22 and qe o* with "q=0 (mod
m), the Jacobi-Eisenstein defined in (33) and (34) is
a Jacobi form of weight k and index m.

Proof. Let E(Z;q) be the vector-valued modular form
corresponding to E; ,(Z,W;q). Then, ‘E(Z;q) is the q-
th row of the matrix

z 8j(M,Z)“"‘v/z(M).

M: T

Thus, condition (2) of Proposition 13 follows from the
cocycle condition of j(M,Z) and the properties of y,.
]

IX. Applications to Singular Modular
Forms

In addition to the Jacobi-Eisenstein series con-
structed in the previous section, the Jacobi-Fourier

coefficients of modular forms on the exceptional do-
main provide another kind of examples of Jacobi forms
of degree two. Here, we shall determine explicitly the
Fourier coefficients of modular forms of weight 4 and
8 on the exceptional domain.

Proposition 15. Let E4(Z) be a modular form of
weight 4 on the exceptional domain with the Fourier
expansion

a(l) e*™T7

AR (36)

£@-, 3

o

Then, a(T)=0 unless rank T<1. If a(0)=1 is given, then,
for rank T=1,

a@)=240 X d°,
d|£(7)

where &(T) is the largest integer d such that d'Te J,.
Proof. Let
PoZ)+ El O(Z 1, W) e 2Fimzs
m=

be the Jacobi-Fourier expansion of E4(Z) with

zZ, W
z=| 21
w 23

Then, @g(Z,) is a modular form of weight 4 on #y;
hence, it is a constant multiple of f4(Z;) in Proposition
1. Note that a(0)=1; it follows that @u(Z;)=f4(Z;) and

that a| 11 O | is given by 240 ¥ 4% if det T1=0,
00 d|e@

T,#0.

On the other hand, ¢,,(Z;,W) is a Jacobi form of
weight 4 and index m on .'7'[2XC(2I. By Proposition 13,
we are able to decompose ¢,(Z;,W) into

q ((%no)z Fq @p- ﬂm’q(Z W)

with

F.Z)=
a1 TeApT2qdGm | ' q O

3 a( T, q )eZEz(T—q’E/m,Zl)'

By Proposition 13, we know that

F(Zl)=t(Fq(Zl))q:(o/mo)2

is a vector-valued modular form of weight 0. This
forces Fg(Z;) to be a constant; hence,
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ED=f4Z1)+ 5 0@y W)e? s

T
a t_l 11-0
q m
_ Z= Z_‘ W €.
unless Ty=q'q/m. This proves that a(T)=0 unless rank "w 23

T<1. For Tej, with rank T=1, we are able to reduce
T to Ty=diag [&(7),0,0] by using a finite number of

operations T—T[U], U=Uy(t), i#j, teo. Thus, With the theory of Jacobi forms on HjXC g as well as

Jacobi forms on #,xCq, we are able to verify that

— — 3 )
aN=a(Ty=240 2 d*. - E(-Z")=(det 2)*E(2). (40)

Next, we will give a relation among the Fourier =~ Consequently, we can provide another way to construct
coefficients of the modular form of weight 4. the singular modular form of weight 4 on the excep-
tional domain.
Proposition 16. For each positive integer m and q="(q,,
q2)€ 0%, let . Note that Ei(Z) is a modular form of weight 8.
Indeed, it is a singular modular form of weight 8, and
its Fourier coefficiens can be determined explicitly by

T= qqim q the following proposition.
IE m
Proposition 17. Let
and 5 .
EiZ)= X _b(I)e*™TD,
3 . Tej, R
240 X d° if Tey,,
6a@={ 7 (37)  Then, b(T)=0 unless rank T<2 and
0 otherwise.
b T, 0
Then, 00
=1 27i[oTg |, P/
Gm((])—_§ > € oG )+ TV G (o). (38)
m” p(o/mo)
1 it T,=0,
Proof. It follows from the fact that G="(G,.(q))q:(o/mo)
is the vector-valued mOfiular form cor'r<.=,sponding to =/ 480 ¥ 47 if det T, =0, T, #0,
On(Zy,W), the m-th Jacobi-Fourier coefficient of F4(Z). dle@) ]
Thus, G must satisfy condition (2) of Proposition 13. D) 5 .
In particular, we have 240'480d d dy if det T,#0.
le@y d[de:(d‘lrl)

G=y,(1)G. (39)

This is precisely the identity (38) in vector form. O  Proof. The Fourier coefficient a(T) of E4(Z) has the
property that a(7)=0 unless rank 7<1. It follows that

Remark. Indentity (38) was proved in Eie'? directly

from the definition of G,(q), and this implies that b(T)=T +§4 Ta(Tl)a(Tﬁ
1 2=
OuZ W)= X sz(q)ﬁm,q(Zl,W), @, W)E 3, XCq  is zero unless rank T<2. Let
q.(0/mo)
'3 27im

is a Jacobi form of weight 4 and index m. With ¢,,(Z,,W) VoZ)+ ,,El Vinl2y, W) e
as the m-th coefficient, we are able to define a s 5
holomorphic function on the exceptional domain as  be the Jacobi-Fourier expansion of Ey(Z). Then,

'Eie, M., “The cohomology group associated with Jacobi cusp forms over Cayley numbers.” To appear in Amer. Jour. of Math.
’Eie, M., “An arithmetic property of Fourier coefficients of singular modular forms on the exceptional domain.” Manuscript.
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T, 0
7 V= 2 1 2m(TZy)
YoZ)) blo oll€
. al1Z, 0
= o)

which is a modular form of weight 8; hence, it is equal
to [f4(Z))])%. However, [f4(Z;)]* is the only modular form
of weight 8, which is also in the Maaf space, and its
coefficients satisfy the Maaf} condition. Therefore, it

suffices to show that b 7(;1 8 with T;= ’(1) 8 or
t
T= ; ) , n—N()#0. Note that
T, 0 - —
ol o o =#{h hy€ 0|y By +h) Ry =T )
n O
For T|= s
or T} 0 0 we have
T, 0
ol o =#{a,b€0‘N(a)+N(b)=n}

=480 X d’.
d|n

t
On the other hand, for T,= ﬁ it we have
t

T, 0

=240+4 3
0 0 40480 X d

d|@ - Ney

b
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