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ABSTRACT

Many problems in mathematics, physical sciences, and life sciences can be described by percolation
models.  In this paper, we review our recent work in universal quantities and universal finite-size scaling
functions (UFSSF’s) of percolation models.  The quantities we consider include the existence probability
(also called the spanning probability), Ep, the percolation probability, P, and the probability of the
appearance of n percolating clusters, Wn.  The topics under discussion include: (1) boundary conditions,
aspect ratios, and finite-size scaling functions; (2) UFSSF’s of Ep and P in lattice percolation models;
(3) UFSSF’s of Wn in lattice percolation models; (4) UFSSF’s of Ep and Wn in continuum percolation
models; (5) UFSSF’s of the q-state bond-correlated percolation model and q-state Potts model without
nonuniversal metric factors; and (6) boundary conditions and the average number of percolating clusters.
Some other related developments and problems for further research are also discussed.
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in the vertical direction J2 are different.  Chang (1952)
found that, for 0<J1/J2<∞, β is always equal to 1/8.
Chang (1952) conjectured that for other planar lattices,
β is also equal to 1/8, which was confirmed by later
calculations: this marked the beginning of the theory
of the universality of critical exponents.  Now it is
generally believed that for the Ising model on all planar
lattices, including the square (sq), the plane triangular
(pt),  honeycomb (hc) lattices, etc., the specific heat
exponent α, the spontaneous magnetization exponent
β, the magnetic susceptibility exponent γ, and the cor-
relation length exponent ν are 0 (logarithmic diver-
gence), 1/8, 7/4, and 1, respectively (Stanley, 1971).
It is also believed that for site and bond random per-
colation on all planar lattices, the correlation length
exponent ν, the percolation probability exponent β, and
the mean cluster size exponent γ are 4/3, 5/36, and
43/18, respectively (Stauffer and Aharony, 1994).

Another important concept in the theory of critical
phenomena is scaling (Stanley, 1971; Kadanoff, 1990).
For example, in a ferromagnetic system, e.g., CrBr3,
for temperatures T near the critical temperature Tc (also
called the Curie temperature in ferromagnetic systems),
if we plot σ/|n|β as a function of h/|n |β+γ, where σ is the
magnetization, n=(T−Tc)/Tc, and h is the external
magnetic field, then the experimental data for different
temperatures collapse on a single curve, called the
scaling function (Stanley, 1971).  In this paper, we

I. Introduction

Percolation has become an important branch of
the sciences in recent decades and is related to many
interesting mathematical and physical problems (Essam,
1973, 1980; Deutscher et al., 1983; Zallen, 1983;
Stauffer and Aharony, 1994).  In previous papers (Hu,
1988, 1990, 1992a, 1993), the author reviewed basic
ideas of percolation and fractals and the usage of these
ideas in the description of critical phenomena of Ising-
type spin models and hard-core particle models based
on the connection between these models and correlated
percolation models (Hu, 1984a, 1984b; Hu and Mak,
1989a, 1990).  In this paper, we will review our recent
work in the Monte Carlo studies of universal finite-
size scaling functions for percolation models (Hu, 1997,
1998; Hu et al., 1998, 1999a).

Universality and scaling are two important con-
cepts in the theory of critical phenomena (Stanley,
1971; Kadanoff, 1990).  The former dates from the
work by Yang (1952) and Chang (1952).  In 1952, Yang
(1952) derived the exact spontaneous magnetization M
of the Ising model on a square lattice with isotropic
interactions and found that the critical exponent β of
M is 1/8.  In the same year, Chang (1952) derived the
exact spontaneous magnetization M of the Ising model
on a square lattice with anisotropic interactions; i.e.,
the coupling constants in the horizontal direction J1 and
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consider another kind of scaling, called finite-size
scaling.

According to the theory of finite-size scaling
(Fisher, 1971; Barber, 1983; Privman and Fisher, 1984;
Cardy, 1988; Privman, 1990; Stauffer and Aharony,
1994), if the dependence of a physical quantity Q of
a thermodynamic system on the parameter n , which
vanishes at the critical point n=0, is of the form Q(n)~|n|a
near the critical point, then for a finite system of linear
dimension L, the corresponding quantity Q(L,n) is of
the form

Q(L, n)≈L−aytF(nLyt), (1)

where yt (=ν−1) is the thermal scaling power and F(x)
is the finite-size scaling function.  It follows from Eq.
(1) that the scaled data Q(L,n)Layt for different values
of L and n can be described as a single function of the
scaling variable x=nLyt.  Thus it is important to know
general features of the finite-size scaling function under
various conditions.

In 1984, Privman and Fisher (1984) proposed the
idea of universal finite-size scaling functions (UFSSF’s)
and that of nonuniversal metric factors for static critical
phenomena (Privman and Fisher, 1984) for T near Tc

and the external magnetic field h near 0.  Specifically,
they proposed that, near n=0 and h=0, the singular part
of the free energy for a ferromagnetic system can be
written as

fs(n,h,L)≈L−dY(C1nL1/ν, C2hL(β+γ)/ν), (2)

where d is the spatial dimensionality of the lattice, Y
is a universal finite-size scaling function, and C1 and
C2 are adjustable nonuniversal metric factors (Privman
and Fisher, 1984), which depend on the specific lattice
structure.  From Eq. (2) and the scaling relations νd=
2−α and α+2β+γ=2 (Stanley, 1971), one can obtain the
scaling expression for the finite-size magnetization
(Privman and Fisher, 1984)

    m = – ∂
∂h

f s(n, h, L)

    ≈ C2L
– β / νY (1)(C1nL 1 / ν, C2hL (β + γ) /ν) , (3)

which is the order parameter of the system.  From 1984
to 1994, progress in research on UFSSF’s was very
slow.  The title of Privman and Fisher’s paper (Privman
and Fisher, 1984) is “Universal critical amplitudes in
finite-size scaling,” and most papers related to this
paper only address the problem of the universality of
critical amplitudes rather than that of the universality
of finite-size scaling functions.

In 1992, Hu (1992b, 1992c) proposed a histogram
Monte Carlo simulation method  (HMCSM) to study
random and correlated percolation models.  In
1995~1996, Hu and his cooperators applied the HMCSM
to calculate the existence probability (also called the
spanning probability, see Langlands et al. (1992)) Ep,
the percolation probability P, and the probability Wn

for the appearance of n top to bottom percolating clusters
on finite square (sq), honeycomb (hc), and planar
triangular (pt) lattices.  They found that, by choosing
an appropriate aspect ratio for each lattice and
nonuniversal metric factors for each model, Ep, P, and
Wn for six percolation models on planar lattices have
UFSSF’s (Hu et al., 1995a, 1995b; Hu and Lin, 1996).
In 1997, Hu and Wang (1997) used a random deposition
Monte Carlo method to find that the continuum per-
colation of soft disks and hard disks have the same
UFSSF’s as does percolation on planar lattices.  Based
on the connection between the q-state Potts model
(QPM) (Wu, 1982) and a q-state bond-correlated per-
colation model (QBCPM) (Hu, 1984a, 1984b, 1992a),
Hu et al. (1999a, 1999b) used the HMCSM and a cluster
Monte Carlo simulation method (Swendsen and Wang,
1987) to calculate the UFSSF’s for the  QPM on sq,
hc, and pt lattices.  When an appropriate scaling vari-
able for the QPM is used, they can obtain UFSSF’s
without using any adjustable parameter.  Very recently,
we used the HMCSM to study the relation between
boundary conditions and the average number of per-
colating clusters, C.  We found that for lattices with
four different boundary conditions and large aspect
ratios, C increases linearly with R with a slope which
is independent of the boundary conditions.  In this
paper, we briefly review the above developments in
Monte Carlo approaches to UFSSF's in percolation
models (see also Hu (1997, 1998) and Hu et al. (1998,
1999b)).

This paper is organized as follows.  In Sec. II we
review the histogram Monte Carlo simulation method
(Hu, 1992b) and the use of this method to calculate
finite-size scaling functions, critical points, critical
exponents, and thermodynamic order parameters for
percolation on lattices under various conditions.  In
Sec. III we review the histogram Monte Carlo approach
to the UFSSF’s for the existence probability Ep and the
percolation probability P in lattice percolation models.
In Sec. IV we review the histogram Monte Carlo
approaches to UFSSF’s for the probability of the ap-
pearance of n percolating clusters, Wn, in lattice per-
colation models.  In Sec. V we present our Monte Carlo
results for UFSSF's in continuum percolation of soft
disks and hard disks.  In Sec. VI we present our Monte
Carlo results for UFSSF’s of QBCPM and QPM without
nonuniversal metric factors.  In Sec. VII we present
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our Monte Carlo results for the average number of
percolating clusters under various boundary conditions.
Some other related developments are mentioned in Sec.
VIII, and problems for further research are also dis-
cussed in Sec. IX.

II. Histogram Monte Carlo Simulation
Method and Its Applications

In 1992, Hu (1992b, 1992c) proposed HMCSM,
which was then used to calculate the finite-size scaling
functions for the existence probability Ep and the per-
colation probability P of the percolation model and the
q-state bond-correlated percolation model correspond-
ing to the q-state Potts model (Chen and Hu, 1993; Hu,
1992d, 1994a, 1994b; Hu and Chen, 1993, 1995; Hu
et al., 1996). Here Ep is the probability that the system
percolates, and P is the probability that a given lattice
site belongs to a percolating cluster.  Hu and his
cooperators found that Ep and P have very good finite-
size scaling behavior, and that finite-size scaling func-
tions depend sensitively on the boundary conditions
and aspect ratio of the lattice and on spanning rules
to define percolating clusters (Hu, 1994a, 1994b; Hu
and Chen, 1995; Hu et al., 1996).

Now we will briefly review the HMCSM for bond
percolation (Hu, 1992b, 1992c; Hu et al., 1996) on an
L1×L2 square lattice G and define related quantities,
where L1 is the linear dimension in the horizontal
direction and L2 is the linear dimension in the vertical
direction.  The extension to other lattices and to site
percolation (Hu, 1994a, 1994b) is straightforward.  In
this paper, we consider the following four possible
boundary conditions of the L1×L2 lattice:

BC1. periodic in the L1 direction and free in the L2

direction.
BC2. free in both the L1 and L2 directions.
BC3. periodic in both the L1 and L2 directions.
BC4. free in the L1 direction and periodic in the L2

direction.
In bond percolation on a lattice G with N sites,

N=L1×L2, and E bonds, each bond of G is occupied by
a probability p, where 0≤p≤1.  There are several dif-
ferent rules used to define percolating clusters, called
spanning rules, which were first discussed by Reynolds
et al. (1980).  In R1, a cluster percolates if it extends
from the top row of G to the bottom row of G; in R2,
a cluster percolates if it extends from the top row to
the bottom row and from the left boundary to the right
boundary of G (Reynolds et al., 1980).  In a given
spanning rule, a subgraph which contains at least one
percolating cluster is a percolating subgraph and is
denoted by   G p

′ .  In a previous paper (Hu, 1994b), I used
both R1 and R2 to define percolating clusters.  In the

following, I will only use R1 to define percolating
clusters.  Then, we have the following definitions for
the existence probability Ep(G,p) and the percolation
probability P(G,p):

   Ep(G, p) = p b(G p′ )Σ
G p

′ ⊆ G
(1 – p)E – b(G p′ ) , (4)

   P(G, p) = p b(G p′ )Σ
G p′ ⊆ G

(1 – p)E – b(G p′ )N *(G p
′ ) / N ,   (5)

where b(   G p
′ ) is the number of occupied bonds in   G p

′
and N* (   G p

′ ) is the total number of sites in the perco-
lating clusters of   G p

′ .  The summations in Eqs. (4) and
(5) are over all subgraphs   G p

′  of G.
To carry out histogram Monte Carlo simulations,

we first choose w different values of p.  For a given
p=pj, 1≤j≤w, we generate NR different subgraphs G′.
The data obtained from the wNR different G′ are then
used to construct three arrays of numbers of length E
with elements Np(b), Nf(b), and Npp(b), which are,
respectively, the total numbers of percolating subgraphs
with b occupied bonds, nonpercolating subgraphs with
b occupied bonds, and the sum of N* (   G p

′ ) over sub-
graphs with b occupied bonds.  After a sufficient number
of simulations, these arrays can be used to obtain
approximate Ep and P for any value of the bond oc-
cupation probability p (Hu, 1992b; Hu et al., 1996):

   
Ep(G, p) = p bΣ

b = 0

E
(1 – p)E – bC b

E
Np(b)

Np(b) + Nf(b)
,     (6)

   
P(G, p) = 1

N
p bΣ

b = 0

E
(1 – p)E – bC b

E
Npp (b)

Np(b) + Nf(b)
,    (7)

where  C b
E=E!/(E−b)!b!.  Once we have histogram data,

we can calculate Ep and P as continuous functions of
p.  This is different from the traditional Monte Carlo
methods (Binder, 1986; Stauffer and Aharony, 1994).

Suppose we have already carried out histogram
Monte Carlo simulations on lattices G1 and G2 of linear
dimensions Li  and Lf, respectively, where Li>Lf.
The percolation renormalization group (PRG) transfor-
mation from lattice G1 to lattice G2 is given by the
equation (Hu, 1992b, 1992c; Hu and Chen, 1988a,
1988b)

Ep(G2,p′)=Ep(G1,p), (8)

which gives the renormalized bond probability p′as a
function of p.  The fixed point of Eq. (8) gives the
critical point pc, i.e.,

Ep(G2,pc)=Ep(G1,pc). (9)
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The thermal scaling power yt and the field scaling
power yh, which is equal to the fractal dimension D of
the percolating cluster at pc (Stanley, 1977; Hu, 1992d),
may be obtained from the following equations:

   

1
ν = yt =

ln (
∂p′
∂p )

pc

ln
L i

L f

, yh = D =

ln
P(G i

′, pc )L i
d

P(G f
′, pc )L f

d

ln
L i

L f

.  (10)

We may associate with each site of the lattice an
adimensional “magnetic moment” m0 and consider the
renormalization of m0 under the PRG transformation
to give the renormalized “magnetic moment”  m 0

′  (Hu
and Chen, 1989; Tsallis et al., 1985):

   m 0
′P(G 2, p ′)L 2

d = m 0P(G 1, p)L 1
d , (11)

which means that the total “magnetization” is preserved
after the PRG transformation.  After a series of PRG
transformations, we have a series of renormalized bond
probabilities p, p(1)(=p′), p(2), ..., p(n) and the renormalized
magnetic moments m0,   m 0

(1)(=  m 0
′ ),   m 0

(2), ....,   m 0
(n) .  The

thermodynamic percolation probability of the original
system, P∞(p), may be related to the thermodynamic
percolation probability of the n-th transformed system,
P∞(p(n)), by the following equation:

   
P∞(p) =

m 0
(n)

λ ndm 0

P∞(p (n)) , (12)

for p>pc with λ=Li/Lf. In the traditional small cell
renormalization group transformation (RGT) (Tsallis
et al., 1985; Hu and Chen, 1989), one iterates the RGT’s
until p(n) approaches the “lower temperature” fixed
point pc=1; then P∞(p(n)) of Eq. (12) is given by 1.
However, in the large cell-to-cell RGT’s considered
here, one needs to only iterate the RGT’s until the
correlation length of the n-th transformed system is
smaller than the linear dimensions of the transformed
cell (Hu, 1995).  In this case, the transformed cell may
well represent the thermodynamic systems, and we may
use P(G2,p(n)) to represent P∞(p(n)) of Eq. (12) and
obtain (Hu, 1994a, 1995)

   
P∞(p) =

m 0
(n)

λ ndm 0

P(G, p (n)) . (13)

Now we can begin to use the above equations to
calculate Ep, P, and their finite-size scaling functions.
Typical calculated results of Ep for bond percolation
on L1×L2 square lattices with BC1 to BC4 are shown
in Fig. 1(a) and (b).  Typical calculated results of P

Fig. 1. The calculated Ep(G,p) as a function of p for the bond random
percolation model on L1×L2 square lattices with different
boundary conditions.  The vertical line intersects the p axis
at pc=0.5. (a) BC1 and BC2 with R=L1/L2=1. (b) BC3 and
BC4 with R=1 and 2.

for bond percolation on L×L square lattices with BC1
are shown in Fig. 2.  As L=   L 1L 2 →∞, Ep is 0 for p<pc

and is 1 for p>pc; if we write Ep~(p−pc)
a just above

pc, then the critical exponent a of Ep is 0 (Stauffer and
Aharony, 1994).  On the other hand, P~(p−pc)

β just
above pc.  According to Eq. (1), we may write Ep=F(x)
and PLβ/ν=S(x) with x=(p−pc)L

/ν, where F(x) and S(x)
are scaling functions.

For bond percolation on a square lattice, it is
generally believed that the exact ν, β and pc are 4/3,
5/36, and 1/2, respectively (Stauffer and Aharony, 1994).
Using the exact values of ν and pc, we have plotted
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Fig. 2. The calculated P(G,p) as a function of p for the bond random
percolation model on L×L square lattices with BC1.

the data for Ep represented in Fig. 1(a) and (b) as a
function of x=(p−pc)L

/ν in Fig. 3(a) and (b), respec-
tively.  Using the same values of ν and pc, we have
also plotted PLβ/ν for P presented in Fig. 2 as a function
of x=(p−pc)L

/ν in Fig. 4.  Figures 3 and 4 show that
Ep and P have nice finite-size scaling behavior.  Figure
3(a) and (b) show that scaling functions for different
boundary conditions and aspect ratios are quite differ-
ent.

To show the reliability of our method, we have
used the above percolation renormalization group
equations (Hu, 1992b, 1994a, 1995) to calculate the
critical point pc, the thermal scaling power yt(=1/ν) and
the field scaling power yh=D=d−β/ν for site and bond
percolation on two and three dimensional lattices with
different boundary conditions and aspect ratios.  The
calculated yt, D, and pc for bond percolation on a square
lattice are very close to the exact results (Hu, 1992b;
Hu et al., 1996).  The calculated pc for site percolation
on a square lattice is very close to other numerical
results (Hu, 1994a).  The calculated yt, D, and pc for
site and bond percolation on three-dimensional lattices
is very close to other numerical results (Lin et al., 1998;
Lin and Hu, 1998).

We have used Eq. (13) to calculate the thermo-
dynamic order parameter P∞ for site and bond perco-
lation on square lattices with different boundary con-
ditions, spanning rules, and aspect ratios.  Although
scaling functions strongly depend on these factors, the
calculated thermodynamic order parameter P∞ is inde-
pendent of these factors (Hu, 1994a, 1994b; Hu et al.,
1996).

In summary, we have found that Ep and PLβ/ν have
very good scaling behavior, and that the finite-size

scaling functions depend sensitively on boundary
conditions and aspect ratios of the lattice.  However,
the calculated ν, D, pc, and P∞ are independent of the
boundary conditions and aspect ratios of the lattice.

III. UFSSF’s for Ep and P of Lattice
Percolation Models

Equation (1) for Ep implies that Ep for all models
in the same universality class must be equal at the
critical point in order to have UFSSF’s.  In 1992, Ziff
(1992) found that Ep=0.5 for site and bond percolation
on large square lattices with free boundary conditions,
and Langlands et al. (1992) proposed that when aspect

Fig. 3. The data of Ep in Fig. 1 as a function of x, where x=(p−pc)L
yt.

The function is the scaling function F(G,x). (a) BC1 (bottom
curves) and BC2 (top curves). (b) BC3 with R=2 (top curves),
BC3 with R=1 (middle curves), and BC4 with R=1 (bottom
curves).



C.K. Hu

− 336 −

point, we show 26×26 sq, 26×15 hc, and 26×30 pt
lattices in Fig. 7(a)-(c), whose aspect ratios approxi-
mately match the ratio 1:  3 :  3 /2 considered by
Langlands et al. (1992).  It is obvious that three figures
in Fig. 7 have similar domains.

Hu et al. (1995a) applied the HMCSM (Hu, 1992b)
to calculate Ep and P of site and bond percolation on
finite 512×512 sq, 433×250 hc, and 433×500 pt lattices;
i.e., they used 512/512:433/250:433/500 to approxi-
mate the proportions 1: 3 :  3 /2 of aspect ratios for sq,
hc, and pt lattices considered by Langlands et al. (1992).
The results for Ep and P are reproduced in Fig. 8(a)
and (b), respectively. Plotting Ep as a function of
x=D1(p−pc)L

1/ν and D3PLβ/ν as a function of x=D2(p−
pc)L

1/ν, where D1, D2 and D3 are nonuniversal metric
factors, Hu et al. (1995a) found that the six percolation
models have very nice universal finite-size scaling
functions for Ep and P, which are reproduced in Fig.
9(a) and (b), respectively.  Within numerical uncertain-
ties, D1=D2 and the nonuniversal metric factors for
periodic boundary conditions are consistent with those
for free boundary conditions although the scaling
functions are quite different.  Hu et al. (1995a, 1995b)
also found that the nonuniversal metric factors are

Fig. 4. The calculated P/L−βyt in Fig. 2 as a function of x, where x=(p−
pc)L

−yt.  The function is the scaling function S(G,x).

Fig. 5. (a) A 8×8 square (sq) lattice. (b) A 8×8 honeycomb (hc)
lattice obtained from a 8×8 sq lattice by deleting half of the
vertical bonds. (c) A 8×8 plane triangular (pt) lattice obtained
from a 8×8 sq lattice by adding diagonal bonds.

ratios for sq, hc, and pt lattices have the relative pro-
portions 1:  3 :  3 /2, then site and bond percolation on
such lattices have the same value of Ep at the critical
point (Langlands et al., 1992).  In 1992, Cardy used
a conformal theory to write a formula for the critical
Ep as a function of the aspect ratio for percolation on
lattices with free boundary conditions (Cardy, 1992).
Cardy’s formula (Cardy, 1992) is consistent with nu-
merical results of Langlands et al. (1992) .  Cardy
(1992) and Langlands et al. (1992) did not discuss the
values of Ep for p≠pc.

Result of Langlands et al. (1992) for the relative
proportions 1:  3 :  3 /2 for sq, hc, and pt lattices can
be understood as follows.  Figure 5(a) shows a typical
L×L sq lattice.  An L×L hc and an L×L pt lattices can
be obtained from the sq lattice of Fig. 5(a) by removing
or adding bonds, respectively, as shown in Fig. 5(b)
and (c), which are equivalent to Fig. 6(a) and (b),
respectively.  If lattice sites in the horizontal direction
of Fig. 6(a) and (b) are enlarged by a factor  3  and

 3 /2, respectively, the domains of hc and pt lattices
are similar to L×L square lattices.  To illustrate this

Fig. 7. (a) A 26×26 sq lattice, (b) a 26×15 hc lattice, (c) a 26×30
pt lattice.

(a) (b) (c)

Fig. 6. (a) An L×L hc lattice with aspect ratio a=1 and L=8. (b) An
L×L pt lattice with aspect ratio a=1 and L=8.
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(1995a), but their f(x) for pbc is quite different from
f(x) ;  i .e. ,  Hovi and Aharony (1996) obtained
f(0)=0.63665±0.0008, and Hu et al. (1995a, 1995b)
obtained f(0)=0.93(4).  Hu (1996a) conjectured that the
difference was because Hovi and Aharony (1996)
considered pbc only in one direction while Hu et al.
(1995a, 1995b) considered pbc in both the horizontal
and vertical directions.  This conjecture was confirmed
by numerical calculations (Hu, 1996a).  This result
provided further evidence that finite-size scaling func-
tions sensitively depend on the boundary conditions
(Hu, 1994a).

Fig. 9. (a) The calculated Ep for site and bond percolation on pt,
sq, and hc lattices as a function of x, where x=D1(p−pc)L

yt.
The scaling function is F(x).  The lower (upper) curves are
for free (periodic) boundary conditions. (b) The calculated
D3P/L−βyt for site and bond percolation on pt, sq, and hc
lattices as a function of x, where x=D2(p−pc)L

yt.  The scaling
function is S(x).  The lower (upper) curves are for free
(periodic) boundary conditions.

Fig. 8. Results for site percolation (SP) and bond percolation (BP)
on pt, sq, and hc lattices.  The solid (dotted) lines from left
to right are for site (bond) percolation on pt, sq, and hc lattices
with free boundary conditions (FBC).  The dashed (dot-
dashed) lines from left to right are for site (bond) percolation
on pt, sq, and hc lattices with periodic boundary conditions
(PBC). (a) Ep as a function of p. (b) P as a function of p.

independent of changes in aspect ratios holding the
ratio between them constant (Hu et al., 1995b).  These
results indicate for each percolation model, we need
only two nonuniversal metric factors, i.e., D1 and
D3.

After Hu et al. (1995a) was published, Okabe and
Kikuchi (1996) obtained universal finite-size scaling
functions for the two-dimensional Ising model, and
Hovi and Aharony (1996) calculated the scaling func-
tion f(x) for bond and site percolation on the square
lattice with both free (f) and periodic (p) boundary
conditions (bc).  Hovi and Aharony (1996) found that
their f(x) for fbc is consistent with f(x) of Hu et al.
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IV. UFSSF for Wn of Lattice Perco-
lation Models

In low-temperature measurements of quantum Hall
effects (QHE), when the external magnetic field is
increased from small values to large values, the con-
ductivity σxy moves from one plateau with σxy=σ1 to
another plateau with the value σxy=σ2, and the conduc-
tivity σxx has a maximum    σ xx

max  in the transition region.
In a recent theory of QHE, Ruzin et al. (1996) proposed
that the number of percolating clusters in the sample
at the critical point is useful for understanding    σ xx

max .
Therefore, the number of percolating clusters in per-
colation problems is an interesting quantity, and we
should know more about its behavior.

To mimic the Corbino disk often used in experi-
mental studies of quantum Hall effects (Ruzin et al.,
1996), Hu (1996b) used the HMCSM to study bond
percolation on L1×L2 square lattices G with pbc in the
horizontal L1 direction and fbc in the vertical L2 di-
rection.  Here “square” means that the primitive unit
cell of the lattice is a square.  A cluster which extends
from the top row of G to the bottom row of G is a
percolating cluster.  A subgraph which contains at least
one percolating cluster is a percolating subgraph and
is denoted by   G p

′ .  It should be noted that the definition
of   G p

′  in Hu (1996b) and Hu and Lin (1996) and in
this section is different from that of Hu (1994a, 1994b),
Hu and Chen (1995) and Hu et al. (1995a, 1995b), in
which only the largest cluster is used to define   G p

′ .  A
percolating subgraph which contains exactly n perco-
lating clusters is denoted by   G n

′ .  Now we have the
definition

   Wn(L 1, L 2, p) = p b(G n′ )Σ
G n′ ⊆ G

(1 – p)E – b(G n
′ ) , (14)

where b(   G n
′ ) is the number of occupied bonds in   G n

′ .
The summation in Eq. (14) is over all subgraphs   G n

′
of G.  To use the HMCSM to evaluate Wn, in addition
to Np(b) and Nf(b) considered in Sec. II, we also evaluate
Nn(b), 0≤b≤E, which is the number of percolating
subgraphs with b occupied bonds and n percolating
clusters.  After a large number of simulations, the
probability Wn(L1,L2,p) at any value of the bond oc-
cupation probability p can be calculated approximately
using the following equation (Hu, 1992b, 1996b):

   
Wn(L 1, L 2, p) = p bΣ

b = 0

E

(1 – p)E – bC b
E Nn (b)

Np(b) + Nf(b)
.

(15)

It is obvious that Ep=    Σn = 1
∞

Wn and W0(L1,L2,p)=1−
Ep. Hu (1996b) found that Wn as a function of z=

(p−pc)L
1/ν has very good scaling behavior.  Hu (1996b)

also considered fbc in both the horizontal and vertical
directions and found that the scaling functions for Wn

depend sensitively on boundary conditions.  Typical
results of Wn and their finite-size scaling functions are
reproduced in Fig. 10(a) and (b), respectively.

Using the HMCSM (Hu, 1992b, 1996b), Hu and
Lin (1996) calculated Wn for bond and site percolation
on sq, hc, and pt lattices with pbc in the horizontal
direction and fbc in the vertical direction; the aspect
ratios of sq, hc, and pt lattices are 4, 4 3 , 2  3 , respec-

Fig. 10. (a) Wn(L1,L2,p) for bond percolation on 128×32, 256×64
and 512×128 sq lattices, which are represented by dotted,
dashed, and solid lines, respectively. (b) The data from (a)
are plotted as a function of z=(p−pc)L

1/ν.  The scaling
function for Wn(L1,L2,p) is denoted by Fn(R,z), where R=
L1/L2. The monotonic decreasing function is for F0(R,z).
The S shape curve is for F1(R,z).  The bell shape curves
from the top to bottom are for Fn(R,z) with n being 2, 3,
and 4, respectively.
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Fig. 11. (a) Wn for bond and site percolation on 866×250 pt, 512×128
sq, and 866×125 hc lattices. (b) The data in (a) are plotted
as a function of x=D1(p−pc)L

1/ν.  The universal scaling
function for Wn is denoted by Un(x).

complementary configuration if and only if it is absent
in the original configuration.  They used the HMCSM
(Hu, 1992b, 1996b) to evaluate the probabil ity

  WM
a (L1,L2,p) of finding a given value of M and found

that, for a given aspect ratio L1/L2, all data of
  WM
a (L1,L2,p) near the critical point pc fall on the same

scaling function   FM
a , which is symmetric with respect

to the scaling variable for all M.  The values of
  WM
a (L1,L2,p) at the critical point are useful for under-

standing    σ xx
max  in the quantum Hall effects (Ruzin

et al., 1996; Hu and Halperin, 1997; Cooper et al.,
1997).

V. UFSSF’s for Continuum Percola-
tion of Disks

Many interesting quantities and problems in solid
state physics, e.g.,    σ xx

max  in QHE, conductor-insulator
transition, etc., are related to continuum percolation
(Ruzin et al., 1996; Zallen, 1983).  However, to study
continuum percolation is much more difficult than to
study lattice percolation.  People usually study lattice
percolation rather than continuum percolation.  The
problem is to what extent the quantities, e.g., critical
exponents and finite-size scaling functions, obtained
from lattice percolation models (LPM) may be applied
to continuum percolation models (CPM).  Hu and Wang
(1997) have tried to answer this interesting and impor-
tant question.

Hu and Wang (1997) considered both soft disks
and hard disks.  Typical configurations of soft disks
and hard disks are shown in Fig. 12(a) and (b), respec-
tively. In the general case, Hu and Wang (1997) con-
sidered (hard and soft) disks on an L1×L2 continuum
space C of rectangular domain with linear dimension
L1 in the horizontal direction and linear dimension L2

in the vertical direction, where L1 and L2 are integers.
The space C is divided into L1×L2  covering meshes,
which are (1×1) unit squares.  The squares (meshes)
are labeled by integers 1, 2, 3, ..., L1×L2 .  A disk belongs
to a square if and only if the center of the disk is in
that square.  The disks have a radius R=  2 /2, so that
at most one hard disk is allowed in one unit square.
Two hard disks are in the same cluster if and only if
their separation is smaller than or equal to 2 2 .  Such
a definition of clusters was considered by Hu (1987)
and Kratky (1988) before.  Two soft disks are in the
same cluster if and only if they overlap.  More than
one soft disk may be in a given unit square, in which
case they are always in the same cluster.  Hu and Wang
(1997) extended the multiple-labeling technique of
Hoshen and Kopleman (1976) to label unit squares
which have disks.  The label for a unit square is also
the label for the disks which belong to that unit square.

tively.  Using nonuniversal metric factors of Hu et al.
(1995a), Hu and Lin (1996) found that these percolation
models have UFSSF’s for Wn.  The results for Wn and
their UFSSF’s are reproduced in Fig. 11(a) and (b),
respectively.

Hu and Halperin (1997) considered bond perco-
lation with bond probability p on an L1×L2 self-dual
square lattice with pbc in the horizontal direction and
fbc in the vertical direction.  Hu and Halperin (1997)
defined the number M of alternating percolating clus-
ters as the minimum of np and nn, where np is the number
of independent percolating clusters connecting sites on
the top and bottom edges, and nn is the number of
percolating clusters in the complementary configura-
tion on the dual lattice, a bond being present in the
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Fig. 12. (a) A configuration of soft disks for continuum percolation.
(b) A configuration of hard disks for continuum percola-
tion.

This multiple-labeling technique for CPM was used to
study critical properties and scaling functions for soft
disks and hard disks.

Hu and Wang (1997) used a random deposition
process to generate configurations of disks.  In the
deposition process, if the hard cores of two disks over-
lap, then the attempt to put the second hard disk is
abandoned.  The concentration of disks is defined by
η=πR2N/L2, where N is the number of the disks in the
system and L=   L 1L 2  is the linear dimension of the
system.  At a given η, the number of percolating con-
figurations observed divided by the total number of
generated configurations gives the existence probabil-
ity Ep.  The calculated Ep as a function of η for con-
tinuum percolation of soft disks in L×L space with free
boundary conditions in both the horizontal and vertical
directions is reproduced in Fig. 13(a).  The intersection
of curves in Fig. 13(a) gives the critical point ηc and
the critical existence probability Ep(ηc), which are
1.1302±0.0008 and 0.50±0.01, respectively.  The former
is consistent with the result of Gawlinski and Stanley
(1981), and the latter is consistent with the result of
LPM (Ziff, 1992; Langlands et al., 1992; Hu et al.,
1995a).  From the slopes of curves at ηc.  Hu and Wang
(1997) used a percolation renormalization group
method (Hu, 1992b) to find ν=1.39±0.07, which is
consistent with the exact ν=4/3 for LPM on planar
lattices (Stauffer and Aharony, 1994).  The data in
Fig. 13(a) as a function of the scaling variable x=
(η−ηc)L

1/ν with ν=4/3 are reproduced in Fig. 13(b),
which shows that Ep has very good scaling behavior.
Hu and Wang (1997) obtained similar results for sys-
tems of hard disks and systems with pbc in the hori-
zontal direction and fbc in the vertical direction.  Typical
results for these boundary conditions are reproduced
in Fig. 13(c), which shows that Ep of soft disks, hard
disks, and lattice site percolation have a universal finite-
size scaling function.

Hu and Wang (1997) also calculated the probabil-

Fig. 13. (a) The calculated Ep as a function of η for continuum
percolation of soft disks in an L×L space with free boundary
conditions in the horizontal and vertical directions, where
L=128, 256, and 512.  The number of different η is between
50 and 100.  The number of independent configurations
for L=128, 256, and 512 is 40000, 10000, and 5000, re-
spectively. (b) The data in (a) are plotted as a function of
the scaling variable x=(η−ηc)L

1/ν, where ν=4/3.  The scal-
ing function is F(x). (c) The universal finite-size scaling
function of Ep for soft disks, hard disks and site percolation
on a square lattice.  The number of independent configu-
rations for hard disks and site percolation is two and eight
times of that for soft disks, respectively.  The non-universal
metric factors for soft disks, hard disks, and lattice site
percolation are C1=1, C2= 0.897±0.029, and C3=1.60±0.07,
respectively.



Universality in Percolation Models

− 341 −

ity Wn of the appearance of n percolating clusters for
soft disks and hard disks in an L1×L2 space with pbc
in the horizontal direction and fbc in the vertical di-
rection.  Typical calculated results are reproduced in
Fig. 14(a)-(c).  Figure 14(b) shows that Wn has very
good scaling behavior, and Fig. 14(c) shows that Wn

of soft disks, hard disks, and LPM have universal finite-
size scaling functions.  It is of interest to note that the
nonuniversal metric factors in Fig. 14(c) are the same
as those in Fig. 13 (c), which is similar to the case of
lattice percolation (Hu and Lin, 1996).

To check the universality of critical exponents,
Hu and Wang (1997) calculated the mean sizes of
finite clusters S(L,ηc), the mean sizes of percolating
clusters Sp(L,ηc), and the distributions of cluster sizes,
n(L,s,ηc), for soft disks, hard disks, and site percola-
tion at their critical points ηc for systems of various
linear dimension L.  It follows from finite-size scaling
and the scaling behavior of n(L ,s,ηc) (Stauffer
and Aharony, 1994) that S(L,ηc)~Lγ/ν, Sp(L,ηc)~Ldf

=Ld−β/ν, n(L,s,ηc)~s−τ(L).  The critical exponents esti-
mated from these equations are reproduced in Table
1, which shows that soft disks, hard disks, and perco-
lation on planar lattices are in the same universality
class.

VI. UFSSF’s for a Correlated Perco-
lation Model

Based on the subgraph expansion of Ising-type
models in external fields, Hu has shown that phase
transitions of many Ising-type models can be described
as geometric percolation transitions (Hu, 1984a, 1984b,
1988, 1990, 1992a).  In particular, Hu has shown that
phase transitions of QPM on a lattice G are percolation
transitions of QBCPM (Hu, 1984a, 1984b, 1988, 1990,
1992a) on G, in which each NN bond of G is occupied
by a probability p, where p=1−exp(−J/kBT) with J being
the ferromagnetic Potts coupling constant.  Sites con-
nected by occupied bonds are in the same cluster, and
a cluster may have any one of q different directions.
There are 2E different bond configurations G′, also
called “subgraphs”, of G.  A subgraph G′ of b(G′)
occupied bonds and n(G′) clusters will appear with the
probability weight

π(G′,p,q)=pb(G′)(1−p)E−b(G′)qn(G′).

The spontaneous magnetization and the magnetic sus-
ceptibility of the QPM are related to the percolation
probability P and the mean cluster size of the QBCPM,
respectively (Hu, 1984a, 1984b).  The probability of
the appearance of percolating clusters, Ep, of the QBCPM
is defined by

Fig. 14. (a) Wn(L1,L2,η) as a function of η for continuum perco-
lation of soft disks in 256×64, 512×128 and 1024×256
space, which is represented by solid, dotted, and dashed
lines, respectively. (b) The data in (a), Wn(L1,L2,η), as a
function of z=(η−ηc)L

1/ν.  The scaling function for
Wn(L1,L2,η) is denoted by Un. (c) The universal finite-size
scaling functions of Wn with n=0, 1, 2, 3, 4 for soft disks,
hard disks, and site percolation on square lattice systems.
The non-universal metric factors for soft disks, hard disks,
and lattice site percolation are C1=1, C2=0.897±0.029, and
C3=1.60±0.07, respectively.
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Table 1. Universality of Ep(ηc) and Critical Exponents for 2D Continuum Percolation.  For Ep, We Consider Both Free Boundary Conditions
(fbc) and Periodic Boundary Conditions (pbc) in the Horizontal Direction

quantities soft disks hard disks LPM exact

threshold 1.1302±0.0008 0.8503±0.0010 0.5928±0.0010
Ep(ηc) (fbc) 0.50±0.01 0.50±0.03 0.50±0.01 0.5
Ep(ηc) (pbc) 0.64±0.02 0.64±0.02 0.63±0.02
ν 1.39±0.07 1.36±0.04 1.37±0.05 1.33...
γ /ν 1.785±0.012 1.790±0.012 1.780±0.020 1.7916...
d−β/ν 1.889±0.006 1.885±0.008 1.891±0.016 1.89583...
τ 2.05±0.02 2.05±0.02 2.04±0.02 2.0549...

   
Ep(G, p, q) =

ΣG p′ ⊆ Gπ(G p
′ , p, q)

ΣG ′ ⊆ Gπ(G ′, p, q)
. (16)

Here the sum in the denominator is over all subgraphs
G′ of G, and the sum in the numerator is restricted to
all percolating subgraphs   G p

′  of G.
Hu et al. (1999a) used a cluster Monte Carlo

simulation method (Swendsen and Wang, 1987; Hu and
Mak, 1989b) to simulate the QBCPM and QPM on a
64×64 sq lattices, a 97×56 hc lattices, and a 52×60 pt
lattices.  The aspect ratios of these lattices approxi-
mately match the relative proportions of Langlands et
al. (1992).  Typical calculated results of Ep as a function
of the scaling variable x with x=tL l/ν (t=(T−Tc)/T) is
presented in Fig. 15(a), which shows that Ep for the
QBCPM and QPM on sq, hc, and pt lattices have UFSSF
near x=0 without nonuniversal metric factors.  For the
sq lattice, we also consider a model with both NN and
NNN coupling and find that the calculated Ep as a
function of x have the same FSSF as does the model
without NNN coupling.  Since the QPM for q=1 cor-
responds to the bond random percolation model (BRPM),
we also plot data of Wn from Hu and Lin (1996) for
bond percolation on sq, hc, and pt lattices as a function
of x=tL1/ν(t=(T−Tc)/T) and obtain Fig. 15(b), which
shows that we have UFSSF’s for Wn without using
nonuniversal metric factors.  These results are analo-
gous to setting C1=1 in PF’s theory (see Eq. (2) in this
paper) for all lattices of a given dimension. We also
find similar results for three dimensional lattices.

It should be noted that if we use the scaling
variable z=(p−pc)L

1/ν or z′=(p/pc−1)L1/ν as the horizon-
tal axis, then we need to use metric factor for each
lattice.  This suggests that t=1−T/Tc is a fundamental
variable for describing critical phenomena near the
critical point, even for BRPM (Hu et al., 1999a).

VII. Boundary Conditions and the
Number of Percolating Clusters

The universality of Wn implies that the average

Fig. 15. (a) Ep for the QBCPM as a function of x=(1−T/Tc)L
1/ν.  The

scaling function is F(q,x).  For the sq lattice, the results
for a model with both NN and NNN couplings is also
shown.  Here q=2. (b) Wn for the QBCPM as a function
of x=(1−T/Tc)L

1/ν.  The scaling function for Wn is Un.  Here
q=1.

number of percolating clusters, defined by C=    Σn = 1
∞

nWn, is also universal.  In Hu (1996b) and Hu and Lin
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function of 1/N for bond percolation on L×L lattices
with BC3 are shown in Fig. 16(a), which is consistent
with the result of Ziff et al. (1997).  The calculated
b and C for bond percolation on 16R×16 lattices with
BC3 are plotted in Fig. 16(b), which shows that the
curves for b and C for large R linearly increase with
R, but that they have different slopes (Hu, 1998).  The
calculated C for bond percolation on 16R×16 lattices
with BC1 to BC4 are plotted in Fig. 16(c), which shows
that for large R, C linearly increases with R, and that
all the curves have the same slope.

VIII. Some Related Developments

Recently, Okabe et al.1 calculated FSSF’s of the
Binder parameter g and magnetization distribution
function p(m) for the Ising model on L1×L2 square
lattices with pbc in the horizontal L1 direction and tilted
boundary conditions with tilt parameter c in the vertical
L2 direction.  For appropriate sets of (R,c) with R=
L1/L2, the FSSFs of g and p(m) are universal, and in
such cases R/(c2R2+1) is invariant.  For percolation on
lattices with fixed R, FSSF of the existence probability
does not change as c increases from 0.

Very recently, Hu et al. (1999b) used a cluster
Monte Carlo method to calculate the number of clusters
per site, n, at the critical point of the QBCPM on L′×L
sq lattices.  Typical results for q=1 are shown in Fig.
17(a), and those for q=2, 3, and 4 are shown in Fig.
17(b).  Figure 17(a) is consistent with the result of Ziff
et al. (1997).  However, curves in Fig. 17(b) have
negative slopes, which are quite different from those
in Fig. 17(a), and the interpretation of slope as the
number of percolation clusters (Ziff et al., 1997) is
impossible.  To understand the behavior of Fig. 17(b),
Hu et al. (1999b) proposed that n as a function of
1/L for q≠2 and fixed L′/L has an energy-like singu-
larity.  For q=2, i.e. the Ising model, they found that
the data can be well represented by n=nc−c/L+b/L2+...,
where b can be calculated exactly from conformal field
theory (CFT), c>0 and can be calculated exactly from
a formula for the internal energy of the Ising model.
A typical comparison of the formula and numerical data
is shown in Fig. 18.  The agreement between the formula
and the data is very good.

IX. Summary and Final Remarks

Using HMCSM (Hu, 1992b, 1996b) and relative
aspect ratios considered by Langlands et al. (1992), we
found universal finite-size scaling functions for the

(1996), the critical C was calculated for percolation on
lattices with BC1 and BC2 for aspect ratio R between
0 and 10, where R=L1/L2.  They found that for large
R, the critical C increases linearly with R with the same
slope.

In a recent letter, Ziff et al. (1997) calculated the
number of clusters per lattice site, n, in bond and site
percolation on two dimensional lattices with BC3 and
the linear dimension L.  They found that n=nc+b/N,
where nc is n in the limit L→∞, b is a constant and
N is the number of lattice sites.  They also found that
b is universal and presented an argument that b is the
number of percolating clusters so that the universality
of b may be related to the universality of C found by
Hu and Lin (1996).  Kleban and Ziff (1998) obtained
an exact formula for b as a function of the aspect
ratio, R, which agrees very well with the numerical
result.

In a recent paper, Hu (1999) used HMCSM to
calculate n and C for bond percolation on L1×L2 sq
lattices with BC1, BC2, BC3, and BC4.  In BC3 and
BC4, a cluster is percolating if each of L2 rows contains
at least one site of that cluster (Hu, 1996a).  Hu found
that for four different boundary conditions, C increases
linearly with R with approximately the same slope.  On
the other hand, we may have a well defined slope b
in n=nc+b/N only for BC3.

Now we will briefly review HMCSM for the cal-
culation of the number of clusters per site, n(L1,L2,p),
for bond percolation on an L1×L2 sq lattice.  Let Mc(G′)
denote the total number of clusters in subgraph G′.
Then n(L1,L2,p) for bond percolation with a bond
probability p is given by

   n(L 1, L 2, p) = p b(G′)(1 – p)E – b(G′)Mc(G′)Σ
G ′ ⊆ G

/ N .
(17)

The sum in Eq. (17) is over all subgraphs G′ of G.  To
use HMCSM to evaluate n(L1,L2,p), in addition to Np(b)
and Nf(b) considered in Sec. II, we also evaluate Nc(b),
0≤b≤E, which is total number of clusters in the sub-
graphs with b occupied bonds.  After a large number
of simulations n(L1,L2,p) at any value of the bond
occupation probability p can be calculated approxi-
mately from the following equation:

   n(L 1, L 2, p) = 1
N

p b(1 – p)E – bC b
EΣ

b = 0

E Nc(b)
Np(b) + Nf(b)

.

(18)

The calculated critical points n(L1,L2,p) as a

1Okabe, Y., K. Kaneda, M. Kikuchi, and C. K. Hu, “Universal finite-size scaling functions for critical systems with tilt boundary conditions.”
Sunmitted to Phys. Rev. Lett.
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Fig. 16. (a) The number of clusters per site, n, as a function of
1/N for bond percolation on L×L lattices with BC3, where
N=L2. (b) b and C as a function of R for lattices with BC3.
(c) C(0,R) as a function of R for lattices with different
boundary conditions.  Near R=3, the curves from bottom
to top are for BC1, BC2, BC3, and BC4, respectively.

Fig. 17. n−nc as a function of 1/L2 for the q-state bond correlated
percolation model on L×L square lattices with periodic
boundary conditions (torus) for (a) q=1, (b) q=2, 3, and
4. nc is n in the limit L→∞.

existence probability, Ep, the percolation probability,
P, and the probability for the appearance of n perco-
lation clusters, Wn, of site and bond percolation on sq,
hc, and pt lattices.  Using a random deposition process,
we found UFSSF’s for Ep and Wn for the CPM of soft
disks and hard disks and LPM.  Table 1 shows that the
CPM of soft disks and hard disks are in the same
universality class as the lattice percolation models.

We may consider the general case in which a disk
has a hard core of radius R1 and a soft shell of radius
R2, where R1<R2.  The soft disk in Fig. 12(a) corre-
sponds to R1=0, and the hard disk in Fig. 12(b) cor-
responds to R1=R2/2. Two disks are in the same cluster
if their soft shells overlap.  The general case 0≤h=
R1/R2<1 was considered by Lee (1990).  However, he
did not reach a definite result about the universality
of such general hard disks.  Our results show that disks
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which suggests that disks with 0≤h<1 may be in the
same universality class.  Further studies in this direc-
tion are needed.

In Sec. V, we found that continuum percolation
of soft disks and hard disks has the same UFSSF’s as
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