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ABSTRACT

Many problems in mathematics, physical sciences, and life sciences can be described by percolation
models. In this paper, we review our recent work in universal quantities and universal finite-size scaling
functions (UFSSF’s) of percolation models. The quantities we consider include the existence probability
(also called the spanning probability§,, the percolation probability?, and the probability of the
appearance o percolating clustersp,. The topics under discussion include: (1) boundary conditions,
aspect ratios, and finite-size scaling functions; (2) UFSSF'Ep,cdndP in lattice percolation models;

(3) UFSSF's ofW, in lattice percolation models; (4) UFSSF’s Bf and W, in continuum percolation
models; (5) UFSSF’s of thg-state bond-correlated percolation model apstate Potts model without
nonuniversal metric factors; and (6) boundary conditions and the average number of percolating clusters.
Some other related developments and problems for further research are also discussed.
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[. Introduction in the vertical directiord, are different. Chang (1952)
found that, for 04,/J,<w, 8 is always equal to 1/8.
Percolation has become an important branch o€hang (1952) conjectured that for other planar lattices,
the sciences in recent decades and is related to maflyis also equal to 1/8, which was confirmed by later
interesting mathematical and physical problems (Essansalculations: this marked the beginning of the theory
1973, 1980; Deutschest al., 1983; Zallen, 1983; of the universality of critical exponents. Now it is
Stauffer and Aharony, 1994). In previous papers (Hugenerally believed that for the Ising model on all planar
1988, 1990, 1992a, 1993), the author reviewed basiattices, including the square (sq), the plane triangular
ideas of percolation and fractals and the usage of the¢pt), honeycomb (hc) lattices, etc., the specific heat
ideas in the description of critical phenomena of Isingexponenta, the spontaneous magnetization exponent
type spin models and hard-core particle models basg@ the magnetic susceptibility expongntand the cor-
on the connection between these models and correlateelation length exponent are 0 (logarithmic diver-
percolation models (Hu, 1984a, 1984b; Hu and Makgence), 1/8, 7/4, and 1, respectively (Stanley, 1971).
1989a, 1990). In this paper, we will review our recentt is also believed that for site and bond random per-
work in the Monte Carlo studies of universal finite- colation on all planar lattices, the correlation length
size scaling functions for percolation models (Hu, 1997exponenty, the percolation probability exponefitand
1998; Huet al,, 1998, 1999a). the mean cluster size expongntare 4/3, 5/36, and
Universality and scaling are two important con-43/18, respectively (Stauffer and Aharony, 1994).
cepts in the theory of critical phenomena (Stanley, Another important concept in the theory of critical
1971; Kadanoff, 1990). The former dates from thgphenomena is scaling (Stanley, 1971; Kadanoff, 1990).
work by Yang (1952) and Chang (1952). In 1952, Yand-or example, in a ferromagnetic system, e.g., GrBr
(1952) derived the exact spontaneous magnetizafion for temperature3 near the critical temperatufig (also
of the Ising model on a square lattice with isotropiccalled the Curie temperature in ferromagnetic systems),
interactions and found that the critical expon@raf  if we plot o/|¢|? as a function ofi/|¢[**Y, wherea is the
M is 1/8. In the same year, Chang (1952) derived thmagnetization,e=(T-T.)/T;, and h is the external
exact spontaneous magnetizatiof the Ising model magnetic field, then the experimental data for different
on a square lattice with anisotropic interactions; i.e.temperatures collapse on a single curve, called the
the coupling constants in the horizontal directigmnd  scaling function (Stanley, 1971). In this paper, we
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consider another kind of scaling, called finite-size In 1992, Hu (1992b, 1992c) proposed a histogram
scaling. Monte Carlo simulation method (HMCSM) to study
According to the theory of finite-size scaling random and correlated percolation models. In
(Fisher, 1971; Barber, 1983; Privman and Fisher, 1984:995~1996, Hu and his cooperators applied the HMCSM
Cardy, 1988; Privman, 1990; Stauffer and Aharonyto calculate the existence probability (also called the
1994), if the dependence of a physical quan@tpf spanning probability, see Langlanesal (1992))E,,
a thermodynamic system on the parametewhich the percolation probability?, and the probabilityV,
vanishes at the critical poigtO0, is of the fornQ(e)~|e*  for the appearance aftop to bottom percolating clusters
near the critical point, then for a finite system of linearon finite square (sq), honeycomb (hc), and planar
dimensionL, the corresponding quanti@(L,¢) is of  triangular (pt) lattices. They found that, by choosing

the form an appropriate aspect ratio for each lattice and
nonuniversal metric factors for each modgl, P, and
Q(L, €)=L™F(elY), (1) W, for six percolation models on planar lattices have

UFSSF’s (Huet al,, 1995a, 1995b; Hu and Lin, 1996).
wherey; (=v?) is the thermal scaling power afidx) In 1997, Hu and Wang (1997) used a random deposition
is the finite-size scaling function. It follows from Eq. Monte Carlo method to find that the continuum per-
(1) that the scaled dat@(L,e)L® for different values colation of soft disks and hard disks have the same
of L ande can be described as a single function of the&JFSSF’s as does percolation on planar lattices. Based
scaling variablex=€L.*. Thus it is important to know on the connection between tlyestate Potts model
general features of the finite-size scaling function undefQPM) (Wu, 1982) and g-state bond-correlated per-
various conditions. colation model (QBCPM) (Hu, 1984a, 1984b, 1992a),

In 1984, Privman and Fisher (1984) proposed thélu et al. (1999a, 1999b) used the HMCSM and a cluster
idea of universal finite-size scaling functions (UFSSF’s)Monte Carlo simulation method (Swendsen and Wang,
and that of nonuniversal metric factors for static criticall987) to calculate the UFSSF’s for the QPM on sq,
phenomena (Privman and Fisher, 1984) TonearT, hc, and pt lattices. When an appropriate scaling vari-
and the external magnetic fiehdnear 0. Specifically, able for the QPM is used, they can obtain UFSSF's
they proposed that, near0 andh=0, the singular part without using any adjustable parameter. Very recently,
of the free energy for a ferromagnetic system can bee used the HMCSM to study the relation between

written as boundary conditions and the average number of per-
colating clustersC. We found that for lattices with
fs(€,h,L)=L9Y(CreLl ™, CohLEM), (2) four different boundary conditions and large aspect

ratios, C increases linearly witlR with a slope which
whered is the spatial dimensionality of the latticé, is independent of the boundary conditions. In this
is a universal finite-size scaling function, aB¢ and paper, we briefly review the above developments in
C, are adjustable nonuniversal metric factors (PrivmamMonte Carlo approaches to UFSSF's in percolation
and Fisher, 1984), which depend on the specific latticenodels (see also Hu (1997, 1998) andddal (1998,
structure. From Eq. (2) and the scaling relatiods  1999b)).

2—-a anda+2B+y=2 (Stanley, 1971), one can obtain the This paper is organized as follows. In Sec. Il we
scaling expression for the finite-size magnetizatiorreview the histogram Monte Carlo simulation method
(Privman and Fisher, 1984) (Hu, 1992b) and the use of this method to calculate
finite-size scaling functions, critical points, critical
-_0¢ (€ h,L) exponents, and thermodynamic order parameters for
oh s percolation on lattices under various conditions. In
Sec. Il we review the histogram Monte Carlo approach
= C LAY O(C el MY, ChL B (3) tothe UFSSF'’s for the existence probabilgyand the

percolation probabilityP in lattice percolation models.

which is the order parameter of the system. From 198 Sec. IV we review the histogram Monte Carlo
to 1994, progress in research on UFSSF's was vegpproaches to UFSSF's for the probability of the ap-
slow. The title of Privman and Fisher’s paper (Privmarpearance of percolating clustersyV,, in lattice per-
and Fisher, 1984) is “Universal critical amplitudes incolation models. In Sec. V we present our Monte Carlo
finite-size scaling,” and most papers related to thigesults for UFSSF's in continuum percolation of soft
paper only address the problem of the universality oflisks and hard disks. In Sec. VI we present our Monte
critical amplitudes rather than that of the universalityCarlo results for UFSSF’s of QBCPM and QPM without
of finite-size scaling functions. nonuniversal metric factors. In Sec. VIl we present
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our Monte Carlo results for the average number ofollowing, | will only use R; to define percolating
percolating clusters under various boundary conditions:lusters. Then, we have the following definitions for
Some other related developments are mentioned in Setie existence probabilitf,(G,p) and the percolation
VIII, and problems for further research are also disprobability P(G,p):
cussed in Sec. IX.

E,G.p)= & pPCH(I—p)= "G, (4)
Il. Histogram Monte Carlo Simulation GpHG

Meth nd Its Application , Nk
ethod and Its Applications PG,p)= 5 pPCI1-pEPCIN'G)IN, (5)
In 1992, Hu (1992b, 1992c) proposed HMCSM, GG

which was then used to calculate the finite-size Sca“”%hereb(G;)) is the number of occupied bonds @,
functions for the existence probabiliBy, and the per- gpg N*(G;)) is the total number of sites in the perco-
colation probabilityP of the percolation model and the lating clusters of3.. The summations in Egs. (4) and
g-state bond-correlated percolation model correspond(g) are over all subgraph@, of G.

ing to theg-state Potts model (Chen and Hu, 1993; Hu, ~ T carry out histogram Monte Carlo simulations,
1992d, 1994a, 1994b; Hu and Chen, 1993, 1995; Hye first choosew different values op. For a given
et al, 1996). Hereg, is the propgbﬂny that _the System p=p. 1<j<w, we generatéNg different subgraphs'.
pgrcolates, ane@ is the probqb|l|ty that a given Iatt|ce.-|—he data obtained from theNg differentG' are then
site belongs to a percolating cluster. Hu and higseq to construct three arrays of numbers of leiigth
cooperators found _thﬁp andP ha_vc_e very good _f|n|te— with elementsNy(b), Ni(b), and Nyy(b), which are,
size scaling behavior, and that finite-size scaling funcrespectively, the total numbers of percolating subgraphs
tions depend sensitively on the boundary conditiongith b occupied bonds, nonpercolating subgraphs with
and aspect ratio of the lattice and on spanning rulgg occupied bonds, and the sum m*f(G;)) over sub-
to define percolating clusters (Hu, 1994a, 1994b; Hyraphs withb occupied bonds. After a sufficient number
and Chen, 1995; Het al, 1996). of simulations, these arrays can be used to obtain

Novy we will briefly review the HMCSM for bond approximateE, andP for any value of the bond oc-
percolation (Hu, 1992b, 1992c; Hai al, 1996) on an  cypation probabilityp (Hu, 1992b; Huet al., 1996):
LixL, square latticeG and define related quantities,

N,()
P

wherelL, is the linear dimension in the horizontal i b E bE
direction and_, is the linear dimension in the vertical E,G.p)=2 p°(1-p) Cbmv (6)
direction. The extension to other lattices and to site P f
percolation (Hu, 1994a, 1994b) is straightforward. In

, ) ; . Npp (0)
this paper, we consider the following four possible PG zli b(1 —p)E~PCE pp 7
boundary conditions of the;xL, lattice: G P=Nz P =P PN, (0) + Ni(b) ()
BC1. periodic in the_; direction and free in the, e
direction. whereC,=E!/(E-b)!b!. Once we have histogram data,
BC2. free in both the; andL, directions. we can calculat&, andP as continuous functions of

BC3. periodic in both thé,; andL, directions. p. This is different from the traditional Monte Carlo
BC4. free in thel; direction and periodic in the, =~ Methods (Binder, 1986; Stauffer and Aharony, 1994).
direction. Suppose we have already carried out histogram
In bond percolation on a lattic® with N sites, Monte Carlo simulations on lattic€%, andG, of linear
N=L;xL,, andE bonds, each bond @ is occupied by dimensionsL; and Ly, respectively, wherd.>L.
a probabilityp, where &ps<1. There are several dif- The percolation renormalization group (PRG) transfor-
ferent rules used to define percolating clusters, calle@ation from latticeG; to lattice G, is given by the
spanning rules, which were first discussed by Reynoldgquation (Hu, 1992b, 1992c; Hu and Chen, 1988a,
et al (1980). InRy, a cluster percolates if it extends 1988b)
from the top row ofG to the bottom row of5; in Ry,
a cluster percolates if it extends from the top row to  Ep(G2,p")=Ep(G1,p), (8)
the bottom row and from the left boundary to the right
boundary ofG (Reynoldset al., 1980). In a given Which gives the renormalized bond probabilgtyas a
spanning rule, a subgraph which contains at least orfénction of p. The fixed point of Eq. (8) gives the
percolating cluster is a percolating subgraph and igritical pointp, i.e.,
denoted b)Gb. In a previous paper (Hu, 1994b), | used
both R; andR, to define percolating clusters. In the Ep(G2,pc)=Ep(G1,Pc)- 9
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The thermal scaling powey; and the field scaling 1.0
poweryy, which is equal to the fractal dimensibnof 09 b
the percolating cluster at (Stanley, 1977; Hu, 1992d),

may be obtained from the following equations: 08 ¢ ]
0.7 ¢ e 32x32 E
' ! d - 6

|n(ap) ||']P(G%pc)l_'d = 06 © Fi - ;ggggg ]

1y o Py _po PGLRL S 05 | ]
V_yt_il_! yh_D—iL. (10) uF i

In=—t In—L 04 ’,‘4’;,‘ ]
L; L, i

03 ¢ A ]

We may associate with each site of the lattice a 02 - rﬂ’“ 1
adimensional “magnetic momenti, and consider the 01 b Sy
renormalization ofmy under the PRG transformation

0.0 " /// . L

to give the renormalized “magnetic momemtf, (Hu 0.3 0.4 0.5 0.6
and Chen, 1989; Tsallist al, 1985): o
, n d d (a)
mOP(GZI p )LZ = mOP(G 1 p)L 1 (11)
1.0
which means that the total “magnetization” is preserve 09

after the PRG transformation. After a series of PR¢
transformations, we have a series of renormalized bor 0.8
probabilitiesp, p(=p’), p@, ...,p” and the renormalized ;.
magnetic momentsy,, mP(=my), m@, ..., m§). The

thermodynamic percolation probability of the original 5
system,P.(p), may be related to the thermodynamicS 05 |
percolation probability of the-th transformed system, “ g4 ¢

P.(p™), by the following equation:

——- 128x128

0.6 - —-— 256x256

03 ¢ E
mg 0.2 - E
Poo = POo W) s 12
©)= 3m P2) a2 O ]
_ . 0.0 :
for p>p. with A=Li/L;. In the traditional small cell 0.3 0.4 0.6
renormalization group transformation (RGT) (Tsallis P
et al, 1985; Hu and Chen, 1989), one iterates the RGT (b)
H (n) “ ” H
unFlltp _ip?;oa%hes(nghef Igwerltzemper?.tureb fl)j(_ed Fig. 1. The calculated,(G,p) as a function op for the bond random
pomnt pc= ! enP«(p™) o q. (12) is 9|ven .y ’ percolation model orL;xL, square lattices with different
However, in the large cell-to-cell RGT’s considered boundary conditions. The vertical line intersects phaxis
here, one needs to only iterate the RGT’s until the at p.=0.5. (a) BC1 and BC2 witR=L,/L,=1. (b) BC3 and
correlation length of the-th transformed system is BC4 with R=1 and 2.

smaller than the linear dimensions of the transformed

cell (Hu, 1995). In this case, the transformed cell may

well represent the thermodynamic systems, and we MY, hond percolation ohxL square lattices with BC1
use P(Gz,p™) to represenP.(p™) of Eq. (12) and  4re shown irFig. 2 AsL=/ 1L, » o0, Eyis O forp<p,

obtain (Hu, 1994a, 1995) and is 1 forp>p.; if we write E,~(p—pc)* just above
n) Pc. then the critical exponemtof E, is 0 (Stauffer and
P.()= r:;g PG, p™). (13) Aharony, 1994). On the other han®-(p-pc)” just
ATmg abovep.. According to Eq. (1), we may writg,=F(x)

andPLA"=5(x) with x=(p—po)L'", whereF(x) and S(x)
Now we can begin to use the above equations tare scaling functions.
calculateE,, P, and their finite-size scaling functions. For bond percolation on a square lattice, it is
Typical calculated results d&, for bond percolation generally believed that thexactv, 8 andp. are 4/3,
on L;xL, square lattices with BC1 to BC4 are shown5/36, and 1/2, respectively (Stauffer and Aharony, 1994).
in Fig. 1(a) and (h) Typical calculated results &f  Using the exact values of andp., we have plotted
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10 ez
09 & ! eI conditions and aspect ratios of the lattice. However,
' /,’ffi ’ the calculated, D, p., andP,, are independent of the
08 ¢ s E boundary conditions and aspect ratios of the lattice.
07 b ’//'/,/ ; - 32x32
il ---- 64x64 , .
06} i/ “mam 0 |Il.UFSSF's for E, and P of Lattice
S 05| ¥ ] Percolation Models
& ;
/
041 E Equation (1) forg, implies thatE, for all models
0.3 ,}“ ] in the same universality class must be equal at the
0.2 b /, critical point in order to have UFSSF’s. In 1992, Ziff
01 L // ] (1992) found thaE,=0.5 for site and bond percolation
T S on large square lattices with free boundary conditions,
0-00_3 04 o5 o and Langlandgt al. (1992) proposed that when aspect
p

Fig. 2. The calculated®(G,p) as a function op for the bond random
percolation model oxL square lattices with BC1.

the data forE, represented in Fig. 1(a) and (b) as a
function of x=(p—pc)L""" in Fig. 3(a) and (h)respec-
tively. Using the same values ofandp,, we have
also plottedPL?" for P presented in Fig. 2 as a function
of x=(p—po)L"" in Fig. 4 Figures 3 and 4 show that
Ep andP have nice finite-size scaling behavior. Figure
3(a) and (b) show that scaling functions for different
boundary conditions and aspect ratios are quite differ
ent.

To show the reliability of our method, we have
used the above percolation renormalization grou
equations (Hu, 1992b, 1994a, 1995) to calculate th
critical pointpg, the thermal scaling powey(=1/v) and
the field scaling powey,=D=d-g/v for site and bond
percolation on two and three dimensional lattices witt
different boundary conditions and aspect ratios. Th
calculatedy;, D, andp. for bond percolation on a square
lattice are very close to the exact results (Hu, 1992t
Hu et al, 1996). The calculategt for site percolation
on a square lattice is very close to other numericeg
results (Hu, 1994a). The calculatgd D, andp.; for &
site and bond percolation on three-dimensional lattice
is very close to other numerical results (einal., 1998;
Lin and Hu, 1998).

We have used Eq. (13) to calculate the thermo
dynamic order parameté,, for site and bond perco-
lation on square lattices with different boundary con-
ditions, spanning rules, and aspect ratios. Althoug
scaling functions strongly depend on these factors, th
calculated thermodynamic order parameRgris inde-
pendent of these factors (Hu, 1994a, 1994b;eiial.,
1996).

In summary, we have found thag andPL?" have
very good scaling behavior, and that the finite-size

F(G.x)
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Fig. 3. The data oE, in Fig. 1 as a function of, wherex=(p—pc)L*.

The function is the scaling functidf(G,x). (a) BC1 (bottom
curves) and BC2 (top curves). (b) BC3 wiRh2 (top curves),
BC3 with R=1 (middle curves), and BC4 witR=1 (bottom

curves).
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16 ; ; , . point, we show 2826 sq, 2&15 hc, and 2830 pt
1.5 . lattices inFig. 7(a)-(c) whose aspect ratios approxi-
::g mately match the ratio ¥3:/3/2 considered by
12 Langlandset al. (1992). It is obvious that three figures
11 v R in Fig. 7 have similar domains.
_ ;'0 / T s Hu et al (1995a) applied the HMCSM (Hu, 1992b)
ol 0:2 / to calculateE, andP of site and bond percolation on
& 07 / finite 512x512 sq, 438250 hc, and 43800 pt lattices;
0.6 i.e., they used 512/512:433/250:433/500 to approxi-
g-i mate the proportions 3:v/3/2 of aspect ratios for sq,
03 / hc, and pt lattices considered by Langlaatial. (1992).
0.2 The results forE, and P are reproduced ifrig. 8(a)
0.1 / and (b) respectively. Plottingg, as a function of
R T Y, o 20 30 X=Di(p—pc)L"” andD3PL?" as a function ok=D,(p-
X po)LY, whereD;, D, and D5 are nonuniversal metric
Fig. 4. The calculatedP/L™: in Fig. 2 as a function of, wherex=(p- factors, Huet al (1995,3‘) four,]d that the_SiX F’erCO'ati,O”
pJL™. The function is the scaling functio®(G,x). models have very nice universal finite-size scaling

functions forE, andP, which are reproduced iRig.
9(a) and (b)respectively. Within numerical uncertain-

ties, D;=D, and the nonuniversal metric factors for
[ l ! periodic boundary conditions are consistent with those
L. T 1 for free boundary conditions although the scaling
| D functions are quite different. Het al (1995a, 1995b)
L] ] L] also found that the nonuniversal metric factors are
| D

(a) (b) (©

Fig. 5.(a) A 8x8 square (sq) lattice. (b) Ax8 honeycomb (hc)
lattice obtained from a8 sq lattice by deleting half of the
vertical bonds. (c) A 88 plane triangular (pt) lattice obtained
from a &8 sq lattice by adding diagonal bonds.

INONNN NN/

ratios for sq, hc, and pt lattices have the relative pro-
portions 1¢/3:V/3/2, then site and bond percolation on
such lattices have the same valueEgfat the critical
point (Langlandst al., 1992). In 1992, Cardy used
a conformal theory to write a formula for the critical
Ep as a function of the aspect ratio for percolation on
lattices with free boundary conditions (Cardy, 1992).
Cardy’s formula (Cardy, 1992) is consistent with nu- (a) (b
merical results of Langlandst al. (1992) . Cardy
(1992) and Langlandst al. (1992) did not discuss the
values ofE, for p#p..

Result of Langlandst al. (1992) for the relative
proportions 173:v3/2 for sq, hc, and pt lattices can e —
be understood as followsFigure 5(a)shows a typical
LxL sq lattice. AnLxL hc and arLxL pt lattices can
be obtained from the sq lattice of Fig. 5(a) by removin(
or adding bonds, respectively, as shown in Fig. 5(b
and (c), which are equivalent teig. 6(a) and (h)
respectively. If lattice sites in the horizontal direction

Fig. 6. (a) AnLxL hc lattice with aspect ratia=1 andL=8. (b) An
LxL pt lattice with aspect ratia=1 andL=8.

of Fig. 6(a) and (b) are enlarged by a fact@r and (a) (b) (c)
/312, respectively, the domains of hc and pt latticegig. 7. (a) A 26x26 sq lattice, (b) a 2615 hc lattice, (c) a 2630
are similar toLxL square lattices. To illustrate this pt lattice.
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(1995a), but theif(x) for pbc is quite different from

1.0 ,
! 1 7 i . . .
j f i : f(x); i.e., Hovi and Aharon 1996) obtained
0.9 . | i
os | ! (J I e f(0)=0.636650.0008, and Hwet al. (1995a, 1995b)
) i ] J ;  SPhermo 1 obtaine =0. . Hu a) conjecture at the
i o SPharBo btainedf(0)=0.93(4). Hu (1996 tured that th
07 | f o e difference was because Hovi and Aharony (1996)
i i 1 . . . . .
_ 06 : ;' I TS considered pbc only in one direction while ldual.
a i i it P - . . .
Gost | j’ j [ ; "o SPeaPBC (1995a, 1995b) considered pbc in both the horizontal
Mo : “ I  BPptPBC and vertical directions. This conjecture was confirmed
\ ) / I e it by numerical calculations (Hu, 1996a). This result
03¢ : ! I ] provided further evidence that finite-size scaling func-
02 f i ;' [‘ ;‘ 1 tions sensitively depend on the boundary conditions
o1t | 7 ol ] (Hu, 1994a).
; if [
00 i 1 VA 4 Yo ] N |
03 04 05 06 07 08 09 1.0
p
(@)
1.0 ;
1.0 — T
o - 09 f ]
0.9 . 1 ~ SPpt
¢ 08 ---- gg;q i
: / == c
08 f 07| BP pt
07 i —— SPptFBC | - BPsq
! —— SPsqFBC 06 I ——-BPhc i
06l | —— SPhcFBC |
~ I - BP pt FBC = 05
= N N BP C i
gos ! R BPhS?:IEgC -
o § -~ SPptPBC 0.4 -
04 ----SPsqPBC 1
I ---- SPhcPBC 03 ,
03t —-— BPptPBC
i —-— BPsqPBC 0.2 r
02 J -~ BPhcPBC ]
01 | 1
01 f | 1
0.0 ‘
00 i . . 20 1.0 0.0 1.0 20
03 04 08 09 1.0 X
(a)
Fig. 8. Results for site percolation (SP) and bond percolation (BP)
on pt, sq, and hc lattices. The solid (dotted) lines from left
to right are for site (bond) percolation on pt, sq, and hc lattices
with free boundary conditions (FBC). The dashed (dot-
dashed) lines from left to right are for site (bond) percolation | ----SPsq
) : L o 1.0 ——-SPhe
on pt, sq, and hc lattices with periodic boundary conditions —— BPpt
(PBC). (a)Ep as a function op. (b) P as a function op. = — ggrs]q
a), C
05 I 1
independent of changes in aspect ratios holding the
ratio between them constant (ldtial, 1995b). These
results indicate for each percolation model, we neec
. ) : 00 . L
only two nonuniversal metric factors, i.eD; and 05 10 0.0 1o 20
D3. X
(b)

After Hu et al. (1995a) was published, Okabe and

Kikuchi (1996) obtained universal finite-size scalingrig. 9. (a) The calculated, for site and bond percolation on pt,

functions for the two-dimensional Ising model, and
Hovi and Aharony (1996) calculated the scaling func-
tion f(x) for bond and site percolation on the square
lattice with both free (f) and periodic (p) boundary
conditions (bc). Hovi and Aharony (1996) found that
their f(x) for fbc is consistent witli(x) of Hu et al.
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sq, and hc lattices as a functionxgfwherex=D4(p—pc)L".
The scaling function i§(x). The lower (upper) curves are
for free (periodic) boundary conditions. (b) The calculated
D4P/L™: for site and bond percolation on pt, sq, and hc
lattices as a function of, wherex=D,(p—-p.)L*t. The scaling
function is S(x). The lower (upper) curves are for free
(periodic) boundary conditions.
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IV. UFSSF for W, of Lattice Perco- 10 s
lation Models 05
In low-temperature measurements of quantum Hall 2'8 !
7 -

effects (QHE), when the external magnetic field is
increased from small values to large values, the con- 5 06 |
ductivity g,y moves from one plateau witt,=0; to o5l
another plateau with the valug,=0,, and the conduc- ?'10_4
tivity oy has a maximunol® in the transition region.

In a recent theory of QHE, Ruzét al. (1996) proposed
that the number of percolating clusters in the sample 02

0.3

at the critical point is useful for understandiag®. 0.1
Therefore, the number of percolating clusters in per- [, .
colation problems is an interesting quantity, and we 03 06

should know more about its behavior.
To mimic the Corbino disk often used in experi-
mental studies of quantum Hall effects (Rueinal.,

1996), Hu (1996b) used the HMCSM to study bond 10
percolation orLixL, square lattice§& with pbc in the 09
horizontalL, direction and fbc in the verticdl, di- 08 |

rection. Here “square” means that the primitive unit - |
cell of the lattice is a square. A cluster which extends
from the top row ofG to the bottom row ofG is a ﬁ_o's i
percolating cluster. A subgraph which contains at leastE 05
one percolating cluster is a percolating subgraph anc' o4
is denoted byG . It should be noted that the definition 04
of G, in Hu (1996b) and Hu and Lin (1996) and in

this section is different from that of Hu (1994a, 1994b), 02
Hu and Chen (1995) and Hat al. (1995a, 1995hb), in 01
which only the largest cluster is used to def@ﬁgz A 0.0, ooy o EEUSREAN

percolating subgraph which contains exaatlperco-
lating clusters is denoted b,. Now we have the
definition

(b)

Fig. 10. (a) Wix(Ly,L,,p) for bond percolation on 1282, 256<64

W, (Ly,L,p)= 2 pPCHA—p)E—PC (14) and 51x128 sq lattices, which are represented by dotted,
G,0G dashed, and solid lines, respectively. (b) The data from (a)
are plotted as a function aE(p-py)LY”. The scaling
whereb(G,) is the number of occupied bonds@j,. function forWix(L1,L,,p) is denoted byFq(R,2), whereR=
The summation in Eq. (14) is over all subgrapih:g: Li/L,. The monotoni§ decreasing function is f&(R,2).
of G. To use the HMCSM to evaluat,, in addition The S shape curve is 67(R.2). The bell shape curves
. . from the top to bottom are fd¥,(R,z) with n being 2, 3,
to Np(b) andNg(b) considered in Sec. Il, we also evaluate and 4, respectively.

Nn(b), O<b<E, which is the number of percolating

subgraphs withh occupied bonds and percolating

clusters. After a large number of simulations, the » ) )

probability W,(Ly,L,,p) at any value of the bond oc- (P~P)L™ has very good scaling behavior. Hu (1996b)

cupation probabilityp can be calculated approximately also considered fbc in both the horizontal and vertical
using the following equation (Hu, 1992b, 1996b): directions and found that the scaling functions \figy
depend sensitively on boundary conditions. Typical

eoe N, () results ofW, and their finite-size scaling functions are
Wiy Ly p)=b£0pb(1—p) Cbm- reproduced inFig. 10(a) and (h)respectively.
i P f Using the HMCSM (Hu, 1992b, 1996b), Hu and
(15)  Lin (1996) calculatedV, for bond and site percolation
- on sq, hc, and pt lattices with pbc in the horizontal
It is obvious thatE,=2_;W, and Wo(L1,L2,p)=1-  direction and fbc in the vertical direction; the aspect
Ep. Hu (1996b) found thaw, as a function ofz=  ratios of sq, hc, and pt lattices are 4342/3, respec-
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10 | ot 1 e e complementary configuration if and only if it is absent

ogl i IV . in the original configuration. They used the HMCSM
D B G (Hu, 1992b, 1996b) to evaluate the probability

08: i st | o W3, (Ly,Lo,p) of finding a given value oM and found

07 1 sk | N that, for a given aspect ratib,/L,, all data of

o6t 1 ma o o A W2 (Ly,L,,p) near the critical poinp, fall on the same

= 05 N B 1 I scaling functionF$,, which is symmetric with respect

i ‘ to the scaling variable for alM. The values of

04l i | W2 (Ly,L,,p) at the critical point are useful for under-

03 - ! o o standing of® in the quantum Hall effects (Ruzin

02 | - ¥ et al, 1996; Hu and Halperin, 1997; Coopet al.,

o { o 1997).

%23 04 06 V. UFSSF’s for Continuum Percola-

tion of Disks

Many interesting quantities and problems in solid

1.0 ‘ ‘ e /f ‘ RUEE state physics, e.ggi® in QHE, conductor-insulator
0.9 \\\ / ] transition, etc., are related to continuum percolation
08 | / (Ruzinet al, 1996; Zallen, 1983). However, to study
\ o continuum percolation is much more difficult than to
07 \a“ Bl study lattice percolation. People usually study lattice
R 06 - \‘ T Beastaxas : percolation rather than continuum percolation. The
% 05 [ problem is to what extent the quantities, e.g., critical
- 04 exponents and finite-size scaling functions, obtained
sl / from lattice percolation models (LPM) may be applied
' / to continuum percolation models (CPM). Hu and Wang
02 - / (1997) have tried to answer this interesting and impor-
0.1 / tant question.
0.0 Lovioimite AJM,,, NN Hu and Wang (1997) considered both soft disks
40 30 20 10 00 10 20 30 40 and hard disks. Typical configurations of soft disks

X
(b)

and hard disks are shownlig. 12(a) and (h)respec-
tively. In the general case, Hu and Wang (1997) con-
sidered (hard and soft) disks on kByxL, continuum
Fig. 11. ()W, for bond and site percolation on 8€%0 pt, 512128 gpaceC of rectangular domain with linear dimension

sq, and 866125 hc lattices. (b) The data in (a) are plotted ' i the horizontal direction and linear dimension

as a function ofx=D(p-pc)LY"”. The universal scaling . . . . .

function for W, is denoted byUy(x). in the vertical direction, wherk; andL, are integers.

The spaceC is divided intoL;xL, covering meshes,
which are (%1) unit squares. The squares (meshes)
tively. Using nonuniversal metric factors of ltial  are labeled by integers 1, 2, 3,LyxL,. A disk belongs
(1995a), Hu and Lin (1996) found that these percolatioto a square if and only if the center of the disk is in
models have UFSSF’s faW,. The results folW, and that square. The disks have a radR#s/2/2, so that
their UFSSF’s are reproduced fig. 11(a) and () at most one hard disk is allowed in one unit square.
respectively. Two hard disks are in the same cluster if and only if
Hu and Halperin (1997) considered bond percotheir separation is smaller than or equal @ 2 Such

lation with bond probabilityp on anL;xL, self-dual a definition of clusters was considered by Hu (1987)
square lattice with pbc in the horizontal direction andand Kratky (1988) before. Two soft disks are in the
fbc in the vertical direction. Hu and Halperin (1997)same cluster if and only if they overlap. More than
defined the numbeM of alternating percolating clus- one soft disk may be in a given unit square, in which
ters as the minimum of, andn,,, wheren, is the number case they are always in the same cluster. Hu and Wang
of independent percolating clusters connecting sites 0f1997) extended the multiple-labeling technique of
the top and bottom edges, angis the number of Hoshen and Kopleman (1976) to label unit squares
percolating clusters in the complementary configurawhich have disks. The label for a unit square is also
tion on the dual lattice, a bond being present in théhe label for the disks which belong to that unit square.
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Fig. 12. (a) A configuration of soft disks for continuum percolation.
(b) A configuration of hard disks for continuum percola-
tion.

This multiple-labeling technique for CPM was used to
study critical properties and scaling functions for soft
disks and hard disks.

Hu and Wang (1997) used a random deposition
process to generate configurations of disks. In the
deposition process, if the hard cores of two disks over-
lap, then the attempt to put the second hard disk is
abandoned. The concentration of disks is defined by
n=nR?N/L?, whereN is the number of the disks in the
system and_=\/L,L, is the linear dimension of the
system. At a givem, the number of percolating con-
figurations observed divided by the total number of
generated configurations gives the existence probabil-
ity E,. The calculated, as a function of) for con-
tinuum percolation of soft disks inxL space with free
boundary conditions in both the horizontal and vertical
directions is reproduced iaig. 13(a) The intersection
of curves in Fig. 13(a) gives the critical poimp¢ and
the critical existence probabiliti,(n:), which are
1.13020.0008 and 0.50.01, respectively. The former
is consistent with the result of Gawlinski and Stanley
(1981), and the latter is consistent with the result of
LPM (ziff, 1992; Langlandset al., 1992; Huet al,
1995a). From the slopes of curvegjat Hu and Wang
(1997) used a percolation renormalization group
method (Hu, 1992b) to find)=1.3%0.07, which is
consistent with the exaat=4/3 for LPM on planar
lattices (Stauffer and Aharony, 1994). The data in
Fig. 13(a) as a function of the scaling variakke
(n—-no)LY with v=4/3 are reproduced in Fig. 13(b),
which shows thaE, has very good scaling behavior.
Hu and Wang (1997) obtained similar results for sys-
tems of hard disks and systems with pbc in the hori-
zontal direction and fbc in the vertical direction. Typical
results for these boundary conditions are reproduced
in Fig. 13(c), which shows th&, of soft disks, hard
disks, and lattice site percolation have a universal finite-
size scaling function.

Hu and Wang (1997) also calculated the probabil-
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Fig. 13. (a) The calculated, as a function ofy for continuum

percolation of soft disks in doxL space with free boundary
conditions in the horizontal and vertical directions, where
L=128, 256, and 512. The number of differgris between

50 and 100. The number of independent configurations
for L=128, 256, and 512 is 40000, 10000, and 5000, re-
spectively. (b) The data in (a) are plotted as a function of
the scaling variable=(n-n¢)L"", wherev=4/3. The scal-
ing function isF(x). (c) The universal finite-size scaling
function of E,, for soft disks, hard disks and site percolation
on a square lattice. The number of independent configu-
rations for hard disks and site percolation is two and eight
times of that for soft disks, respectively. The non-universal
metric factors for soft disks, hard disks, and lattice site
percolation are€€,=1, C,= 0.89%0.029, andC3=1.60+0.07,
respectively.
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ity W, of the appearance of percolating clusters for
soft disks and hard disks in anxL, space with pbc
in the horizontal direction and fbc in the vertical di-

rection. Typical calculated results are reproduced in

Fig. 14(a)-(c) Figure 14(b) shows thaw, has very
good scaling behavior, and Fig. 14(c) shows tWat

of soft disks, hard disks, and LPM have universal finite-
size scaling functions. It is of interest to note that the
nonuniversal metric factors in Fig. 14(c) are the same

as those in Fig. 13 (c), which is similar to the case o
lattice percolation (Hu and Lin, 1996).
To check the universality of critical exponents,

Hu and Wang (1997) calculated the mean sizes of

finite clustersS(L,n.), the mean sizes of percolating
clustersSy(L,nc), and the distributions of cluster sizes,

n(L,s,ne), for soft disks, hard disks, and site percola-

tion at their critical pointg). for systems of various
linear dimensiori. It follows from finite-size scaling
and the scaling behavior of(L,s,n.) (Stauffer
and Aharony, 1994) tha$(L,n¢)~L"", Sy(L,ne)~L"
=L%P" n(L,s,n)~s ™. The critical exponents esti-
mated from these equations are reproducedadhle

1, which shows that soft disks, hard disks, and perco-
lation on planar lattices are in the same universality

class.

VI. UFSSF'’s for a Correlated Perco-
lation Model

08

L 256x64 (solid)
512x128 (dotted)
1024x256 (dashed)

W, (L,.Lm)

f

Based on the subgraph expansion of Ising-type

models in external fields, Hu has shown that phas
transitions of many Ising-type models can be describe

as geometric percolation transitions (Hu, 1984a, 1984b,
1988, 1990, 1992a). In particular, Hu has shown that

phase transitions of QPM on a lattiGeare percolation
transitions of QBCPM (Hu, 1984a, 1984b, 1988, 1990
1992a) onG, in which each NN bond d& is occupied
by a probabilityp, wherep=1-exp(J/kgT) with J being

the ferromagnetic Potts coupling constant. Sites con-
nected by occupied bonds are in the same cluster, and

a cluster may have any one @fdifferent directions.
There are 2 different bond configuration§&’, also
called “subgraphs”, of5. A subgraphG' of b(G')
occupied bonds ana(G') clusters will appear with the
probability weight

n(G’ P, q) :pb(G') ( 1_p) E—b(G')qn(Gv) .

The spontaneous magnetization and the magnetic sus-

ceptibility of the QPM are related to the percolation
probability P and the mean cluster size of the QBCPM,
respectively (Hu, 1984a, 1984b). The probability of
the appearance of percolating clusté&s of the QBCPM

is defined by
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Fig. 14. (a) Wx(L1,L2,n) as a function of for continuum perco-
lation of soft disks in 25664, 51128 and 1024256
space, which is represented by solid, dotted, and dashed
lines, respectively. (b) The data in (&Y,(L1,L2,n), as a
function of z=(n-n)LY". The scaling function for

W, (Ly,L,n) is denoted by,. (c) The universal finite-size
scaling functions oV, with n=0, 1, 2, 3, 4 for soft disks,
hard disks, and site percolation on square lattice systems.
The non-universal metric factors for soft disks, hard disks,
and lattice site percolation a®=1, C,=0.89%0.029, and
C3=1.6+0.07, respectively
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Table 1. Universality ofEp(r) and Critical Exponents for 2D Continuum Percolation. Egrwe Consider Both Free Boundary Conditions
(fbc) and Periodic Boundary Conditions (pbc) in the Horizontal Direction

quantities soft disks hard disks LPM exact
threshold 1.13020.0008 0.85030.0010 0.59280.0010

Ep(n¢) (fbc) 0.5@:0.01 0.5@0.03 0.5@0.01 0.5

Ep(ne) (pbc) 0.640.02 0.640.02 0.630.02

v 1.39+0.07 1.3&0.04 1.320.05 1.33...
ylv 1.785:0.012 1.79@0.012 1.78&0.020 1.7916...
d-gBlv 1.889£0.006 1.88%0.008 1.89%0.016 1.89583...
T 2.05t0.02 2.0%0.02 2.040.02 2.0549...

25,067Gy P, Q)
, : (16) ' '
ZG' DGTI(G P, Q) 09| | sqbaxet

pt 52X60
--- hc 97X56
08 F  ——- sq64X64 (NN and NNN) |

ExG.p.q)=

Here the sum in the denominator is over all subgraph
G' of G, and the sum in the numerator is restricted tc
all percolating subgraph@;) of G.

Hu et al. (1999a) used a cluster Monte Carlo
simulation method (Swendsen and Wang, 1987; Hu an
Mak, 1989b) to simulate the QBCPM and QPM on &
64x64 sq lattices, a 966 hc lattices, and a 3B0 pt
lattices. The aspect ratios of these lattices approxi
mately match the relative proportions of Langlaeds 01
al. (1992). Typical calculated resultsiBf as a function 00 e . A e
of the scaling variable with x=tL"" (t=(T-TJ)/T) is @0 B0 B0 00 10 200 80 40
presented irFig. 15(a) which shows thag, for the (@)

QBCPM and QPM on sq, hc, and pt lattices have UFSS
nearx=0 without nonuniversal metric factors. For the , ‘
sq lattice, we also consider a model with both NN anc N
NNN coupling and find that the calculatdg} as a /
function of x have the same FSSF as does the mode °8f /
without NNN coupling. Since the QPM fa1 cor- \ /' — :g;g;z‘gg
responds to the bond random percolation model (BRPM' 4| \ | ---- hc8eexi2s 4
we also plot data ofV, from Hu and Lin (1996) for
bond percolation on sq, hc, and pt lattices as a functio ,
of x=tL¥(t=(T-Ty)/T) and obtain Fig. 15(b), which o4t N
shows that we have UFSSF’s faV, without using :
nonuniversal metric factors. These results are analc o, |
gous to settings;=1 in PF’s theory (see Eq. (2) in this Ao\
paper) for all lattices of a given dimension. We alsc ’ '
find similar results for three dimensional lattices.

It should be noted that if we use the scaling
variablez=(p—-po)LY" or z=(p/p.—1)L*" as the horizon- (b)
tal axis, then we need to use metric factor for eachig. 15. (a) E, for the QBCPM as a function af(1-T/T)L". The
lattice. This suggests th&t1-T/T. is a fundamental scaling function isF(q,x). For the sq lattice, the results
variable for describing critical phenomena near the for a model with both NN and NNN couplings is also

[ ; shown. Hereg=2. (b) W, for the QBCPM as a function
critical point, even for BRPM (Het al, 1999a). of x=(1-TIT)L™. The scaling function fow, is Uy, Here

g=1.

A

—
x

<

c
]

0.0

0.0 20 4.0 6.0 8.0

VII. Boundary Conditions and the

Number of Percolating Clusters .
number of percolating clusters, defined 8y, _,

The universality ofW, implies that the average nW,, is also universal. In Hu (1996b) and Hu and Lin
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(1996), the criticalC was calculated for percolation on function of 1N for bond percolation ohxL lattices
lattices with BC1 and BC2 for aspect rafkdbetween with BC3 are shown iifrig. 16(a) which is consistent
0 and 10, wher&=L,/L,. They found that for large with the result of Ziffet al. (1997). The calculated
R, the criticalC increases linearly witR with the same b andC for bond percolation on Hk16 lattices with
slope. BC3 are plotted in Fig. 16(b), which shows that the
In a recent letter, Zifet al (1997) calculated the curves forb andC for largeR linearly increase with
number of clusters per lattice sit®,in bond and site R, but that they have different slopes (Hu, 1998). The
percolation on two dimensional lattices with BC3 andcalculatedC for bond percolation on Rx16 lattices
the linear dimensio.. They found thah=n.+b/N,  with BC1 to BC4 are plotted in Fig. 16(c), which shows
wheren is n in the limitL -, b is a constant and that for largeR, C linearly increases witlR, and that
N is the number of lattice sites. They also found thaall the curves have the same slope.
b is universal and presented an argument bhiat the
number of percolating clusters so that the universalit}/|||. Some Related De\/elopments
of b may be related to the universality Gffound by
Hu and Lin (1996). Kleban and Zziff (1998) obtained Recently, Okabet al' calculated FSSF’s of the
an exact formula fob as a function of the aspect Binder parameteg and magnetization distribution
ratio, R, which agrees very well with the numerical function p(m) for the Ising model orLixL, square
result. lattices with pbc in the horizontal, direction and tilted
In a recent paper, Hu (1999) used HMCSM toboundary conditions with tilt parametein the vertical
calculaten and C for bond percolation oh;xL, sq L, direction. For appropriate sets dR,¢) with R=
lattices with BC1, BC2, BC3, and BC4. In BC3 andL,/L,, the FSSFs of andp(m) are universal, and in
BC4, a cluster is percolating if eachlogfrows contains such case&/(c?R*+1) is invariant. For percolation on
at least one site of that cluster (Hu, 1996a). Hu founthttices with fixedR, FSSF of the existence probability
that for four different boundary conditionS,increases does not change asincreases from 0.
linearly with R with approximately the same slope. On Very recently, Huet al. (1999b) used a cluster
the other hand, we may have a well defined slbpe Monte Carlo method to calculate the number of clusters
in n=ns+b/N only for BC3. per site,n, at the critical point of the QBCPM drixL
Now we will briefly review HMCSM for the cal- sq lattices. Typical results f@g=1 are shown irFig.
culation of the number of clusters per sitél.1,L,,p), 17(a) and those fog=2, 3, and 4 are shown in Fig.
for bond percolation on amxL, sq lattice. LeM(G') 17(b). Figure 17(a) is consistent with the result of Ziff
denote the total number of clusters in subgr&sh et al. (1997). However, curves in Fig. 17(b) have
Then n(L4,L,,p) for bond percolation with a bond negative slopes, which are quite different from those

probability p is given by in Fig. 17(a), and the interpretation of slope as the
number of percolation clusters (Ziéft al, 1997) is

nLy,L,p)= 2 pP@Y—p)EPCIM@G)IN. impossible. To understand the behavior of Fig. 17(b),
G'0G (17) Hu et al. (1999b) proposed that as a function of

1/L for g#2 and fixedL'/L has an energy-like singu-
The sum in Eq. (17) is over all subgragh'sof G. To larity. Forg=2, i.e. the Ising model, they found that
use HMCSM to evaluate(Lq,L,,p), in addition toNy(b)  the data can be well representedrisy.—c/L+b/L%+...,
andN¢(b) considered in Sec. Il, we also evaluhit¢b), = whereb can be calculated exactly from conformal field
O<b<E, which is total number of clusters in the sub-theory (CFT),c>0 and can be calculated exactly from
graphs withb occupied bonds. After a large numbera formula for the internal energy of the Ising model.
of simulationsn(Lq,L,,p) at any value of the bond A typical comparison of the formula and numerical data
occupation probabilityp can be calculated approxi- is shown inFig. 18 The agreement between the formula

mately from the following equation: and the data is very good.
1§ b gE-bee N®) :
n(LlyLz,p)—Nbgop 1-p) Cpr(b)Jer(b)- IX. Summary and Final Remarks
(18) Using HMCSM (Hu, 1992b, 1996b) and relative

aspect ratios considered by Langlaedsl (1992), we
The calculated critical pointa(L4,L,,p) as a found universal finite-size scaling functions for the

'Okabe, Y., K. Kaneda, M. Kikuchi, and C. K. Hu, “Universal finite-size scaling functions for critical systems with tilt bpeodaditions.”
Sunmitted toPhys. Rev. Lett.
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Fig. 17. n-n; as a function of 1/ for the g-state bond correlated
100 - percolation model oxL square lattices with periodic
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4.n¢isnin the limitL - oo,
80 F
existence probabilityE,, the percolation probability,
% P, and the probability for the appearancenoferco-
o . . .
s lation clustersW,, of site and bond percolation on sq,
40 . hc, and pt lattices. Using a random deposition process,
7 we found UFSSF's foE, andW, for the CPM of soft
ot disks and hard disks and LPM. Table 1 shows that the
201 o CPM of soft disks and hard disks are in the same
fote universality class as the lattice percolation models.
“'%6'%5'0 S Co : We may consider the general case in which a disk
. . . 15.0 20.1 . .
R 0 has a hard core of radilg and a soft shell of radius
(© R,, whereR;<R,. The soft disk in Fig. 12(a) corre-

sponds toR;=0, and the hard disk in Fig. 12(b) cor-

Fig. 16. (a) The number of clusters per sitg, as a function of  responds td3;=R,/2. Two disks are in the same cluster
1/N for bond percolation ohxL lattices with BC3, where if their soft shells overlap. The general casth®

N=L2 (b) b andC as a function oR for lattices with BC3.
(c) C(0,R) as a function oR for lattices with different

R1/R,<1 was considered by Lee (1990). However, he

boundary conditions. Ned&=3, the curves from bottom did not reach a definite result about the universality
to top are for BC1, BC2, BC3, and BC4, respectively. Of such general hard disks. Our results show that disks
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