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ABSTRACT

A new effective approach to vision-based guidance for autonomous land vehicle (ALV) pavigation
in outdoor road environments with static and moving cars using model matching and color information
clustering techniques is proposed. The conventional way of detecting obstacles and cars in the navigation
route, which is in general difficult, is avoided; instead, collision-free road area detection, which is usually
easier, is adopted. Road boundaries are used to construct the reference model, and road surface intensity
is selected as the visual feature. The pixels in a road image near the two lines representing the road boundary
shape, which are estimated at the beginning of each navigation cycle, are checked to judge whether the
left or right lane width has changed due to occlusion caused by nearby static or moving cars on the road.
If both lane widths have not changed, model matching is performed immediately to find the ALV location.
If either or both lane widths have changed, corresponding processes are performed to find the width of
the occluded road, and a model is recreated if the new road width is different from the old one in the
previous navigation cycle. Model matching is then performed to locate the ALV on the occluded road.
To save computing time, only partial model matching is performed. A turn angle is then computed to
guide the ALV to follow the central path line on the extracted road for safe navigation. Various color
information on roads is used to extract road surfaces, and a clustering algorithm is used to solve the problem
caused by great changes of intensity in navigation environments. Successful navigation tests show that
the proposed approach is effective for ALV guidance on common roads with static and moving cars.
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information clustering, image processing, computer vision

. Introduction

The application of computer vision to the guid-
ance of autonomous land vehicles (ALV’s) in outdoor
road environments is a challenging task because of the
great variety of road conditions, such as changes of
illumination, the existence of static or moving ob-
stacles, and shadows, degraded surfaces, rain etc. Suc-
cessful ALV navigation requires integration of the
techniques of environment sensing, image processing,
ALV location, path planning, wheel control, and so on.
This study is mainly concerned with ALV guidance
using computer vision techniques in outdoor road
environments with static and moving cars.

Many research works have been reported for
obstacle detection on outdoor roads. Most systems,

"To whom all correspondence should be addressed.

such as the Carnegie-Mellon University Navlab (Goto
and Stentz, 1987; Thorpe, 1991; Thorpe et al., 1988,
1991a, 1991b; Singh and Keller, 1991; Crisman and
Thorpe, 1991, 1993), the vehicle constructed by Martin
Marietta Denver Aerospace (Waxman et al., 1987; Turk
et al., 1988; Olin and Tseng, 1991), and the navigation
system developed at the University of Maryland (Davis,
1991), use laser range sensors to detect obstacles in
outdoor roads or cross-country terrain. The system
developed by Kuan et al. (1988) uses a sonic imaging
sensor and an infrared sensor for obstacle avoidance
and target detection.

As for vision-based approaches to obstacle detec-
tion, they basically can be divided into three classes.
The first class extracts obstacles directly from 2-D
images. Only one camera is used, and only the image
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in the current navigation cycle with a priori knowledge
and predefined assumptions is considered. The second
class of approaches uses motion information obtained
from a sequence of images to detect obstacles. The
most popular approaches in this class are based on
optical flow. The third class of approaches detects
obstacles using stereo-vision techniques. Besides, Xie
et al. (1994) use a range finder coupled with a camera
to acquire 3D information about obstacles. Although
the second and third classes have fewer assumptions
than the first, usually more errors are produced and
much computing time is required because image cor-
respondence is involved. On the other hand, the first
class in general takes less computing time and has
better detection results, though it has more assump-
tions. Hence, the first class of approaches is widely
adopted for real-time navigation.

The major obstacles on outdoor roads are static
and moving cars. Several approaches have been pro-
posed for detecting cars. Schwarzinger et al. (1992),
Thomanek et al. (1994), and Regensburger and Graefe
(1994) used some symmetry features at the rear of a
car to detect and track cars in front. Cappello et al.
(1994) proposed a car detection method based on the
assumptions that cars are approximately solid blocks
with parallel or orthogonal sides and that the sides are
parallel or orthogonal to road boundaries. Efenberger
et al. (1992) developed a vision system to recognize
vehicles approaching from behind. Schmid (1994)
created a generic 3-D shape model of different cars,
including passenger cars, trucks, and buses. Model
matching is performed to detect cars on the road ahead.
Heisele and Ritter (1995) and Smith and Brady (1994)
detected cars based on optical flow. Kehtarnavaz et al.
(1991) developed a visual control system for vehicle
following. It tracks an apparent feature, a single point,
on the back of the leading vehicle using stereo-vision
techniques. Additionally, Brauckmann et al. (1994)
developed an integrated visual sensing system for car
detection with three main tasks, namely, long-distance
detection of cars in front, short-distance detection of
sudden-intruding cars or other obstacles, and lateral
monitoring of overtaking and overtaken cars in neigh-
boring lanes. All of the above car detection approaches
identify features on the body of the car directly when
nearby cars appear on the road.

In this paper, we propose an effective approach
to guiding an ALV on general roads with static and
moving cars. The approach allows variations of the
road width, which are caused by the existence of static
cars on the roadside or moving cars in the road lane.
New algorithms are proposed for finding the best-fit
road region without having to do exhaustive search.
We do not detect cars in the image; instead, we detect

road areas using the road surface intensity as a visual
feature. The road width is not assumed to be constant;
instead, road width changes are allowed and computed
as cars appear in the image. Furthermore, we do not
plan a complex navigation route but just compute the
central line on the extracted road as the route and
approach it immediately after the ALV location on the
extracted road is found. With neither additional feature
extraction from the car body nor additional planning

for the navigation path, fast navigation can be achieved.

In this study, the shape of a road is represented
by its two road boundaries. To find the road boundaries
on a road, edge points are first extracted directly from
the road image. The edge points are then used to figure
out the road boundaries. When complex obstacles
appear on the road, the edges of the road become
irregular and cause difficulty in road boundary estima-
tion using the edge points. This motivates in this study
the design of a model matching method which uses
several candidate boundary lines in the model to match
the road pixels nearing the estimated road boundaries
in the image according to a reasonable similarity
measure.

More specifically, before model matching, we
first check in the image the pixels near two reference
lines representing the road boundary shape, which are
estimated at the beginning of each cycle, to judge
whether the left or right lane width has changed due
to nearby static or moving cars or other obstacles on
the road. If both lane widths are unchanged, model
matching is performed immediately to find the ALV
location. If either or both lane widths have changed,
corresponding processes are performed to find the new
width of the occluded road, and the model is recreated
in real time if the new road width is different from the
old road width in the previous cycle. Model matching
is then performed to locate the ALV on the occluded
road. To save computing time, only partial model
matching is performed. A turn angle is then computed
to guide the ALV to follow the navigation path, which
is assumed to be the central line on the extracted road
in this study. In addition, to achieve steady and flexible
navigation, the speed of the ALV is adjusted dynami-
cally if the road width is changed or when the ALV
moves on ascending or descending roads.

Furthermore, various color information, which
often simplifies object extraction and identification
from a scene, is used in this approach to extract road
surfaces. An ISODATA algorithm (Duda and Hart,
1973) based on an initial-center-choosing (ICC) tech-
nique has been designed to solve the problem caused
by great changes of intensity in navigation. This
clustering algorithm has been proved effective by nearly
one hundred successful tests on real roads with differ-
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ent cars in different weather conditions. The above
- procedures of road width checking and estimation,
model matching, immediate navigation path genera-
tion, and dynamic ALV speed adjustment, combined
with the color information clustering process, enable
the ALV to navigate safely and smoothly on common
roads, as demonstrated by our experiments.

Some assumptions under which our approach
works are listed in the following.

(1) The road boundaries are straight and parallel to
each other, but the road width can vary in the
navigation process.

(2) The system does not detect ascending or de-
scending roads during navigation. But when the
ALYV moves on ascending or descending roads,
the speed of.the ALV can be adjusted appropri-
ately for steady navigation.

The remainder of this paper is organized as fol-
lows. In Section II, the details of the proposed model-
based ALV guidance method are described. In Section
I1I, the employed navigation guidance method and the
adopted vehicle control schemes are introduced in detail.
A description of the employed image processing and
feature extraction techniques is included in Section IV.
In Section V, the results of some experiments are
described. Finally, some conclusions are stated in
Section VI. ’

. Il. Proposed Model-based ALV Guid-
ance Method

The proposed guidance scheme is performed in
a cycle-by-cycle manner. In each navigation cycle, the
system identifies the visual feature of the road surface
in the road environment to locate the ALV and guides
the ALV accordingly from the current position to the
navigation path, which is assumed to be the central line
of the unoccluded road portion. After the two lines
representing the road boundary shape in the image are
estimated at the beginning of the cycle, the system
checks the pixels near the two lines to judge whether
the left or right lane width is changed in the current
cycle. Model matching is then ‘performed to find the
ALYV location if both lane widths are unchanged. If
either or both lane widths have changed, appropriate
procedures are executed to find the new road width,
and the model is recreated if the new road width is
different from the old road width computed in the
previous cycle. Then, model matching is performed
to find the ALV location on the changed road.

In the following, we will state first the steps
involved in model creation, which involves several
coordinate systems and transformations, and then we
will describe the processes for detection of lane width

changes as well as estimation of the new road width,
followed by the model matching process.

1. Model Creation

Several coordinate systems and coordinate trans-
formations are used in this approach. The image co-
ordinate system (ICS), denoted as u-w, is attached to
the image plane of the camera mounted on the ALV.
The camera coordinate system (CCS), denoted as u-
v-w, is attached to the camera lens center. The vehicle
coordinate system (VCS), denoted as x-y-z, is attached
to the middle point of the line segment which connects
the two contact points of the two front wheels of the
ALYV with the ground. The x-axis and the y-axis are
on the ground and parallel to the short and the long
sides of the vehicle body, respectively. The z-axis is
vertical to the ground. The transformation between the
CCS and the VCS can be written in terms of homo-
geneous coordinates (Wang et al., 1993; Su and Tsai,
1994) as

wvwl)
1 0 0 0 ||"urrs0
e I S | [
-x; —y; —z4 1 0 0 0 1
(1)
where
ri=cos fcos@+sinfsing sing,
riz=-sin@ cosg,
ri3=sin@ sin¢ cos@—cosO sing,
r21=sinf cos@—cosf sing siﬁ(p,
ryp=cos 8 cosg,
ra3=—co0sf sin¢g cosg—sinf sing,
r31=C0s¢ sing,
r3;=sing,
r33=COS{ cCOSQ, 7 2)

where 0 is the pan angle, ¢ is the tilt angle, and ¢ is
the swing angle of the camera with respect to the VCS;
and (x4,v4,24) is the translation vector from the origin
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Fig. 1. The road boundary transformation between the VCS and the
ICS.

of the CCS to the origin of the VCS.

An ALYV location can be represented by two
parameters (d,6), where d is the distance from the ALV
to the central path line in the road and @ is the pan angle
of the ALV relative to the road direction. The equations
of the two road boundaries in the VCS are assumed
to be known before navigation. We transform the road
boundaries into the ICS, which are displayed on the
TV monitor during each navigation session.

For each ALV location (d;,6;), we create a cor-
responding template T[ay.by,a,b,], where a, and a,
are the slopes and b, and b, are the intercepts, of the
equations of the left and the right road boundaries in
the ICS, respectively. The transformation is shown in
Fig. 1. We sample the road width at 41 positions, i.e.,
—20<£i<20, with an interval of 1/40 of the road width.
At each position, we sample the vehicle direction at
31 angles from —15 degrees to +15 degrees, i.e.,
—15<j<15, with an interval of one degree. Hence, the
model contains 41x31=1271 templates, and each tem-
plate represents a specific ALV location. Because the
templates are represented in the ICS, the model match-
ing process described later is also operated in the ICS.

2. Detection of Lane Width Changes

The ALV keeps moving forward after an image
is taken at the beginning of each navigation cycle.
After the image is processed and corresponding algo-
rithms are performed, the ALV location at the time
instant of image taking can be found. At this moment,
however, the ALV has travelled a distance. Hence, the
ALV never knows its actual current position unless the
cycle time is zero. To overcome this difficulty, the
system uses the ALV control information to estimate
the current ALV location according to a method pro-
posed by Cheng and Tsai (1991). We then define the
reference ALV location in cycle i as the estimated ALV
location at the beginning time of cycle i.

Let T,, denote the reference ALV location (d,,0,)
in the current cycle, and let T, be the reference tem-
plate in the current cycle. To judge whether the left
or right lane width has changed, we first check those
templates, called candidate templates, which are “close”

to the reference template in the current cycle. A can-
didate template set W is shown in Fig. 2, where the
left line of each template in W lies in the area bounded
by the left line of the leftmost candidate template (LCT)
and the left line of the rightmost candidate template
(RCT), and the right line of each template in W lies
in the area bounded by the right line of the LCT and
the right line of the RCT. We also call T, the center
template in W.

Basically, a road in an image can be divided into
three clusters according to their intensity values: (1)
cluster-0: a dark area, like shadows and trees; (2)
cluster-1: a gray area, coming from the main body of
the road; and (3) cluster-2: a bright area, like the sky
and the white path lines on the road. Then, the ratio
of the number of cluster-1 pixels to the number of all
the pixels in the area bounded by the left line of the
LCT and the left line of the RCT is checked to judge
whether the left lane width has changed. If the ratio
is smaller than some threshold value, say TH-1, the left
lane is decided to have narrowed. If it is larger than
some threshold value, say TH-2, the left lane is decided
to have widened. If it is between TH-1 and TH-2, the
left lane width is decided to be unchanged. Similarly,
we check the ratio of the number of cluster-1 pixels
to the number of all the pixels in the area bounded by
the right line of the LCT and the right line of the RCT
to judge whether the right lane width has changed. If
both lane widths are unchanged, model matching
(MM) is then performed to find the ALV location,
which will be described later. If either or both lane

Fig. 2. A candidate template set W, where the LCT denotes the
leftmost candidate template and the RCT denotes the rightmost
candidate template in W.
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widths have changed, corresponding processes are
executed to calculate the new road width, as stated in
the following.

3. Estimation of New Road Width

If the left lane width is checked and found to have
changed, then the changed amount W, of the left lane
width is estimated as illustrated in Fig. 3. Figure 3(a)
illustrates the estimation process for the case that the
left lane has narrowed, where T, =(d,,0;) is the ref-
erence template, L; is the left line of template T, _;,
and the dark area bounded by B, and B, is composed
of the cluster-1 pixels (extracted road pixels). To
calculate W,, we first check the cluster-1 pixels in the
area bounded by Ly and L;. If they are sufficient in
number, then L, is decided to be close enough to B,
and is selected as the “approximate left road boundary”,
and W, is set to 0. Otherwise, the cluster-1 pixels in
the area bounded by L; and L, are checked. If they
are sufficient in number, then L, is decided to be close
enough to B, and is selected as the approximate left
road boundary, and W, is set to d,_—d,,. Otherwise,
the cluster-1 pixels in the area bounded by L, and Lj
are checked in a similar way.

This process is repeated until a certain L,,, is
chosen such that the cluster-1 pixels in the area bounded
by L, and L,,, are sufficient in number. Then, L, is

selected as the approximate left road boundary, and W,
is set to d,_,—d,,. Note that this method of detecting
the approximate road boundary, as proposed above,
facilitates the avoidance of direct estimation of road
boundary lines from the edge points of broken- or
irregular-shaped road boundaries resulting from exist-
ing roadside cars or obstacles. .On the other hand, if
the left lane has widened, a similar criterion is used
to find W,, which is illustrated in Fig. 3(b), where L,
is the approximate left road boundary.

Similarly, if the right lane width has changed, the
changed amount W, of the right lane width and the
“approximate right road boundary” R,, which is close
enough to the real right road boundary By in the image,
are estimated in a similar way. After the changed
amounts W, and W, of both lane widths are found, the
new road width is calculated by

New road width W,
= old road width Wyz+W,+W, 3)

and the approximate template, which is defined as
composed of the approximate left and right road bound-
aries, L, and R,, is estimated to be

W, W,

Tms = (dm’es) = (drO + T - 7505) > (4)

where T, =(d,,,0;) is the reference template. If
Waew# Wy, then we can recreate the model in the way
described in Section II.1 according to the new road
width W,,,,. Finally, model matching is performed to
find the ALYV location, which is described in the fol-
lowing.

4. Model Matching for ALV Location

If both lane widths are detected to be unchanged
in the current cycle, we use the candidate template set
W described in Section I1.2 to perform model matching
because the templates in W are close to the reference
template, which is the estimated road boundary shape
of the unchanged road in the current cycle. If either
or both lane widths are detected to have changed due
to nearby cars or other obstacles on the road ahead in
the current cycle, the reference template could be far
away from the real road boundary shape in the image,
and it is unsuitable to use the set W described above
to perform matching. As described in the previous
section, after the changed amounts W, and/or W, are
found, we obtain the approximate template 7,,,, which
is close to the real road boundary shape in the image.
We thus choose T, as the center template to reconstruct
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Fig. 4. Illustration of how we check the LBR and LRR values to
decide which line is closer to the real left road boundary B,
in different cases. (a) Two lines are on the left side of By.
(b) Two lines are on the right side of By. (c) One line is
on the left side of By, and one line is on the right side of
By.

W such that the templates in the reconstructed set W
can be made closer to the real road boundary shape.

After W is chosen or reconstructed, we use it to
perform model matching to find the ALV location.
Without loss of generality, we will first state how we
match the templates in W with the set LCP of the left-
check-pixels, which are defined as the cluster-1 pixels
in the area bounded by the left line of the LCT and the
left line of the RCT, to find the template 7, whose left
line is most likely to be the left road boundary. The
matching process is based on a criterion which is

described as follows. We define:

Left-bounded-ratio LBR;;

=(the number of the cluster-1 pixels in the area
bounded by the left line of T; and the left line
of the RCT)/(the number of all the pixels in the
area bounded by the left line of Tj; and the left
line of the RCT);

and

Left-road-ratio LRR;;

=(the number of the cluster-1 pixels in the area
bounded by the left line of T;; and the left line
of the RCT)/(the number of the LCP). (5)

Figure 4 illustrates how we check the LBR and LRR
values to decide which line is closer to the real left road
boundary B, in different cases, where L, is the left line
of template T;. In Fig. 4(a), Ly and L, are on the left
side of By, and L, is closer to B,. It can be seen from
the figure that T, and T; have the same LRR value
(=100%). But the LBR value of Ty is greater than that
of T because L, is closer to B,. This means that all
of the templates in W whose left lines are on the left
side of B, have the same LRR value, and that the
template whose left line is closer to B, has a larger LBR
value.

In Fig. 4(b), Ly and L; are on the right side of
By, and Ly is closer to By. It can be seen from the figure
that Ty and T have the same LBR value (=100%). But
the LRR value of Ty is greater than that of 7 because
Ly is closer to By. This means that all of the templates
in W whose left lines are on the right side of B, have
the same LBR value, and that the template whose left
line is closer to B, has a larger LRR value.

In Fig. 4(c), Ly and L; are on the left and right
sides of By, respectively. It can seen from the figure
that the LRR value of T is equal to the LBR value of
T, (=100%). To decide which of Ly and L; is closer
to By, we can compare the LBR value of T, with the
LRR value of T;. If the LBR value of Ty is larger than
the LRR value of T, then it is decided that Ly is closer
to By. Otherwise, it is decided that L, is closer to By.

From the above observation and analysis, it is
reasonable to define the following similarity measure
based on the two ratio values, LBR;; and LRR;;, for
model matching:

Then, the best-matched template T, = (d;,0;) whose left

line is closest to B, has the maximum LS value. We
call this criterion of choosing T, the maximum-sum-
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of-double-ratio (MSODR) criterion.

Similarly, we can match the templates in W with
the set RCP of the right-check-pixels based on the
MSODR criterion to obtain the best-matched template
T, whose right line is most likely to be the real right
road boundary.

After Ty=(dy0y) and T= (dy,0,) are found, the
ALV location T=(d,0) is estimated more accurately by
averaging Ty and Ty, i.e.,

Tp+Ty dp+dy 0‘3+ 97
S S ) W)

T=(d,0) =

The proposed MM algorithm based on the MSODR
criterion is stated below.

Algorithm MM.
Input. (a) A set W of candidate templates.
(b) The set LCP of left-check-pixels and the set
RCP of right-check-pixels.
Output. The ALV location T.

Step 1. For each candidate template T; in W, com-
pute the left and right similarities LS,; and
RS;,.

Step 2. From all of the computed LS, values, find
the best-matched template 7, with the larg-
est LS value.

Step 3. From all of the computed RS, values, find
the best-matched template T, with the larg-
est RS value.

Step 4. Set T=(T,+T,)/2 and take T as the desired
output.

Finally, a complete ALV location algorithm (CALVL)
is described below.

Algorithm CALVL.
Input. (a) A set V of cluster-1 pixels.
(b) A model M of templates created in the pre-
vious cycle.
(c) The reference template T, = (d,;,0;) in the
current cycle.
(d) A set W of candidate templates in M whose
center template is T, ;.
Output. The ALV location 7.
Step 1. Check of lane widths:

(a) Use V and W to check whether the left
lane width has changed. If it has changed,
compute the changed amount W, of the
left lane width.

(b) Use V and W to check whether the right
lane width has changed. If it has changed,
compute the changed amount W, of the
right lane width.

Step 2. Model recreation and candidate template set
reconstruction:
If either or both lane widths have changed,
then perform:
(a) Calculate the new road width W,,,=the
old road width W, ;+Wy+W,.
(b)If W,,,,#W,.4, then recreate the model M
according to W,,,,.
(c) Estimate the approximate template T,,=
(A, 05)=(d,+ Wyl 2-W,/2,6).
(d)Use T, as the center template to recon-
struct the candidate template set W.
Step 3. Model matching:
Use V and W to find the LCP and the RCP,
and with W, LCP, and RCP as inputs run
the MM algorithm to find the desired ALV
locationgl" as the output.

After the desired ALV location is found, the
navigation path on the extracted new road can be
generated immediately. A turn angle for guiding the
ALV from the current ALV location to the immediately
generated navigation path is then computed. The
navigation path estimation and the turn angle compu-
tation are described in the following.

lll. Navigation Guidance and Vehicle
Control

1. Navigation Guidance

To achieve safe navigation, we choose the central
line on the extracted road as the navigation path. Let
T=(d,8) denote the obtained ALV location in the cur-
rent cycle, where d is the distance from the ALV to
the central path line in the road (positive to the right)
and 0 is the pan angle of the ALV with respect to the
road direction (positive to the left), as described pre-
viously. As shown in Fig. 1, the equation of the
navigation path in the VCS in the current cycle is just

xcos6—ysinB+d=0. (8)

To guide the ALV from the current estimated location
to follow the navigation path, we have to compute an
appropriate turn angle for the ALV. For this, a close-
ness distance measure from the ALV to the navigation
path proposed by Cheng and Tsai (1991) is used, which
is defined as

L&) = 1 : 9)
1+ [DR(O]” + [D(O)]’

where Dy and Dy are the corresponding distances from
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Fig. 5. Illustration of the meaning of the closeness distance measure

L(8)=1/{1+[D( &) 1*+[Dr(8)T*}.

the front and the rear wheels of the ALV to the navi-
gation path after the ALV traverses a distance with the
turn angle &, as illustrated in Fig. 5. A larger value
of L means that the ALV is closer to the path. It is
easy to verify that O0<L<1, and that L=1 if and only if
both the front wheels and the rear wheels of the ALV
are located just right on the path.

To find the turn angle of the front wheel to drive
the ALV as close to the path as possible, a range of
possible turn angles is searched. An angle is hypoth-
esized each time, and the value of L is calculated
accordingly. The angle that produces the maximal
value of L is then used as the desired turn angle in this
study.

It should be mentioned that allowing the ALV a
larger angle to turn in a session of turn drive does not
mean that better navigation can be achieved. It may
cause serious twisting. On the other hand, a smaller
range of turn angles may bring the ALV slightly closer
to the given path. Hence, the largest angle allowing
the ALV to turn is a tradeoff between smoothness of
navigation and closeness to the given path. In our
experiment, we found through many iterative naviga-
tion runs that a turn from -5 degrees to +5 degrees is
a good compromise.

2. ALV Speed Adjustment on Varying Road
Situations

To achieve steady and flexible navigation, the
speed of the ALV is adjusted under varying road situ-
ations. The speedis adjusted proportionally to the road
width for flexible navigation; i.e., it is increased if the
road has widened, decreased if the road has narrowed,

and kept unchanged if the road width has not changed.
The speed is also adjusted according to varying road
surface heights; i.e., it is increased if the ALV moves
on an ascending road and decreased if the ALV moves
on a descending road for steady navigation. To drive
the ALV at an appropriate speed during navigation, we
propose the following solution. Let V; and W; denote
the actual ALV speed and the obtained road width in
navigation cycle i. Then, to adjust the speed propor-
tionally to the road width during navigation, the desired
speed V/ of the ALV in cycle i is computed as

15

Wi
Wi

i—

Vi=(

10)

As we guide the ALV in cycle i, we can find its travelled
distance S;, the elapsed time T}, and its driving power
P; by checking the system encoder, the system clock,
and the motor controller provided by the control sys-
tem. Then, the actual speed of the ALV in cycle i is
calculated by

(1)

In cycle i, if V>V/, it is decided that the ALV is on
a descending road, and if V,-<Vi’, the ALV is on an
ascending road. If a ascending or descending road is
detected in cycle i, we multiply the driving power by
the ratio V;/V; to balance the speed of the ALV for
steady navigation. On the other hand, if the road width
changes from cycle i—1 to cycle i, i.e., if W#W,_4, then
we multiply the driving power by the ratio W/W,_; to
change the speed of the ALV for flexible navigation.
Hence, when it is necessary to take both situations
described above into consideration, we multiply the
driving power by (V;/V;) (W/W;_1) to obtain a proper
speed for steady and flexible navigation. That is, a
reasonable driving power for the ALV in cycle i+1 can
be taken to be

Vi, W,
Piy= () (P,

WiieVio, W
iyp.
W, o+ V,; Y Dh

1

=(

W.eV._
=('—11)pi.

12)
W, 2 V;

IV. Image Processing and Feature
Extraction Techniques

To reduce the image size, the upper portion in the
road image is discarded because it does not contain any
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Fig. 6. The histograms of the R-planes of two consecutive images,
where 7, is the R-component of the resulting center of cluster
k in the previous cycle, Ry is the R-component of the real
center of cluster k in the current cycle, and 7, is the R-
component of the candidate center of cluster k resulting from
applying the ICC technique in the current cycle.

road area. Next, pixels are sampled from the remaining
image portion with an interval of six pixels in both the
horizontal and vertical directions. We then use an
ISODATA algorithm (Duda and Hart, 1973), which
includes an initial-center-choosing (ICC) technique that
can solve the problem caused by great changes of
intensity during navigation, to divide the road image
into three clusters.
. Intuitively, we can select the resulting centers in
the previous navigation cycle as the initial centers in
the current cycle to run the clustering algorithm.
However, this selection may be unsuitable, thus pro-
ducing unacceptable clusters, because some difference
may exist between two consecutive images. One kind
of the difference comes from the change of intensity.
If the change of intensity between two consecutive
images is great, the candidate initial centers chosen
from the resulting centers in the previous cycle may
be far away from their real centers in the current cycle.
In this situation, many iterations are needed for the
ISODATA algorithm to move the candidate initial
centers close to their real centers, and this takes too
much computing time. Figure 6 shows this situation,
where the R-component r; of the resulting center of
cluster k in the previous cycte is far away from the R-
component R; of the real center of cluster k in the
current cycle because of the great change of intensity
between the two consecutive images.

To choose proper initial centers which are close
to their real centers in the current cycle, we propose
an ICC technique based on the assumption that the
changes of bright, gray, and dark areas between two
consecutive input images are small. *‘As shown in Fig.
6, the R-component r, of the candidate initial center

of cluster k resulting from the ICC technique is very
close to the R-component Ry of the real center of cluster
k in the current cycle. The ICC technique is described
as follows. Let Pg, Py, and P, be the numbers: of pixels
belonging to cluster-0, cluster-1, and cluster-2 in the
previous cycle, respectively. What we want to compute
is the initial centers of the three clusters in order to
run the clustering algorithm in the current cycle based
on the values of Py, Py, and P,. We first observe the
histogram of the R-plane shown in Fig. 6 and let r,
ri, and r, be such that the following equalities are
satisfied:

rﬁ [pixel no. of g.1.(s)]=Py/2,
s=0

S [pixel no. of g.1.(t)]=Py+Py/2,
t=0
and

3 [pixel no. of g.1.(u))=Pe+P1+P,/2,  (13)
u=0

(b (@)

Fig. 7. Obvious improvement obtained using the ICC technique on
a real road scene. (a) The input image with high intensity
in the previous cycle. (b) The input image with low intensity
in the current cycle. (c) Poor clustering result when the
resulting centers in the previous cycle are used as the initial
centers to run the clustering algorithm for three iterations
in the current cycle. (d) Better clustering result produced
by the ICC technique.

- 699 -



