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Abstract

Protein and DNA have been considered as the major components of chromatin. But beyond that, an increasing number of
studies show that RNA occupies a large amount of chromatin and acts as a regulator of nuclear architecture. A significant
fraction of long non-coding RNAs (lncRNAs) prefers to stay in the nucleus and cooperate with protein complexes to
modulate epigenetic regulation, phase separation, compartment formation, and nuclear organization. An RNA strand also
can invade into double-stranded DNA to form RNA:DNA hybrids (R-loops) in living cells, contributing to the regulation of
gene expression and genomic instability. In this review, we discuss how nuclear lncRNAs orchestrate cellular processes
through their interactions with proteins and DNA and summarize the recent genome-wide techniques to study the
functions of lncRNAs by revealing their interactomes in vivo.
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Introduction
Over the past decade, intensive studies have demon-
strated that long non-coding RNAs (lncRNAs) are key
regulators in embryonic development [1], DNA damage
responses [2], and human diseases such as neuronal
disorders [3], heart dysfunction [4], and cancers [5, 6].
LncRNAs can act as effectors to direct biological pro-
cesses. Unlike DNA, RNA is more mobile, flexible, able
to self-fold into a distinct structure and interact with
DNA or RNA by base pairing. Revealing the molecular
mechanisms by which lncRNAs regulate those biological
functions relies on the study of their interaction between
DNA and proteins. Several methodologies have been
developed to systematically identify RNA interacting
chromatin, RNA interacting proteins and RNA-RNA
interactions in vivo, thus uncovering the network of
protein-RNA-DNA (Table 1).

Chromatin associated RNAs
The first study showed that RNA constitutes a significant
fraction of chromatin date back over 50 years ago [41, 42].
Later studies provide evidence to support the idea that a
nuclear matrix is made of insoluble proteins and RNA in
an interphase nucleus [43]. Treatment of RNase A leads
to clumping of chromatin onto nuclear lamina and nu-
cleolus [44, 45], indicating an indispensable role of RNA
in the nuclear architecture. However, identifying a specific
RNA contributes to a specific phenotype in the nucleus
had facing technical challenges before the 1990s. Recently,
the burst of studies utilized next-generation sequencing to
characterize the interactions of lncRNA and chromatin.
While using lncRNA ablation, accumulating evidence has
suggested that RNA-protein complexes conduct various
functions such as the formation of chromatin compart-
ment, gene regulation, and inter- or intra-chromosomal
interactions [44, 45] (Fig. 1).
It has been reported that the CCCTC-binding tran-

scription factor (CTCF), which promotes chromatin loop
formation, binds to thousands of RNAs [46]. Depletion

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: cchu2017@ntu.edu.tw
Institute of Molecular and Cellular Biology, National Taiwan University, No. 1
Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China

Guh et al. Journal of Biomedical Science           (2020) 27:44 
https://doi.org/10.1186/s12929-020-00640-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12929-020-00640-3&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:cchu2017@ntu.edu.tw


Table 1 In vivo mapping RNA interactomes

Method Cross-linking Concept Advances Identifier Ref

RNA-chromatin

ChIRP-seq Glutaraldehyde Use biotinylated antisense oligos to pull
down a targeted RNA with its associated
DNA.

Robust elution by RNase A
and RNase H.

DNA that is
associated with a
specific RNA

[7]

CHART-seq Formaldehyde Use biotinylated antisense oligos to pull
down a targeted RNA with its associated
DNA.

Apply RNase H to specifically
elute RNA mediated
interacting chromatin.

DNA that is
associated with a
specific RNA

[8,
9]

CHIRT-seq Glutaraldehyde A hybrid method of ChIRP and CHART. Combination of
glutaraldehyde fixation and
RNase H elution.

DNA that is
associated with a
specific RNA

[10]

MARGI-seq Formaldehyde Use a linker to ligate RNA and DNA in
proximity to form of RNA-linker-DNA.

Reveal all interactions
between DNA and RNA.

All RNA-DNA con-
tacted sequences

[11]

ChAR-seq Formaldehyde Use a linker to ligate RNA and DNA in
proximity to form of RNA-linker-DNA.

Reveal all interactions
between DNA and RNA.

All RNA-DNA con-
tacted sequences

[12]

GRID-seq Formaldehyde and
disuccinimidyl glutarate
(DSG)

Use a linker to ligate RNA and DNA in
proximity to form of RNA-linker-DNA.

Strong crosslinking to reveal
long-range interaction be-
tween DNA and RNA.

All RNA-DNA con-
tacted sequences

[13]

HiChIRP-
seq

Glutaraldehyde Combine ChIRP and Hi-C. Use CLICK chemis-
try to conjugate a biotin for subsequent con-
tact enrichment.

Characterize a specific RNA
that involves in
chromosomal interaction.

Chromosome
conformation at a
specific RNA
associated sites

[14]

RNA-proteins

CLIP-seq UV irradiation (254 nm) Pull down RNA-protein complexes by immu-
noprecipitation and perform reverse
transcription.

Identify all RNAs that interact
with a targeted protein.

RNA that binds to
a specific protein

[15]

iCLIP-seq UV irradiation (254 nm) Pull down RNA-protein complexes by immu-
noprecipitation and perform reverse
transcription.

A random barcode to mark
individual cDNA molecules
to solve the problems of PCR
duplicates.

RNA that binds to
a specific protein

[16]

PAR-CLIP-
seq

Incorporate 4-thiouridine
(4-SU) and 6-thioguanosine
(6-SG) into nascent RNA. UV
(365 nm)

Builds on CLIP. Incorporation of 4-SU or 6-SG
results in U to C and G to A mutations re-
spectively that allows mutational analysis to
identify cross-linked sites.

Use 4-SU or 6-SG incorpor-
ation to increase the cross-
linking efficiency.

RNA that binds to
a specific protein

[17]

RAP-MS UV irradiation (254 nm) Use biotinylated antisense RNA probes to
capture a specific RNA.

Identify direct RNA
interacting proteins.

Proteins that bind
to a specific RNA

[18]

ChIRP-MS Formaldehyde Use biotinylated antisense DNA probes to
capture a specific RNA.

Identify direct and indirect
RNA interacting proteins.

Proteins that bind
to a specific RNA

[19]

iDRiP-MS UV irradiation (254 nm) Use biotinylated antisense DNA probes to
capture a specific RNA.

Identify direct RNA
interacting proteins.

Proteins that bind
to a specific RNA

[20]
[10]

RBR-ID UV (312 nm) + 4-thiouridine
(4-SU)

Comparison of 4-SU and non-4-SU treat-
ments, an RNA-crosslinked peptide has a dif-
ferent mass.

Identify all proteins bound to
RNAs.

All RNA binding
proteins

[21]

RNA structure/ RNA-RNA interactions

FragSeq N/A RNA is digested by P1 endonuclease.
Nuclease probing.

Map P1 endonuclease
digestion sites.

In vitro RNA
structure

[22]

PARS N/A RNA is digested by RNase V1 or S1 to
determine double stranded or single
stranded regions. Nuclease probing.

Map RNase V1 or S1
digestion sites.

In vitro RNA
structure

[23]

SHAPE-seq Covalently modify RNA
molecules in vitro.

SHAPE reagents (1 M7, NAI-N3) modify RNAs. Single nucleotide resolution;
each RNA in the experiment
is bar-coded.

In vitro RNA
structure

[24]
[25,
26]

icSHAPE-
seq

Covalently modify RNA
molecules in vivo

SHAPE reagent (NAI-N3). Copper-free click
chemistry, a biotin moiety is selectively and
efficiently added to NAI-N3-modified RNA.

Identify In vivo RNA
structure.

In vivo RNA
structure

[27]

DMS-seq
(Structure-
seq)

Covalently modify RNA
molecules

Dimethyl sulphate (DMS) methylates the
base-pairing faces of A and C of RNA in
loops.

Nucleotide resolution. Map
RNA structure in vivo.

In vivo RNA
structure

[28]
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of steroid receptor RNA activator (SRA) noncoding RNA
that is associated with CTCF, reduced CTCF-mediated
insulator activity [47] at the IGF2/H19 imprinting con-
trol region and increased IGF2 expression. It was also
reported that a lncRNA, Jpx, activates Xist RNA expres-
sion by evicting CTCF from binding to Xist promoter
[48]. These results imply that lncRNAs in the nucleus
cooperate with RNA-binding proteins to regulate the
gene expression, perhaps through modulating the
chromatin conformation.
It was proposed that lncRNA transcription guides genome

organization [49]. For example, Oakes et al. demonstrated
that inhibition of rRNA transcription leads to nucleolus dis-
assembly [50]. Induction of the transcription of rRNA genes
that are inserted into new chromosomal locations can gen-
erate nucleolus-like structures [51]. These results suggest
that rRNA transcription could be responsible for the nu-
cleolus organization. Lately, Nozawa et al. had suggested
that chromatin-associated RNAs can form a chromatin
mesh with scaffold attachment factor A (SAF-A), also
known as heterogeneous ribonucleoprotein U (HNRNP-U)
[52]. They showed that SAF-A oligomerization, which is
dependent on ATP and RNA, drives chromatin

decompaction, whereas its monomerization compacts large-
scale chromatin organization. The global change of large-
scale chromatin by depletion of SAF-A did not alter
dramatically gene expression [52], nevertheless, it resulted in
excessive DNA damages and genomic instability [52].

Xist RNA regulates gene silencing and chromatin
conformation
Xist RNA is one of the well-studied lncRNAs involved in
epigenetic regulation and gene silencing. It is a 17-kb
lncRNA that is expressed from the inactive X-
chromosome (Xi) [53], coating the entire X chromosome
to repress gene expression through its ability to recruit
repressive complexes such as polycomb complexes
PRC1 and PRC2 [54–56]. In addition, Xist plays an
important role in three-dimensional (3D) conformation
and maintains the heterochromatin structure in Xi (Fig.
2). When Xist was depleted, topologically associated do-
mains (TADs) were restored in cis and the Xi (inactive
X chromosome) became Xa (active X chromosome) like
conformation [20]. Lee et al. also showed that Xist repels
positive chromatin factors such as BRG1 (also known as
SMARCA4) and cohesin from the Xi [20, 57] to prevent

Table 1 In vivo mapping RNA interactomes (Continued)

Method Cross-linking Concept Advances Identifier Ref

COMRADES
Psoralen + UV irradiation
(365 nm)

Pull down a specific RNA using biotinylated
DNA oligos and perform proximity ligation.

Reveal RNA structures and
interactions of a specific RNA
in vivo.

In vivo RNA
structures and
interactions of a
targeted RNA

[29]

CLASH UV irradiation (254 nm) Immunoprecipitation to enrich a specific RNA
binding protein and perform linker ligation.

Find mRNA target sequences
for miRNA.

RNA hybrids
bound by a
specific RNA-
binding protein

[30]
[31]

hiCLIP UV irradiation (254 nm) Immunoprecipitate RNA-protein complexes
by using antibodies against a specific RNA-
binding protein and ligate RNA duplexes in
proximity.

Reveal RNA duplexes bound
to a specific protein.

RNA duplexes
bound by a
specific RNA-
binding protein

[32]

MARIO Formaldehyde and
EthylGlycol bis

Apply a biotinylated linker to ligate two RNA
fragments in proximity.

Reveal all RNA-RNA
interactions.

All RNA fragments
in proximity

[33]

PARIS Psoralen + UV irradiation
(365 nm)

Purify RNA-duplexes by 2D gel and ligate two
RNA fragments in proximity

Reveal all RNA-RNA
interactions

All RNA duplexes [34]

SPLASH Psoralen + UV irradiation
(365 nm)

Use biotinylated psoralen to crosslink RNA
and perform proximity ligation.

Reveal all RNA-RNA
interactions.

All RNA-RNA
hybrids

[35]

RNA-DNA hybrids (R-loops)

DRIP-seq N/A Pull down RNA/DNA hybrids using S9.6
antibody that specifically recognizes RNA/
DNA hybrids.

Reveal DNA-RNA hybrids. DNA that forms
hybrids with RNA

[36,
37]

bisDRIP-
seq

Bisulfite modification Use bisulfite to convert cytosine residues into
uracil residues within genomic DNA regions
that contain single-stranded DNA. Enrich
DNA/RNA hybrids by S9.6 IP.

Define the boundaries of the
R-loop, high resolution.

Single-stranded
DNA of R loops

[38]

R-ChIP Formaldehyde Use catalytic-dead RNase H to capture R
loops, similar to ChIP.

Reveal DNA-RNA hybrids,
high resolution.

RNase H target
sites, R loops

[39]

DRIPc-seq N/A Builds on DRIP. Sequence RNA of DNA-RNA
hybrids.

Reveal DNA-RNA hybrids,
high resolution.

RNA of R loops [40]
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the formation of TADs and chromatin superloops. In a
higher order of chromatin structure, mammalian chro-
mosomes are organized into alternating “A/B compart-
ments” in 3D conformation. Spatial compartments
usually possess chromatin of similar states, with A
compartments being actively transcribed and gene-rich,
and B compartments being transcriptionally inactive and
gene-poor [58, 59]. Remarkably, ablating SMCHD1
(known as an architectural protein) displayed another
layer of compartments--S1/S2 [60] in Xi. Their results
indicate that SMCDH1 binds to Xist and facilitates the
folding of the S1/S2 compartments into a compartment-
less (more compact) structure in Xi (Fig. 2). Altogether,

robust evidence has shown that a lncRNA can regulate
gene expression and chromatin 3D conformation
through its abilities to recruit epigenetic factors, or to
act as a decoy or a scaffold for protein complexes.

Enhancer RNAs promote chromatin looping
Enhancer RNAs were first discovered by two early stud-
ies through the genome-wide sequencing such as RNA-
seq or ChIP-seq [61, 62]. They demonstrated that en-
hancers were occupied by RNA polymerase II (RNAP II)
and transcribed into a class of ncRNAs termed enhancer
RNAs (eRNAs). The epigenetic features of enhancers con-
sist of histone 3 lysine 4 monomethylation (H3K4me1),

Fig. 1 lncRNA-interacting hub in the nucleus. LncRNAs serve as scaffolds for protein complexes and bring two or several distant DNA loci
together. RNA involves the maintenance of nuclear architecture, facilitates chromatin looping, as well as directs the inter- or
intra-chromosomal interactions

Fig. 2 Xist RNA tethers epigenetic regulators and contributes 3D conformation of the X chromosome. Xist RNA recruits repressive complexes
such as polycomb complexes PRC1 and PRC2 to the inactive X chromosome (Xi) to facilitate heterochromatin formation, thus leading to gene
silencing. On the other hand, Xist binds to BRG1 and cohesin and repels them from the Xi to prevent TAD (topologically associated domain)
formation. Xist mediates the Xi folding in 3D space by tethering SMCHD1, which facilitates the merge of chromatin compartments. A/B
compartments are first fused into “S1” and “S2” compartments, after SMCHD1 recruitment, further merging to compact Xi structure
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histone 3 lysine 27 acetylation (H3K27ac), histone variants
(H2AZ, H3.3), co-activators (mediator complex), and an
open-chromatin architecture (DNase I hypersensitivity) [63].
The expression of enhancer RNAs could be regulated by
various stimuli such as estrogen (ER) or androgen (AR) [64–
66]. It is generally believed that eRNAs are unstable, tran-
scribed quickly after induction, and degraded rapidly [62].
Several lines of evidence suggest that eRNAs can promote
enhancer-promoter looping or facilitate RNA pol II loading,
thus upregulating their target genes [65, 67]. For example,
the gonadotropin hormone α-subunit gene is regulated by
the eRNA in a cell-type-specific manner [68, 69]. The
depletion of the eRNA results in a loss of interactions of the
enhancers and promoters of the gonadotropin gene [68].
These results further support that lncRNAs enable to direct
chromatin looping.

lncRNAs mediate interchromosomal interactions
Homologous chromosome pairing rarely occurs in som-
atic cells under normal growth conditions with only a
few exceptions. Transvection was first observed in 1908
in Drosophila, where homologous chromosomes were
closely paired in somatic nuclei [70]. It is an epigenetic
phenomenon that can lead to either gene activation or
repression. X chromosome pairing is one of the best-
known examples of somatic homologous pairing in
mammals [71]. Tsix, a lncRNA, is highly expressed in
undifferentiated ES cells, and antagonizes Xist action.
During ES differentiation in female cells, transient homolo-
gous pairing occurs, and the Xist RNA expression increases
to initiate chromosome-wide silencing. It was reported that
Tsix RNA mediates the homologous pairing between two X
chromosomes, thus breaking epigenetic symmetry between
the two X chromosomes, as well as driving the random
choices for the selection of inactive or active X chromosomes
[72, 73]. Moreover, another lncRNA derived from the ends
of sex chromosomes, dubbed PAR-TERRA (telomeric
repeat-containing RNA), facilitates the pairing by clustering
the ends of the sex chromosomes, and creates a hub to con-
strain the DNA loci in 3D space [10]. Not limited to X chro-
mosomes, several studies indicated that somatic allelic
pairing also occurs in a number of autosomal loci, such as
Oct4 and various cytokine genes [74–77]. Although how
interchromosomal pairing impacts gene expression and epi-
genetic regulation remains elusive, it has been proposed that
the alignment of the two homologous alleles could allow bi-
allelically bound transcription factors to redistribute onto
one allele to achieve their lowest free energy state (the aggre-
gated state) [72, 78, 79], thus inducing the transition from
biallelic to monoallelic expression.

Methods for RNA-chromatin interactions
To map the RNA-associated chromatin in vivo, Chu et al.
and Simon et al. utilized biotinylated antisense DNA oligo

probes to capture a specific RNA that is associated with
chromatin [7, 8] (Table 1 and Fig. 3), named ChIRP-seq
(Chromatin isolation by RNA purification) and CHART-
seq (Capture Hybridization Analysis of RNA Targets) re-
spectively. They first fixed cells with either glutaraldehyde
(ChIRP) or formaldehyde (CHART) and sheared chromatin
into small pieces by physical sonication. To minimize the
noises caused by the non-specific interactions of DNA
probes and chromatin DNA or proteins, CHART includes
an RNase H step to elute the RNA-chromatin complexes.
This is to ensure that only lncRNAs-complexes that are tar-
geted by DNA probes will be eluted by RNase H, which
specifically degrades RNA of RNA-DNA hybrids. Later, a
hybrid method was developed, called CHIRT-seq, which
combines glutaraldehyde fixation and RNase H elution [10]
to identify genomic binding sites for TERRA RNA. Accu-
mulating studies have used ChIRP-seq to determine the
genomic bindings of many lncRNAs, including NEAT1,
MALAT1, HOTAIR and MEG3, TERC, LTR ERV-9 [80,
81]. CHART-seq had also successfully identified Xist,
NEAT1, and MALAT1 genomic binding sites [8, 9].
Recently, several methods were developed to reveal all in-

teractions between RNA and DNA in the nucleus, including
MARGI-seq (Mapping RNA-genome interactions), ChAR-
seq (Chromatin-Associated RNA sequencing), and GRID-
seq (Global RNA Interactions with DNA) [11–13]. The idea
of these methods is to ligate chromatin-associated RNAs
with their target genomic sequences by proximity ligation
using a linker, thus forming RNA-DNA chimeric fragments.
These techniques revealed hundreds of chromatin-associated
RNAs including previously known lncRNAs and a large set
of non-coding RNAs that are bound to active promoters, en-
hancers, and super-enhancers in a tissue-specific manner
[11–13]. All-to-all mapping ideally can discover all inter-
actions of RNA-chromatin, however, the coverage depends
on the ligation efficacy, the distances between RNA and
genomic DNA, as well as the abundance of RNAs.
As discussed previously, long non-coding RNAs may

serve as scaffolds to bring two or several distant DNA
loci into spatial proximity. To understand how a specific
RNA interacts with chromatin in a 3D space, Mumbach
et al. developed a method, named HiChIRP, which com-
bines Hi-C and ChIRP [14]. They incorporated azido-
CTP into chromatin contacts, captured RNA-chromatin
using biotinylated probes, conducted the copper-free
dibenzocyclooctyne (DIBO) ‘CLICK’ chemistry to cova-
lently conjugate a biotin for subsequent contacts, and se-
quenced the DNA contacts. They performed HiChIRP
on 7SK small nuclear RNA (snRNA), telomerase RNA
component (TERC) and lincRNA-EPS [14]. They found
that thousands of loops were enriched on 7SK HiChIRP,
and some of them in promoters and active regulatory el-
ements. They also showed that TERC is not only associ-
ated with loops that formed between telomeres but also
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with enhancer-promoter loops at some oncogenes, im-
plying a role of TERC outside of telomeres. Therefore,
their results provide insights into how lncRNAs mediate
inter- or intra-chromatin looping.

Methods for RNA-protein interactions
RNA binding proteins (RBPs) are associated with a large
number of human disorders, such as autoimmune and
neurologic diseases [82–84]. Remarkable examples in-
clude FMRP in the Fragile-X mental retardation protein
[83], the neuron-specific Nova and Hu proteins in the
paraneoplastic neurologic degenerations [84] and the
small nuclear ribonucleoproteins (snRNPs) in systemic
lupus erythematosus [82]. To identify RNAs that interact
with these proteins in vivo, Ule et al. combined UV
cross-linking with immunoprecipitation (CLIP) to pull
down RNA-protein complexes [15] (Table 1 and Fig. 4),
and the captured RNAs are sequenced. Because CLIP re-
lies on reverse transcription to pass over residual amino
acids that covalently attach to the RNA at the cross-link

site, cDNAs tend to prematurely truncate immediately
before the cross-link nucleotide [15]. Later on, they re-
solved this problem by PCR amplification of truncated cDNAs
via self-circularization of cDNAs, and developed individual-
nucleotide resolution UV cross-linking and immunoprecipita-
tion (iCLIP) to precisely map protein–RNA interactions [16].
Due to the fact of low efficiency of RNA-protein crosslinking
by UV 254nm in CLIP, Tuchi et al. developed a method,
named PAR-CLIP (photoactivatable ribonucleoside-enhanced
crosslinking and immunoprecipitation) [17], to improve the
crosslinking efficiency by incorporating 4-thiouridine (4SU)
into nascent RNA transcripts in living cells. The cells were
then irradiated by UV 365nm to induce efficient crosslinking
of photoreactive nucleoside (4SU)-labeled RNAs to interacting
proteins (Table 1). PAR-CLIP has been applied to identify the
transcriptome-wide binding sites of several RBPs and
microRNA-containing ribonucleoprotein complexes.
Recently, researchers have elaborated on the methods for

pulling down RNA-proteins complexes via antisense oligos
that are complementary to targeted RNA sequences.

Interact with a
specific RNA

DNA identity

RNA-chromatin 

HiChIRP-seq

GRID-seq
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CHIRT-seq
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0
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0
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0
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0

150
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0

150

Interact with
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Interact with a
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Interact with
all RNA
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all RNA
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Reverse
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Fig. 3 Mapping RNA-chromatin interactions. In ChIRP-seq, CHART-seq, and CHIRT-seq, RNA associated chromatin complexes are crosslinked by
formaldehyde or glutaraldehyde, captured by antisense oligos that target a specific lncRNA, and DNA fragments that are associated with RNA-
protein complex are sequenced. For all-to-all interactions (MARGI-seq, ChAR-seq, and GRID-seq), a linker is ligated to connect DNA and RNA.
DNA-RNA chimeras are sequenced. HiChIRP-seq combines Hi-C and ChIRP to identify the interacting chromatin (inter- and intra-chromatin
interactions) of a specific lncRNA
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Therefore, this type of capture is not limited by the require-
ment of antibodies against the proteins of interest for im-
munoprecipitation. In 2015, three groups established RNA-
centric capture methods, including iDRiP-MS (identifica-
tion of direct RNA interacting proteins), RAP-MS (RNA
antisense purification coupled with mass spectrometry) and
ChIRP-MS (comprehensive identification of RNA-binding
proteins by mass spectrometry) to determine Xist RNA
interacting proteins [18–20] (Table 1 and Fig. 4). In these
three studies, cells were initially crosslinked to preserve
RNA-protein interactions, and RNA-protein complexes
were further purified by biotinylated antisense oligos
along with highly denaturing purification conditions.
ChIRP-MS utilizes formaldehyde to crosslink RNA-
protein complexes, whereas RAP-MS and iDRiP-MS
apply UV light for crosslinking (Table 1 and Fig. 4).
Given that UV light is a short-range crosslinker, the
RNA-protein interactions revealed by RAP-MS and
iDRiP-MS tend to be direct. In contrast, the formalde-
hyde crosslinking fixes much larger macromolecular

networks and generally leads to identify both direct and
indirect factors.
To identify all RNA-binding proteins (RBPs), RBR-ID

(proteomic identification of RNA-binding regions) intro-
duces 4SU (4-thiouridine) into RNAs, crosslinks RNA-
proteins by UV light, and compares the mass spectrometry
of 4SU treated and non-treated samples [21]. An RNA-
crosslinked peptide has a different mass, so the intensity of
the signal is generally lower in the crosslinked sample com-
pared to the non-crosslinked sample (Table 1 and Fig. 4).
Using RBR-ID, about 800 previously unknown and known
RNA-binding proteins, such as chromatin factors (CTCF,
ATRX, HDAC1, DNMT3, EZH2, TET1, TET2 and HP1),
were identified as RBPs in mouse embryonic stem cells [21].

Methods for RNA-RNA interactions
Unlike DNA, RNA is a single strand of nucleic acids and
is capable of folding into 3D structures that range from
simple helical elements to complex tertiary structures
and quaternary ribonucleoprotein assemblies [85]. The
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changes in RNA structures directly affect their functions
in response to cellular conditions. Recently, high-
throughput techniques that combine nuclease digestion
[22, 23, 86] or chemical probing [24–26, 28] with next-
generation sequencing have revealed the single-stranded
or double-stranded regions of RNA molecules. FragSeq
(fragmentation sequencing) [22] utilizes nuclease P1,
which specifically cleaves single-stranded nucleic acids
(Table 1 and Fig. 5). PARS (parallel analysis of RNA struc-
ture) [23] maps RNA structure using RNase V1 or S1
nuclease to digest RNA to determine the double or single-
stranded regions, respectively. In SHAPE-Seq (selective
2′-hydroxyl acylation analyzed by primer extension
sequencing) [24–26], RNAs are treated with chemical
probes (such as 1M7) that covalently modify the RNA in
loops and bulges, thus blocking reverse transcription at
the modified sites. However, these methods may not
represent the RNA structures in vivo due to applying
in vitro transcription and in vitro folding of RNAs.
To profile genome-wide RNA structures in vivo, Ding

et al. developed a method, called DMS-seq [28] (Table 1
and Fig. 5). In the DMS-seq, cells are treated with di-
methyl sulfate (DMS) that methylates unprotected ade-
nines (As) and cytosines (Cs) of RNA, resulting in the
reverse transcriptase stalling at one nucleotide before
DMS-modified As and Cs during cDNA synthesis. A
year later, Chang’s group developed a method, termed
icSHAPE [27] (in vivo click selective 2′-hydroxyl acyl-
ation and profiling experiment and NAI-N3) to probe
RNA secondary structures in living cells for all four
bases. They used a cell-permeable SHAPE reagent, NAI-
N3, which adds an azide group to NAI (2-methylnicoti-
nic acid imidazolide) to label flexible regions of RNA.
After RNA isolation, a biotin moiety is selectively added
to NAI-N3-modified RNA by copper-free click chemis-
try, allowing the biotin-streptavidin purification of modi-
fied RNA after RNA fragmentation. By comparison of
in vivo and in vitro icSHAPE, they observed that all
RNAs are less folded in vivo, suggesting that RNA struc-
tures largely depend on intracellular environments.
Moreover, they found that regulatory RNAs, such as
lncRNAs and primary microRNA (miRNA) precursors,
preserve their structures better than mRNAs in vivo. To
selectively enrich some specific RNA molecules, COM-
RADES (cross-linking of matched RNAs and deep se-
quencing) combines RNA capture and CLICK chemistry
to probe RNA structures and RNA-RNA interactions
[29]. In the COMRADES method, cells are crosslinked
by azide-modified psoralen, following RNA capture
using biotinylated probes, and a copper-free click-
chemistry reaction is carried out to link a biotin moiety
to the cross-linked regions, allowing the second selec-
tion of the cross-linked regions for sequencing (Table 1
and Fig. 5).

In addition, an RNA molecule can base-pair with other
RNA molecules to form RNA duplexes (such as miRNA
and its target RNA) bound by RBPs. To identify miRNA
targets, Tollervey et al. developed a method, named
CLASH (crosslinking, ligation, and sequencing of hy-
brids) [30, 31] to identify human AGO1 interacting RNA
duplexes (Table 1 and Fig. 5). In the CLASH method,
RNA-protein complexes are UV-crosslinked and purified
by antibodies against RNA binding proteins, following
the ligation of RNA-RNA hybrids, and the chimeric
RNAs of RNA-RNA duplexes are deep sequenced. Simi-
larly, hiCLIP [32] also can map RNA-RNA duplexes
bound by RBPs. In the hiCLIP method, a linker-adapter
is introduced to the ligation step of RNA-RNA duplexes
to improve the ligation efficiency (Table 1 and Fig. 5).
Moreover, the ligation of two chimeric RNAs has been
applied to other methods including MARIO (Mapping
RNA interactome in vivo) [33], PARIS [34] and SPLASH
[35], which map all RNA-RNA interactions (RNA
structures and interactome) in living cells.

R-loops in gene regulation and genomic instability
R-loops are three-stranded nucleic acid structures in
which a strand of RNA hybridizes with a strand of DNA,
while the other strand of DNA loops out. The R-loop
structure was first described in 1976 in the study [87] in
which Thomas et al. showed that RNA could hybridize
to double-stranded DNA in the presence of 70% form-
amide in vitro. A year later, Roberts and Sharp used R-
loop hybridization technique to map an adenovirus 2
(Ad2) mRNA to its genome and found that some DNA
sequences of the Ad2 coding gene were not hybridized
with the matured RNA, suggesting that Ad2 genome
consists of non-coding sequences, later known as introns
[88, 89]. Recently, genome-wide studies have shown that
R-loops are found in vivo, especially enriched in pro-
moter regions [36]. Ginno et al. demonstrated that R-
loop formation is involved in gene regulation via its po-
tential to protect DNA from methylation [36]. Moreover,
recent reports showed that antisense long noncoding
TARID (TCF21 antisense RNA inducing promoter de-
methylation) forms an R-loop at the TCF21 promoter,
thus facilitating GADD45A binding, local DNA demeth-
ylation and TCF21 expression [90, 91]. Another example
is GATA3-AS1 lncRNA, which forms an R-loop struc-
ture with the central intron of GATA3-AS1 and tethers
the MLL H3K4 methyltransferase to GATA3 gene locus,
thereby regulating GATA3 expression [92]. Furthermore,
it has been proposed recently that R-loops act as intrin-
sic Pol II promoters to induce lncRNA transcription
[93]. The depletion of R-loops by overexpressing RNase
H1 causes the selective reduction of antisense lncRNA
transcription [93].
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It is generally believed that R-loops form in cis during
transcription when a nascent RNA hybridizes to the
DNA template behind the moving RNA polymerase
[94]. However, research in yeast suggests that RNA:DNA
hybrids can form in trans, which means that an RNA
transcript at one locus hybridizes with homologous
DNA at another locus [95], and the hybrids are likely in-
volved in homologous recombination. Moreover, excel-
lent studies have shown that genome instability arises
from lesions generated from the formation of R-loops
[95, 96]. Because transcription and replication share a

common DNA template, when replication forks encoun-
ter transcription machinery, it results in transcription-
replication collisions that lead to DNA damage. There-
fore, the persistent RNA:DNA hybrids could be threats
for genomic rearrangements [96].

Methods for mapping R-loops
To map R-loops in a genome-wide scale, Ginno et al. de-
veloped a method, named DRIP-seq (DNA-RNA immu-
noprecipitation coupled to high-throughput sequencing),
which utilizes an antibody (S9.6) [36] to specifically
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purify RNA:DNA hybrids (Table 1 and Fig. 6), and the
captured DNA fragments are further sequenced. Con-
ventional DRIP-seq generally produces a robust signal
but has a limited (approximately kilobase) resolution, a
higher background, and a lack of strand specificity. An-
other method, named DRIPc-seq (DNA:RNA immuno-
precipitation followed by cDNA conversion coupled to
high-throughput sequencing), which builds on DRIP, ex-
cept that a strand-specific RNA sequencing is performed
to profile R-loops [40]. DRIPc-seq increases the resolution
of R-loop profiling and shows the strand-specificity. How-
ever, the sensitivity of DRIP for revealing authentic R-loops
in vivo has been doubted due to the fact that the immuno-
precipitation for R-loops is usually performed using isolated
genomic DNA without any crosslinking. Thus R-loops could
be disrupted or formed in vitro after cell lysis. Dumelie et al.
developed a method, named bisDRIP-seq (bisulfite-based
DRIP-seq) [38], which selectively labels the single-stranded
DNA that loops out from an R-loop. They used bisulfite to
convert cytosine residues into uracil residues within the gen-
omic DNA regions that contain single-stranded DNA simul-
taneously when cells were lysed. Their results showed that
bisDRIP-seq could map R-loops at near nucleotide reso-
lution and detect the boundaries of R-loops. In contrast to
DRIP, R-ChIP (RNase H chromatin immunoprecipitation)
utilizes an RNase H, which specifically recognizes DNA:RNA
hybrids in vivo to map R-loops [39]. By expressing a catalyt-
ically dead enzyme, R-ChIP captures R-loops using a stand-
ard ChIP-seq protocol, which involves both fixation to
stabilize R-loop/RNase H complex and sonication to increase
the resolution (Table 1 and Fig. 6).

lncRNAs mediate phase separation of membrane-less
organelles
Cellular organelles such as mitochondria and Golgi ap-
paratuses composed of lipid bilayer membrane struc-
tures, which help the formation of compartments and
separate biological processes within a cell. In contrast,
membraneless structures are formed through a process
known as liquid-liquid phase separation (LLPS) and are
made of RNA-protein droplets [97]. One of the most
prominent membraneless structures in the nucleus is
the nucleolus [98], which produces the ribosomal RNA
and consists of a variety of proteins and RNA. Studies
have shown that rRNA transcription is important for nu-
cleolar assembly [50, 51, 99, 100]. Other membraneless
structures, such as paraspeckles, Cajal bodies (CBs), his-
tone locus bodies (HLBs) and promyelocytic leukemia
(PML) bodies are also found in the nucleoplasm as
phase separated-like droplets (Fig. 7), while stress bodies
and process bodies are RNA granules in the cytoplasm.
DNA is typically absent from the interior of these liquid-
like droplets, whereas lncRNAs serve as scaffolds for
their formation and maintenance [101–103].
How do RNAs promote phase separation synergistic-

ally with protein-protein interactions? The in vitro stud-
ies reported that RNA repeats, such as trinucleotide
repeat and G-quadruplex, can undergo a phase transi-
tion to form either a condensed liquid or a gel-like state
[104] through the multivalent base-pairing between
RNA molecules. Droplet-like assemblies of RNA are as-
sociated with certain neurodegenerative diseases, includ-
ing Huntington disease, muscular dystrophy, and
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amyotrophic lateral sclerosis [105]. It has been proposed
that such gel-like RNA foci may contribute to neuronal
dysfunction in vivo. A recent study showed that RNA
plays an important role in the phase behavior of prion-like
RBPs, such as TDP43 and FUS [106], which are largely
soluble in the nucleus but form solid pathological aggre-
gates when mislocalized to the cytoplasm. The in vitro
studies indicated that the ratio of RNA/protein is import-
ant for droplet formation and phase separation [106].
Remarkably, reduction of nuclear RNAs or disruption of
RNA binding leads to excessive phase separation and the
formation of cytosolic assemblies in cells [106], suggesting
that the higher RNA concentrations in the nucleus act as
a buffer to prevent aggregation of RBPs in the cytoplasm.
Then the question is how the RNA/protein ratio is regu-
lated in such droplets. Hondele et al. recently reported
that RNA flux into and out of phase-separated organelles
is controlled by RNA-dependent DEAD-box ATPases
(DDXs), which contain low-complexity domains (LCDs)
that are crucial for the formation of multivalent mesh-
works within membraneless droplets [107]. In addition,
Ries et al. showed that methylation on mRNAs triggers
phase separation of endogenous compartments, such as P-
bodies, stress granules or neuronal RNA granules [108].
These studies indicate that the abundance of nuclear
RNAs and the modifications of RNA contribute to the dy-
namics of such membraneless organelles. However, there
are intriguing questions that remain elusive. How do RNA
structures impact on phase separation? How do RNA-
mediated droplets involve in chromatin organization and
gene regulation? What signals trigger the reorganization
of such structures?

Conclusions
The Human Genome and ENCODE Projects have
shown that above 90% of the genome is transcribed [1,
72] into non-coding RNAs. However, the functions of
most non-coding RNAs remain largely unknown. In the
last decade, emerging new techniques combined with
high throughput sequencing have profiled the interac-
tions between DNA, RNA, and proteins, thus facilitating
the studies of lncRNAs functions in cells. LncRNAs can
act as a guide, or decoy, or a scaffold for protein
complexes to mediate the epigenetic regulation [109].
Chromatin-associated lncRNAs involves nuclear archi-
tecture and chromatin conformation. Given that
lncRNAs are long and mobile, they could serve as brid-
ges to mediate chromatin looping and to drive the inter-
or intra-chromosomal interactions [44, 45]. Moreover,
RNA is able to hybridize with DNA to form R-loops,
which have been found to contribute to gene regulation
and genomic instability. RNA also mediates the liquid-
liquid phase separation through its ability being as a
multivalent scaffold for the binding of RBPs, thus
regulating the sizes and the dynamics of membraneless
organelles that carry biological processes. It is still a
beginning to uncover the surface of the lncRNA world.
There are still a lot we don’t know and plenty of work
that needs to be done. Because RNA molecules consist
of specific sequences, it is realistic and easy to design
drug targets by blocking their actions using antisense
oligos, RNA interferences, or aptamers. We hope that by
understanding the mechanisms of lncRNAs action,
RNA-centric therapies could be potential options to
treat human diseases.
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