
–341–

I. Introduction

The study of viscous flow phenomena behind a cir-
cular cylinder in an unbounded region has a long history
dating back to the nineteenth century.  Since then, various
important features common to practical flows that are usu-
ally complicated geometrically have been observed in this
simple flow setup.  Therefore, due to its scientific and en-
gineering significance, this flow has motivated numerous
scientists and engineers to investigate its flow physics and
engineering applications through theoretical, experimental
and, more recently, computational approaches.

One of the most fundamental phenomena observed
in this flow is laminar separation at low Reynolds num-
bers.  The flow separates on the downstream side of the
cylinder at Reynolds numbers greater than some onset
value.  Separation occurs due to the fact that vorticity con-
vection is more effective than vorticity diffusion.  Once
separation occurs, two symmetric standing eddies then
form and attach to the cylinder.  Their size grows as the
Reynolds number is increased.

Regarding this phenomenon, there have been many
reports in the literature.  Most studies have attempted ei-
ther experimentally or computationally to simulate the un-
bounded flow in a domain which is bounded in some
direction (usually normal to the inflow).  A literature sur-
vey shows that early pioneering investigations relied main-

ly on experimental observations, probably due to the lack
of an effective analytical tool.  Various estimations of the
onset Reynolds number beyond which the flow separates
from the cylinder have been reported, e.g., 3.2 (based on
the diameter of the cylinder and the uniform velocity of
the incoming flow) reported by Nisi and Porter (1923), 6
reported by Homann (1936), 5 reported by Taneda (1956),
and 4.4 reported by Coutanceau and Bouard (1977).  Such
variability in experimental findings is somewhat to be ex-
pected.  It arises partly due to two facts.  On the one hand,
at the early development stage of the attached eddies, their
sizes are quite small.  On the other hand, their positions
are situated in the immediate neighborhood of the rear
stagnation point where the velocity is extremely small.
Therefore, they are quite difficult to detect immediately
upon their emergence.  Nevertheless, Pruppacher et al.
(1980) summarized various experimental data and con-
cluded that the standing eddy should begin to develop at a
Reynolds number of around 5.

One point about the experiments which needs be
addressed is that though they attempted to simulate the
flow in an unbounded domain, they were carried out in
facilities of finite size.  Therefore, one must examine how
the presence of confining walls affected the development
of the flow phenomena.  Several reports have focused on
this consideration, including works by Grove et al. (1965),
Acrivos et al. (1968) and Coutanceau and Bouard (1977).
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ABSTRACT

In the literature, the separation of a uniform flow past a circular cylinder is a classical problem. Tradition-
ally, most studies were conducted in an unbounded flow domain, which introduces insurmountable difficulties into
the analysis from the theoretical and numerical points of view. The present study was carried out in domains
bounded by two parallel plates, and the effects of three different sets of boundary conditions on the flow develop-
ment were explored. The first two sets of boundary conditions represent infinite and semi-infinite channel flows
disturbed by the presence of a cylinder, respectively. The third one represents a lateral domain truncation usually
encountered in computations of external flows. A comparison between these two categories reveals that the speci-
fication of boundary conditions does not significantly affect the onset Reynolds number of the recirculating eddy.
However, under the third set of boundary conditions, the development of separation bubbles is slightly nonlinearly
related to the Reynolds number and the onset separation Reynolds number. In addition, the growth of the separa-
tion bubbles varies significantly for different boundary setups and diameter-to-width ratios.
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In general, all the data in these references show that the
onset Reynolds number increases as the diameter-to-width
ratio (defined as the ratio of the diameter of the cylinder to
the characteristic length of the experimental apparatus) is
increased, and that the effect is significant even at a small
ratio (say, 0.07).  In addition, all these three experiments
yielded results which indicated that the eddy length varied
nearly linearly with the Reynolds number at a finite diam-
eter-to-width ratio.

As for numerical studies, the problem of estimating
the onset Reynolds number for separation has not yet been
carefully and systematically investigated, though many re-
ports on computationally separated flow can be found in
the literature (see, e.g., Coutanceau and Bouard (1977)).
More recently, the most extensive numerical study on
standing eddies was done by Fornberg (1980, 1985).  He
attempted to simulate the unbounded flow in a carefully
truncated flow domain.  The truncation was based on O-
seen approximation and some theoretical considerations.
Then he computed the flow within the truncated region at
Reynolds numbers up to 600 and studied the eddy devel-
opment in detail, including the vorticity distribution,
length growth rate, and so on.  Based on careful computa-
tions, he concluded that the eddy region grew in length
approximately linearly with the Reynolds number.

As for theoretical investigations, most of the studies
have been done by Smith (1979, 1981, 1985).  Starting
with a triple-deck model, he showed that in an infinite
domain, the length of the eddy was of order of Reynolds
number.  That is, the relation between the length and the
Reynolds number is linear.  This theoretical conclusion
has been confirmed by many experiments and a numerical
study by Fornberg (1985).  However, Smith’s theory is un-
able to predict the onset Reynolds number since he as-
sumed that the eddy appeared for Reynolds numbers
greater than zero.

In the literature, it is quite interesting to find that lit-
tle attention has been paid to the problem of determining
the onset Reynolds number at which twin eddies appear.
As mentioned above, determining this number is still
beyond the capability of current theoretical development.
This remains an open problem requiring further investiga-
tion.  It was our purpose in the present study to examine
computationally the flow at the early separation stage and
to determine the onset Reynolds number.

However, instead of considering this in a traditional
manner where the flow domain extends to infinity in all
directions, we this problem by imposing two parallel
plates so that the flow is bounded in some directions.  We
do so for two reasons.  Firstly, for a flow which is un-
bounded in all directions, truncation of the flow domain is
inevitable in any numerical simulation.  However, this will
pose many difficulties, mainly due to the fact that there
are only partial estimates for the decay of solutions of the

Navier-Stokes equations at large distances.  Accordingly,
there is no way of knowing how to truncate the flow
domain for computational purposes so as to provide a
provable approximation of the flow in the unbounded
domain.  Secondly, as mentioned above, since all experi-
ments must be carried out in experimental facilities of
finite size, no theoretical or computational investigation
can be directly compared with experimental investiga-
tions.  As for the present study under the imposition of
two parallel plates, the result can be directly verified or
compared with the results of careful experiments.

II. Mathematical Formulation of Flows

A circular cylinder is placed in the flow bounded by
two parallel plates which extend upstream and down-
stream infinitely far, as schematically shown in Fig. 1.
The flow is driven by either pressure gradients or plate
motions, depending on the specified boundary conditions,
which will be prescribed later.  A recirculating region of
length l is formed for Reynolds numbers exceeding some
onset values.  The width of the gap between the two plates
is w, and the diameter of the cylinder is d < w.  The center
of the cylinder is on the centerline of the flow domain,
which forms a symmetric flow.

The fluid motion in the domain can be mathemati-
cally represented by the incompressible continuity and
momentum equations, which, in nondimensional form, are

(1)

(2)

Here U(x) = (u(x),v(x)) and p(x) are the velocity and pres-
sure fields, respectively, at a field point x = (x,y) in the
flow domain D.  R is the Reynolds number, defined as 

(3)

where v is the kinematic viscosity of the fluid and Uc is
the far-upstream centerline velocity.

To solve the governing equations, one must imple-
ment proper boundary conditions.  These conditions can

R
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Fig. 1. Schematic of the flow domain.



be set up to represent different flow conditions, depending
on what motion of the plates and what upstream fluid flow
are prescribed.  Three different flows of particular interest
are described in the following.

(1) Flow between two stationary infinite plates.
This flow is driven by a constant pressure gradient.
Without the presence of a cylinder, such a flow is
usually referred to as Poiseuille flow.  Because of
viscous dissipation, the flow far upstream and
downstream of the cylinder must be fully devel-
oped.  Consequently, the boundary conditions are

The nondimensional volume flow rate per unit
width is 2/3.

(2) Flow between two stationary semi-infinite plates.
This prescription constitutes an entrance flow be-
tween parallel plates.  In this situation, the inflow
can be readily prescribed with a uniform velocity
distribution at the entrance.  The cylinder is placed
within the uniform core of the entrance flow, which
results when the cylinder is not present.  Again,
due to viscous dissipation, the flow develops
downstream, and finally, a fully developed velocity
profile is achieved for a low Reynolds-number
flow.  Therefore, the boundary conditions can be
specified as follows:

The nondimensional volume flow rate for this set-
up is unity, which is different from that of the first
setup.

(3) Flow between two infinite plates moving at a con-
stant speed.
In this case, the flow is driven by the motion of the
plates.  Clearly, the resulting incoming flow is uni-
form far upstream.  This set of boundary conditions
represents, in effect, an artifice which truncates an
unbounded flow in some directions for computa-
tional purposes.  It has most often been employed
in previous studies to examine numerically the ex-
ternal uniform flow past a circular cylinder.  How-
ever, a problem associated with this set of condi-

tions is its implication that the vorticity generated
by the cylinder cannot diffuse beyond the lateral
boundaries.  In addition, one of the difficulties
which may arise in this setup is that, as far as our
understanding of the physics is concerned, there
exists no physically sound or mathematically rigor-
ous downstream boundary condition.  “Approxi-
mate” conditions, in the sense that they may yield
“good” approximate solutions to the real physical
flow, are usually employed.  In this study, we em-
ployed the downstream boundary conditions which
have most often been used in the literature.  All of
the boundary conditions are specified as follows:

and

∂U/∂x = 0,  on the downstream boundary.

The nondimensional flow rate per unit width is
unity, which is the same as that under the second
set of boundary conditions.

To sum up, one of the advantages of introducing two
parallel plates is that one can easily specify physically and
mathematically rigorous boundary conditions, as argued by
Chen et al. (1995).  This is especially true for the first two
flow setups.  In addition, the computational domain is legal-
ly bounded in the direction normal to the incoming flow.

In practical computations, we take advantage of the
fact that all three flow setups and the flow phenomena
which are of interest in the present study are all symmetric
about the centerline.  This common feature reduces the
amount of computation since one can investigate the flow
development in only half of the domain and impose sym-
metric boundary conditions on the centerline, i.e., ∂u/∂y =
0 and v = 0, along the centerline.

Finally, imposition of two parallel plates gives rise
to a geometrical parameter, namely, the diameter-to-width
ratio Dr:

(4)

This parameter serves as an indicator that shows how
“broad” the flow extends in the lateral direction.

III. Numerical Solution Formulation

The penalty Galerkin weak formulation was employ-
ed to formulate the variation form of the Navier-Stokes
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equations, and the resulting equations were discretized
using the Crouzeix-Raviart finite element method (Crou-
zeix and Raviart, 1973).  The particular approach used in
the present study was to employ enriched P2

+ – P1 ele-
ments.

In the penalty methods, a perturbation consisting of
the product of a small parameter and the pressure is intro-
duced to the continuity equation.  Therefore, instead of
solving the exact differential equation system, Eqs. (1)
and (2), one solves the following perturbed Navier-Stokes
equations:

(5)

(6)

The feasibility of this approach has been demonstrated by
Temam (1979).

Then, the perturbed governing equations can be for-
mulated variationally as follows:

(7)

where v = v(x) is any eligible test vector-valued function
satisfying appropriate boundary conditions.  Each term in
Eq.  (7) is defined as follows:

(8)

(9)

and (., .) is the usual inner product defined as (r(x), s(x)) =

∫D
r(x)s(x)dx.  In Eq. (8),

with u = (u1, u2) and v = (v1, v2).  Once the velocity field is
solved, the pressure field can be directly recovered from
Eq. (6).

1. Computation Procedures

After the Galerkin weak formulation, Eq. (7), is
established, the approximate problem from which the
finite element solution is determined is defined in the
usual manner.  In the present study, the Crouzeix-Raviart
quadratic finite element method was employed.  The main
advantage of this penalty method lies in the fact that the
computation of the velocity and that of the pressure can be

decoupled, which leads to smaller systems of equations
with fewer unknowns.  In addition, no partial pivoting is
needed to solve the associated linear equation system.
Nevertheless, in practical computations, the value of the
penalty parameter ε must be chosen carefully.  The param-
eter must be small enough to approximate the incompress-
ible continuity equation well and yet large enough to pre-
vent the resulting simultaneous equation system from
becoming so numerically illconditioned that it cannot be
solved in matrix computations.  Throughout the present
study, ε was set to a value of 10–6, which produced a fairly
consistent, good quality numerical results.

The application of the Galerkin finite element proce-
dure to the steady perturbed Navier-Stokes equations re-
sults in a set of nonlinear algebraic equations that may be
represented in matrix form as

A(U)U = B, (10)

where A is the global system matrix, U the discretized
velocity field, and B a vector which includes effects due to
boundary conditions.

To solve the nonlinear equation system, an iterative
solution method must be chosen.  Here, the method of
fixed point iteration (Picard iteration) was used for the
first several iterations, and then a quasi-Newton method
was employed to accelerate the convergence of iterations.
This strategy was adopted because the former method con-
verges for a fair range of Reynolds numbers and initial
guesses (though its convergence rate is only asymptotical-
ly linear), and the latter method is computationally eco-
nomic since its convergence rate is almost asymptotically
quadratic (though its radius of convergence is sometimes
quite small).

The algorithm for the fixed point iteration may be
written as

(11)

where the subscript i denotes the i-th iteration and U1 is
some initial guess.  For the quasi-Newton method, the
algorithm is formally written as

(12)

where s is the relaxation factor, J the Jacobian matrix, and
R = R(Ui) the residual, defined as

For the purpose of economy, the Jacobian matrix is updat-
ed by means of a first-order direct inverse approximation
proposed by Broyden (1965).
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2. Computational Considerations

Before any meaningful solution could be achieved,
several aspects of the computations had to be first ad-
dressed.

First of all, we carried out a series of computations
to assess the convergence of solutions based on mesh
refinement.  Several globally similar meshes with differ-
ent degrees of refinement were generated on the same
domain, (x,y) ∈ [–3.0, 4.0] × [–0.5, 0.5].  The ratios of the
total grid numbers in the computational domain, from the
coarsest to the finest one, were approximately 1.0 : 2.25 :
4.0 : 9.0 : 16.0 : 36.0.  The coarsest triangulation consisted
of 252 triangles and 817 nodal points while the finest
mesh was comprised of 9360 triangles and 28,445 nodal
points.  In these tests, the flow at R = 1 and Dr = 0.6 was
computed, under the first type of boundary conditions.
The penalty parameter was set between 10–6 and 10–9,
depending on the refinement of the mesh.

Assuming that the solution which is obtained with
the most refined mesh represents the “exact” solution, one
can calculate the measure of the relative velocity L2 differ-
ence between the two solutions.  Define

where N denotes the number of triangles in a particular
discretization, M the number of nodes on each triangle,
and Ai the area of the i-th triangle.  The subscripts f and c
represent the finest mesh and any coarser meshes, respec-

tively.  In addition,  • denotes the magnitude of a vector
quantity.  The L2 difference for the pressure field is simi-
larly defined.  In order to characterize the degree of refine-
ment of each mesh, the length of the longest triangle edge
in a triangulation, denoted by hmax, was chosen as the
length scale to represent the size of the mesh.  The results
shown in Fig. 2 indicate that the orders of convergence for
the velocity and pressure approximations due to mesh
refinement approaches the respective theoretical value, 3
for the velocity field and 2 for the pressure field.

As for the second aspect, of the computations, we
found that the size of the cylinder relative to the width of
the gap between the two parallel plates played an impor-
tant role in generating proper meshes for computations.
Different strategies for mesh generation in the region near
the cylinder must be developed for different diameter-to-
width ratios in order to not severely distort the meshes,
which would lead to “bad” solutions.  Shown in Figs. 3–5
are three different triangulations in the region around the
cylinder.  They were employed for small, medium, and
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Fig. 2. Convergence tests of the current finite element scheme.

Fig. 3. Domain triangulation near the cylinder for Dr ≤ 0.2.

Fig. 4. Domain triangulation near the cylinder for 0.2 < Dr ≤ 0.7.

Fig. 5. Domain triangulation near the cylinder for  Dr > 0.7.



large diameter-to-width ratios, respectively.  For Dr ≤ 0.2,
the triangulation shown in Fig. 3 was used.  In this range,
the cylinder is rather small, compared to the width be-
tween the parallel plates, and the eddy region is also quite
small.  Therefore, a very fine mesh must be employed
around the cylinder, especially in the expected eddy re-
gion, in order to obtain an accurate description of the
eddies.  Figure 4 shows the triangulation for intermediate
diameter-to-width ratios (0.2 < Dr ≤ 0.7).  It turned out
that computations in this range were easiest.  When Dr

exceeds 0.7, this type of triangulation is no longer appro-
priate because it becomes severely distorted near the con-
striction.  Instead, the triangulation shown in Fig. 5 is a
more suitable one.

The third aspect which had to be considered with
regard to the computations was how to determine the
onset Reynolds number at which the flow separates from
the cylinder.  Generally speaking, it is quite difficult to
determine through computations the onset Reynolds num-
ber directly since a very fine mesh would be required to
detect the emergence of eddies.  Therefore, an indirect
extrapolation procedure was instead employed to estimate
the value of the onset Reynolds number.  The physical
property adopted for the extrapolation procedure was the
eddy length because we found that it was related to the
Reynolds number through a simple relation.  The proce-
dure is briefly described as follows.

For each diameter-to-width ratio, the flow field was
computed at several Reynolds numbers.  The computed
centerline velocity distribution was then examined, and
the point where u = 0 was located and was defined as the
end of the eddy region.  To determine the location of this
point, a quadratic interpolation procedure using the veloci-
ty data found computationally was employed.  This proce-
dure is feasible because the shape function in enriched P2

+

– P1 Crouzeix-Raviart elements is itself quadratic for the
velocity field.  Through this procedure, a curve of the
eddy length versus the Reynolds number was drawn, and
an extrapolation of the curve fitted by an appropriate poly-
nomial function was made to estimate the onset Reynolds
number.

Finally, truncation of the domain had to be consid-
ered in the streamwise direction.  We would expect that
the extent of computational domain should be carefully
chosen in order for the flow phenomenon near the cylinder
to not be distorted.  To accomplish this, we usually trun-
cated the domain at several different upstream and down-
stream locations and examined the effects due to trunca-
tion on the flow development behind the cylinder, espe-
cially the global structure of the twin eddies.  This proce-
dure had to be first carried out for every diameter-to-width
ratio of interest to ensure that a domain-truncation inde-
pendent solution could be obtained in the region behind
the cylinder.

A thorough study showed that for each of the three
types of flow setup, the eddy length could be accurately
obtained as long as the domain was “long” in the sense
that the domain could accommodate the development of
the closed recirculating flow.  Figure 6 shows a typical de-
velopment of centerline velocity distributions for different
truncations.  These results were obtained under the condi-
tions Dr = 0.2 and R = 24.  Both plates were fixed (i.e., the
first set of boundary conditions).  The downstream trun-
cated boundary was set to be twice as far away from the
center of the cylinder as the upstream one.  The computa-
tional results seemed to indicate that the flow develop-
ment strongly depended on the domain truncation, unless
the domain was long enough for “natural” development.
For a short truncation, the flow was forced to develop in
the truncated region, and a fully developed flow was
forced to develop on the boundary.  However, it was also
noted the eddy length seemed to not be strongly influ-
enced by the computational domain.  As shown in Table 1
for the computed eddy length at different truncations, even
for a very short truncation, the eddy length was accurate
up to the third decimal.  Similar results were also obtained
for both of the other sets of boundary conditions.

To summarize, the results of the domain-truncation
study seem to provide with us a good property which en-
ables us to conduct computations in a small truncated
domain which would, in turn, reduce the computation
time.

J.H. Chen
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Fig. 6. Effect of the domain length on the centerline velocity distribution
at Dr = 0.2 and R = 24 under the first type of boundary data.



IV. Results and Discussion

General computations showed that care must be ex-
ercised in predicting small recirculating regions which
might appear under either small diameter-to-width ratios
or Reynolds numbers slightly above the separation onset
value.  The mesh in the wake region must be fine enough
to accurately capture the small flow region.

A measure of the mesh size can be properly defined as

where L = Lu + Ld is the length of the truncated domain in

the streamwise direction.  Since, in the following compu-
tations, all the meshes employed for each particular value
of Dr are similar in the sense that a finer mesh is obtained
by uniformly refining a coarser one, the value of H is an
indicator which can properly show the influence of the
mesh size on the variation of the solution.

For the first set of boundary conditions (Poiseuille
flow far upstream and downstream), a typical computed
result is shown in Fig. 7.  The corresponding Dr = 0.1, Lu

= 1.0 and Ld = 2.0.
One of the most significant features is that as the

mesh was refined, the computed data conformed very
closely to a linear relation between the eddy length and
the Reynolds number.  In fact, through a linear least-
squares fitting procedure, it was found that all these data
could be well fitted by a straight line like the solid one
shown in Fig. 7.  This observation indicates that it is quite
possible to easily and reliably estimate the onset Reynolds
number by using a linear extrapolation procedure.  For Dr

= 0.1, the extrapolation result shows that the onset Rey-
nolds number was Ronset = 6.9.

As an independent check of the estimate of Ronset, a
lower bound was also determined through computation at
a Reynolds number smaller than the estimated Ronset.  For
the case shown in Fig. 7, we arbitrarily chose a Reynolds
number of 6.7 for verification purposes.  The computation
was carried out under a very fine mesh with the same Lu

and Lu shown above and with H = 0.0462.  This triangular
mesh was four times as dense as the finest one employed
in the computations used to find the onset Reynolds num-
ber shown in Fig. 7.  The computational result did show
that there was no recirculating region attached to the
cylinder.  Therefore, this seemed to confirm that the onset
Reynolds number was not smaller than 6.7.

H
h

L w
=

⋅
max ,
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Table 1. Computed Eddy Length for Different Upstream and Down-
stream Truncations for the First Flow Setup (Dr = 0.2 and R =
24)

Case # Lu Ld Leddy

1 1.0 2.0 0.4123
2 1.5 3.0 0.4121
3 2.0 4.0 0.4122
4 2.5 5.0 0.4121
5 3.0 6.0 0.4121
6 3.5 7.0 0.4121
7 4.0 8.0 0.4121
8 4.5 9.0 0.4121
9 5.0 10.0 0.4121

Fig. 7. Computed eddy lengths at various Reynolds numbers under the
first set of boundary conditions (Dr = 0.1).

Fig. 8. The onset Reynolds number at various diameter-to-length ratios
for the first and second flow setups.



The onset Reynolds numbers of flow separation for
other diameter-to-width ratios are shown in Fig. 8.  The
value of Ronset increased as the diameter-to-width ratio was
increased.  To summarize the results of many experimen-
tal studies available in the literature, it is generally be-
lieved that the possible onset Reynolds number in an
unbounded domain with a uniform incoming flow lies be-
tween four and six.  According to the trend of the present
computational results, the curve seems to converge to the
same range as Dr approaches zero.  However, the function
between the onset Reynolds number and the diameter-to-
length ratio seems to not be very straightforward; no
extrapolation estimate of the onset Reynolds number at Dr

= 0 was attempted.
In addition, the present computations show that

although the flow perturbation due to the presence of the
cylinder varied in magnitude for different diameter-to-
width ratios, the decay of the disturbances in the down-
stream flow was only slightly affected for a fixed Rey-
nolds number based on the width of the gap between the
two plates.  As an example, Fig. 9 shows the recovery
velocity distribution on the centerline for various diame-
ter-to-width ratios at R = 75.  It is clear that each distribu-
tion reaches its unperturbed value at about the same dis-
tance away from the cylinder.  In fact, this phenomenon
can be understood since the decay rate is determined by
the eigenvalues of the spatial stability analysis of the plane
Poiseuille flow, which is independent of the size of the
cylinder.

For the second type of flow setup (entrance flow at
the upstream boundary), the flow field could be computed

in a way similar to that done for the flow with the first
type of boundary conditions.  We first compared the cen-
terline velocity distributions (a feature of the development
of the recirculating region) in the flow fields obtained
using these two sets of boundary data.  However, to make
a meaningful comparison, we had to define a new Rey-
nolds number.

There are two reasons for defining a new Reynolds
number.  First, based on the present definition, the two dif-
ferent sets of boundary conditions result in flows with dif-
ferent volume flow rates at the same Reynolds number or,
equivalently, the same centerline velocity provided that
the diameter of the cylinder stays the same.  This, in turn,
results in different mean velocities and, therefore, may
affect the development of the recirculating region behind
the cylinder.  For comparison purposes, a new Reynolds
number based on the average velocity at the narrowest
section of passage, i.e.,

was defined, and it seems more suitable to describe the
flow phenomena appearing behind the cylinder.  This defi-
nition takes the volume flow rate into consideration for the
flow development behind the cylinder.

Based on this new definition of the Reynolds num-
ber, a typical comparison of the centerline velocity distri-

R
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Fig. 9. Centerline velocity recovery after the flow passes the cylinder
under the first type of boundary data.

Fig. 10. Comparison of centerline velocity distributions due to different
upstream velocity profiles at the inlet boundary (Dr = 0.5 and
Rave =160).



butions for the two flows at the same Rave is shown in Fig.
10.  The computations were carried out under the condi-
tions Dr = 0.5, Lu = 0.7, Ld = 4.0 and Rave = 80.  It is sur-
prising to observe that the distributions behind the cylin-
der are so close to each other that it is difficult to tell them
apart.  This observation leads us to the second reason why
the new Reynolds number Rave was thus defined.  The
characteristic of the flow behind the cylinder seems to
indicate that the upstream boundary velocity profiles do
not sensitively affect the centerline velocity distribution
behind the cylinder or, more precisely, the length of the
recirculating region due to flow separation.  This could be
due to the fact that at a small Reynolds number, viscous
effects over the cylinder are prominent.  Furthermore,
when the flow passes through the narrow passage between
the plate and the cylinder, the upstream flow structure may
possibly by partially destroyed.  Therefore, the effects of
different upstream velocity distributions become insignifi-
cant for a fixed volume flow rate.  In other words, the cen-
terline velocity at the upstream boundary cannot fully
reflect the development downstream of the cylinder.  As
far as the development of the recirculating region is con-
cerned, Rave can serve as a better nondimensional parame-
ter.  This point will be made clear in the following discus-
sion.

Similar to the computation for the first flow setup,
we also attempted to estimate the onset Reynolds number
at various values of Dr via the linear extrapolation proce-
dure used above.  Careful computations did show that the
relation between the eddy length and the Reynolds num-
ber was linear.  Therefore, a linear extrapolation seemed
feasible for estimating the onset Reynolds number.  The
results are shown in Fig. 8.

Comparing the trend of the present results with that

obtained under the first set of boundary conditions, we
observe that there exists some similarity between them as
shown in Fig. 8.  According to the arguments discussed
above, the Reynolds number R based on the centerline
velocity at the upstream boundary is not a proper physical
parameter for the flow separation and the eddy-forming
feature.  If we redraw the relation shown in Fig. 8 based
on Rave, then we find that the two lines almost coincide
with each other, as shown in Fig. 11.  This coincidence
clearly indicates that the upstream boundary conditions do
not play a key role in the development of the flow separa-
tion at low Reynolds numbers.

Finally, we studied the third flow setup (effectively,
the truncation of an infinite flow in all directions).  The
computations showed a story different from the otehr two.
Two features were observed.

At Dr = 0.1, the relation between the eddy length
and the Reynolds number was found to be linear, as in the
first two flow boundary setups.  However, for Dr > 0.1,
this linear relation was destroyed and became slightly
nonlinear.  Shown in Fig. 12 are some data computed at Dr

= 0.7.  The curves are slightly concave upward.  Com-
putations showed that the nonlinearity of the relation be-
came stronger as Dr was increased.  Nevertheless, its ef-
fect was quite limited even at a large value of Dr, say 0.7.
This phenomenon may be due to somewhat less efficient
vorticity diffusion or somewhat faster vorticity convection
in the flow field.

Through a careful study of least-squares curve fit-
ting, we found that these data could be well fitted by a
quadratic polynomial function, with residuals of less than
10–5.  We then used this quadratic relation to extrapolate
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Fig. 11. The onset Reynolds number at various diameter-to-length ratios
for the second flow setup.

Fig. 12. Computed eddy lengths under various Reynolds numbers (Dr =
0.7).



the onset Reynolds number.  The results are shown in Fig.
13.

In addition to the nonlinear growth, we found that at
Dr = 0.1, the onset Reynolds numbers were 4.6 and 6.2 for
the flows, respectively, obtained under the second and
third sets of boundary conditions, both of which had the
same volume flow rate at the same Reynolds number.
This comparison shows that the appearance of separation
of the flow with the third boundary data set exhibited sig-
nificant delay.  This delay could also be observed at all
other values of Dr as shown in Figs. 8 and 13, but the
deviation between them did not vary significantly with Dr.

V. Concluding Remarks

In this study, we have re-examined the development
of an attached recirculating eddy behind a cylinder.  Our
approach is based on introduction of two parallel plates in
the streamwise direction.  Flows due to different boundary
conditions were computed and the results have been dis-
cussed.  It seems to us that the first two different sets of
boundary data (Poiseuille flow past a circular cylinder and
entrance flow past a circular cylinder, respectively) did
not have significantly different effects on the development
of the recirculating flow region and the emergence of flow
separation at low Reynolds numbers.  They yielded almost
the same results under some proper scaling.  The elonga-
tion development of the recirculating region linearly fol-
lowed the Reynolds number, however it was defined.
This trend is identical to the theoretical arguments put for-
ward by Smith (1979).

The third setup of boundary conditions, which repre-
sents the traditional approach, showed a slightly nonlinear
relation between the length development of the recirculat-
ing region and the Reynolds number in a severely laterally
truncated domain, in contrast to the familiar linear relation
in an external flow.  Furthermore, the onset Reynolds
number obtained in this boundary data set showed signifi-
cant deviation from those obtained under the first two sets.
This implies that different boundary data can introduce
different vorticity convection and diffusion speeds.
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