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ABSTRACT

Error detection, diagnosis and accommodation play key roles in the operation of autonomous robotic systems.
System faults, which typically result in changes of critical system parameters or system dynamics, may lead to degradation
in performance.  This fact is especially important for time optimal robot control when the system parameters reach
their critical values and even small changes can lead to accuracy degradation.  This paper investigates the problem
of error diagnosis in robotic manipulators under computed torque control using neural network and fuzzy logic elements.
A learning architecture with neural networks serving as on-line approximators with fuzzy logic elements in the control
unit is used for the diagnosis of robotic system errors and error accommodation.  Approximation using neural networks
provides a model of the error characteristics that can be used for the detection and elimination of errors in robot functioning.
Simulation results illustrate the ability of the neural network based error diagnosis method with the fuzzy elements
described in this paper to detect and accommodate errors in a two-link robotic manipulator under time optimal control.

Key Words: time optimal control, adaptive robotic system, autonomous robotic system, error detection, neural network,
fuzzy logic element
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I. Introduction

Robotic systems are widely used in different complex
engineering applications that demand high performance and
productivity.  Interest in the problem of controlling robotic
manipulators in the minimum amount of time is motivated
by the desire to reduce the number of cycle times in industrial
applications, such as laser cutting, welding, high pressure water
jet cutting, etc.

The well-known approach to the problem of time optimal
control of robotic manipulators was proposed by Cahill et al.
(1995).  He proposed the theory and two schemes for adapting
time optimal trajectory algorithms for application in robots
under computed torque control.  This provides a practical foun-
dation for achieving near time optimal performance while
tracking paths to a prescribed tolerance.  In time optimal control
of robotic manipulators, the main characteristics of the robotic
system (accuracy, cycle time and joint torques) reach their
critical values.  This means that even a small change in the
robotic system parameters may significantly degrade robotic
system performance, including engine saturation and accuracy
degradation (Bobrow et al., 1985; Freyermuth, 1991).

In application environments, robotic system faults, which
are mainly characterized by changes in the system parameters
or in the manipulator dynamics, can result not only in loss
of productivity, but also in loss of accuracy, as is the case with

time optimally controlled robots.  Difficult and dangerous
environments limit the ability of humans to perform any
supervisory or corrective tasks (Ayoubi, 1994; Dawson et al.,
1995; Izermann, 1995; Nishivaki, 1986).

This paper presents a learning method based on nonlinear
modeling techniques for detecting errors in rigid link robotic
manipulators under time optimal control.  The robot dynamics
are assumed to be known exactly prior to the appearance of
errors.  The multi-layered neural network is used to monitor
the robot for changes in  dynamics.  With the aid of the fuzzy
logic elements, the computational approach to the estimation
of robot faults is significantly improved.  This results in a de-
crease in the elapsed time for error accommodation.  The
approximation capabilities of the neural network are used here
not only to detect the occurrence of system failures, but also
to provide on-line estimates of the fault characteristics (Antsaklis
and Passino, 1992; Ayoubi, 1994; Dash and Panda, 1996).

The main component in the error monitoring architecture
is the development of a nonlinear estimation scheme that al-
lows the use of systematic learning procedures for detecting
and accommodating errors (Dawson et al., 1995; Driankov
et al., 1993; Kandel and Langholz, 1994).  The error diagnosis
algorithm relies on measurements from sensors used to control
the robotic manipulator.  Hence, this approach does not require
any additional equipment.  The process of error diagnosis in-
cludes the following stages: detection, diagnosis (identification
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of the error cause) and accommodation (reconfiguration of the
robotic system to accommodate the error) (Izermann, 1995).

In many applications, error diagnosis schemes are built
using hardware redundancy.  In these schemes, redundant
physical subsystems, for example, multiple sensors, are in-
corporated into the system.  Generally, the additional cost and
complexity of the suggested redundant hardware makes these
architectures unattractive.  Another approach is analytical re-
dundancy.  In these architectures, sensor measurements are
processed to estimate the value of a desirable variable using
a robot model. The estimate is then compared with the measured
value of the variable to generate a residual (Freyermuth, 1991;
Guez et al., 1998).

A number of researchers have worked on the problem
of designing automated error diagnosis schemes for robotic
systems using analytical redundancy methods, but most of the
developed error diagnosis schemes exclusively use linear nom-
inal robotic models with faults that are modeled as external
additive input signals of time (Ayoubi, 1994).  Accurate repre-
sentation of the robotic system requires nonlinear modeling.
The use of linear techniques results in modeling errors leading
in some cases to degraded performance of the error diagnosis
system.  Robotic system faults often cause unpredictable non-
linear changes in the dynamics of the robot.  Thus, to take
into account a large class of practical failure situations, a
nonlinear modeling framework is required (Izermann, 1995).

II. Robot Dynamics

The robot dynamics can be considered to be governed
by

ττ  = M(q)q” + n(q, q’) − γ(t − T)β(q, q’, ττ ),        (1)

where q, q’ and q” are vectors of joint positions, velocities
and accelerations, respectively, ττ  is the input torque vector,
M(q) is the inertia matrix, and n(q, q’) represents coriolis,
centripetal, friction and gravity terms.  The term β(q, q’, ττ )
is a vector which represents the fault in the robotic manipulator,
γ(t − T) represents the time profile of the fault, and T is the
time of fault occurrence.

For convenience of analysis, the changes in the dynamics
due to a fault can be represented as

β(q, q’, ττ ) = M(q)β(q, q’, ττ ). (2)

With this representation of the faults, the robot dynamics can
be rewritten as

q” = M−1(q)(ττ  − n(q, q’)) + γ(t − T)β(q, q’, ττ ).      (3)

Here, β is a function of time and not an explicit function of
the position q, the velocity q’ and the input torque ττ .

Robotic manipulator failures are usually characterized

by changes in critical system parameters, for example, the mass
of a link, or introduction of some unknown structural dynamics,
both of which result in nonlinear changes in the manipulator
dynamics.  Thus, an accurate description of fault conditions
resulting in a decrease in robot path tracking performance re-
quires nonlinear modeling of faults.  This nonlinear modeling
allows deviations β to be nonlinear functions of the positions
and velocities of the joints and torque inputs to the links.  For
example, the change of the inertia matrix M(q) to M(q) can
be represented in the formulation described in Eq. (3) by de-
fining β as

β(q, q’, ττ ) = (M−1(q) − M−1(q))(ττ  − n(q, q’)).       (4)

For a real robot functioning with the proposed error de-
tectioning method, it is necessary to approximate the unknown
nonlinear function β on-line.  Recent progress in hardware
and software implementation has made it possible to use
sigmoidal neural networks to approximate and analyze non-
linear models (Izermann, 1995).

The error detection scheme considered in this paper is
independent of the type of applied controller used in the robotic
system. Here, the computed-torque method is used to obtain
a trajectory-tracking controller for the robotic manipulator Eq.
(1).  The control law is given by

τ = M(q)(qτ” + kve’ + kpe) + n(q, q’), (5)

where qτ is the desired trajectory, e = qτ − q is the tracking
error, and kv and kp are vectors of controller gains.

III. Time Optimal Robot Control

The well-known time optimal trajectory algorithms are
related to the following problem (Bobrow, 1988; Bobrow et
al., 1985).  For a given joint space path q = f(s) with the robot
dynamics

M(q) q” + n(q, q’) = ττ , (6)

and the actuator constraints

ττ li(q, q’) ≤ ττ i < ττ hi(q, q’), (7)

it is necessary to determine the path-timing s(t); t ∈  [0, tf] that
minimizes tf subject to the dynamics in Eq. (6) and actuator
constraints in Eq. (7) with q(t) = f(s(t)), where q is the vector
of joint displacements, s is the path parameter, M(q) is the
mass matrix, ττ  represents the joint torques, and n(q, q’) re-
presents coriolis, centripetal, friction and gravity terms. It can
be assumed that the path f(s) that is normally specified in task
space is given in joint space.  This is done to simplify the
discussion considering that converting task-space kinematics
to joint space path kinematics creates only technical problems
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that can easily be handled.
The solutions are based on the following reformulation.

The first path constraint q = f(s) is used to eliminate q and
its derivatives, yielding dynamics in the form

A(s)s” + b(s, s’) = ττ , (8)

subject to the following constraints:

ττ li(s, s’) ≤ ττ i ≤ ττ hi(s, s’), (9)

where ττ li(s, s’) and ττ hi(s, s’) are the lowest and highest values
of the compensation torque ττ cm(s, s’).

One of the most well-known methods for time optimal
trajectory planning was first developed by Bobrow (1988).
Later, different improvements were made to this shooting
method based on the following.  If the admissible control set
is convex, then the time-optimal solution will only use controls
from the boundary of the admissible set.  Based on this princi-
ple, shooting methods construct the time-optimal s(t) by means
of forward and backward integration in the s-s’ plane, using
either maximum or minimum acceleration s” (Hocking, 1991).
Thus, the above-mentioned algorithms can be used to deter-
mine the time-optimal path timing s(t), which in turn deter-
mines the time-optimal joint trajectories q(t) = f(s(t)) and
torque trajectories ττ (t) (Cahill et al., 1995).

In practice, the described algorithms are of limited value
because they do not consider the modeling errors (disturbances)
or relate these errors to the robot’s path-tracking performance.
It is known that errors for any single experiment can be re-
presented as disturbances (errors) in joint torques or in joint
accelerations (Cahill et al., 1995).  Doing so is motivated by
the realization that robot path-tracking errors and compensa-
tion torques are driven by joint acceleration disturbances
through a linear dynamic system:

e”(t) + kve’(t) + kpe(t) = qd”(t) (10)

that can be found if the real robot plant is represented as follows:

M(q)q” + n(q, q’) + M(q)qd”(t) = ττ , (11)

where M(q)q” + n(q, q’) is the nominal plant model and M
(q)qd”(t) accounts for any torques that M(q)q” + n(q, q’) cannot
take into account.  Thus, qd” can be interpreted as a joint
acceleration disturbance.  qd”(t) for any experiment (Cahill
et al., 1995) can be identified from on-line measurements of
q, q’, and q” and ττ  as follows:

qd” = M−1(q) (ττ  − M(q)q” − n(q, q’)), (12)

where ττ  represents the torque that is actually applied.  As-
suming that joint acceleration disturbances remain approxi-
mately the same for similar trajectories identified from a trial

execution of a trajectory (Cahill et al., 1995), they can be used
to adjust controller gains to achieve a prescribed tracking
accuracy the next time that the trajectory is executed and to
predict the compensation torques τcm, that will be required:

τ = M(q)qτ” + n(q, q’) + τcm, (13)

where

ττ cm = M(q(t)) (kve’(t) + kpe(t)), (14)

and

e(t) = qτ(t) − q(t). (15)

In order to set the time optimal controller gains, it is
necessary to rewrite Eq. (10) in the following way:

∆e”(t) + kv∆e’(t) + kp∆e(t) + kpe = qd”(t), (16)

where e is the required path-tracking accuracy and ∆e is error
fluctuation.  Then, error e(t) can be written in the following
way:

e(t) = e + ∆e(t). (17)

From Eq. (16), it is clear that in order to receive the time-
optimal controller gains, it is necessary to use the adaptive
controller for which the gain kp must equal

kp = qd”(t)/e. (18)

In this case, the dynamic linear system Eq. (16) will set
the fluctuation values ∆e to 0.  The kv gain can be found by
using critical damping of the system kv = 2   k p .

The control system architecture for online trajectory
generation in the time optimal robot control is shown in Fig.
1.  Controller gains are usually set to their largest stable values

Fig. 1. Control system architecture for online trajectory generation in the
time optimal robot control.
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in order to maximize tracking accuracy.  But in this case, this
principle is not used because large gains will lead to slower
time-optimal solutions.  Thus, the smallest controller gains
as from Eq. (18) that provide sufficient accuracy are used.

The method for choosing controller gains so as to satisfy
a prescribed tolerance for tracking accuracy and for predicting
the levels of the compensation torque includes the following
steps:

(1) identify qd”(t) via Eq. (12) for a trajectory that is similar
to the one considered;

(2) choose controller gains kp and kv via Eq. (18);
(3) use Eq. (14) to determine the compensation torque and

to estimate the required compensation torque margins
ττ lcm(s, s’) and ττ hcm(s, s’) that bound ττ cm(s, s’) (the
lowest and highest values of ττ cm(s, s’));

(4) calculate a new time-optimal trajectory qτ(t) with
ττ lcm(s, s’) and ττ hcm(s, s’) held in reserve:

ττ l(s, s’) − ττ lcm(s, s’) ≤ ττ  ≤ ττ h(s, s’) − ττ hcm(s, s’).    (19)

This trajectory is implemented with the controller gains
set to the values chosen at Step 2 of the method.  Under the
assumption that the acceleration disturbances qd”(t) will be
approximately the same as they were in the trial experiment
(Cahill et al., 1995; Ioannou and Sun, 1995), the system driven
by this new trajectory should provide time-optimal tracking
while satisfying the prescribed tracking error tolerance.

IV. Error Detection Scheme

The error diagnosis scheme for robotic manipulators
relies on the following assumptions:

(1) The robotic manipulator has no modeling uncertainties.
(2) In the presence of an error, the states of the robotic

system remain bounded.
In practice, assumption 1 cannot be realized due to the

fact that the presence of modeling errors will cause a discrep-
ancy between the actual plant and the nominal model, which
may result in false alarms.  There are different approaches

that help to resolve this problem: heuristic tools, threshold
value, and decoupling the effects of faults and disturbances
(Ayoubi, 1994; Izermann, 1995).

In this work, a small threshold is used in the residual
error to account for modeling uncertainties; in this case a fault
is declared if the residual error is greater than the selected
threshold.  The threshold value can be determined on the basis
of the example simulation of the robotic system.

As the detection module, the sigmoidal neural network
is used.  The schematic representation of the multi-layered
neural network is shown in Fig. 2.

The multi-layered neural network characteristics can be
described by

y = β(q, q’, ττ , θ), (20)

where q, q’, and ττ  are the inputs to the network, y is the output
of the network and θ represents the adjustable weights of the
network.  The weights θ(0) = θ0 of the selected neural network
can be initialized as

β(q, q’, ττ , θ0) = 0, (21)

corresponding to the no-error situation.  This can be realized
by initializing the output weights of the networks to zero.
Starting from these initial conditions, the main goal is to
calculate, using input and output information, the parameter
estimate β(t) at each time t so that β(q, q’, ττ , θ) approximates
the unknown function γ(t − T)β(q, q’, ττ ) from Eq. (1).  As
soon as this is achieved, the output of the neural network β
can be used not only to detect any system errors (failures),
but also to set an estimate of the fault β as a function of the
inputs q, q’ and ττ .

An error measure between β and β is needed to update
parameter vector θ.  A suitable error quantity for adjusting
the network weights needs to be obtained because β is unknown
and unmeasurable.  The following estimation model is used
to generate an error measure required to update the weights
of the neural network:

ττ  = −pM(q)(q’ − ω) + M(q)ω’ + n(q, q’)

− M(q)β(q, q’, ττ , θ), (22)

where ω is the estimate of the manipulator velocity vector and
p is a positive design constant.  The estimate ω(0) is initialized
so that ω(0) = q’(0).  The advantage of the presented estimation
model is that it can be implemented in the form of a stable
filter as follows:

ω’ = −pω + b(q, q’, ττ , θ), ω(0) = q’(0), (23)

where ω is the output of the filter w(s) = 1/(s + p), with the
input

Fig. 2. Multi-layered neural network of the diagnosis unit.
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b(q, q’, ττ , θ)

= pq’ + M−1(q)(ττ  − n(q, q’)) + β(q, q’, ττ , θ).     (24)

The proposed estimation model Eq. (22) is easy to
implement and has satisfactory stability and performance
properties.  The general stability and performance properties
for the case of an abrupt failure that occurs at some unknown
time instant T were investigated based on the report of Ioannou
and Sun (1995).  The abrupt fault changes the dynamics of
the robot but retains the boundedness of the position and the
velocities of the joints.  Analysis of the system leads to a conclu-
sion that the overall system remains stable in the presence of
a fault (Ioannou and Sun, 1995).

The error between the measured velocity vector and its
estimates can he found using E = q’ − ω. The following adaptive
law can be used to adapt the weights of the neural network
for θ(0) = θ0:

θ = G[ΓΓ ZTE], (25)

where ΓΓ  = ΓΓ T is a positive learning rate matrix, Z = [∂β(q,
q’, τ, θ]/∂θ is the gradient matrix of the neural network with
respect to the weights, and G is the projection operator.  The
projection operator restricts the parameter estimate vector θ
to some selected compact; for example, a convex region may
be used to avoid parameter drift, a phenomenon that may
appear with standard adaptive laws in the presence of modeling
uncertainties (Dawson et al., 1995).  An error is declared
whenever the output of the neural network becomes nonzero,
which is in general equivalent to the estimation error E becoming
nonzero.  The way to improve the robustness of the algorithm
with respect to modeling uncertainties is to set a threshold value
for the fault whenever |E| ≥ δ, where δ is a threshold value
that depends on the magnitude of the modeling uncertainties.

The main advantage of using the proposed learning
methodology in error diagnosis is that it can be used not only
to detect the occurrence of an error, but also to provide a model
of the fault via the input-output characteristics of the neural
network.  This error model can be used for failure diagnosis
and accommodation by reconfiguring the control law.  Au-
tomated failure accommodation is considered to be one of the
major challenges in designing intelligent robotic systems.   One
of the nonlinear control tools for controller reconfiguration
is feedback linearization (Ayoubi, 1994).  The core of this
method is transformation of the nonlinear system into a linear
one through a change of coordinates and nonlinear feedback.
If feedback linearization is achievable, then it is possible to
achieve cancellation of the nonlinear functions and the desired
closed-loop performance through application of the linear
control theory.  The post-fault robotic system model can be
presented as

ττ  = M(q)q” + n(q, q’) + M(q)η(q, q’; θ), (26)

where η is the neural network output.  Using the feedback
linearization technique, the control law Eq. (5) can be trans-
formed to obtain

ττ τ = ττ  − M(q)η(q, q’; θ), (27)

where ττ  is the nominal control law and ττ τ is the reconfigured
control law.  This theory illustrates the ability of the error diag-
nosis scheme to provide a post failure model that enables ac-
commodation of system failures via the control reconfiguration.

V. Fuzzy Logic Elements

In addition to the error detection method in the robotic
system control, it is important to consider the next level of
the control unit.  Therefore, it is important to discuss the fault
(error) tree arising in the system.  Fuzzy fault tree analysis
has become an efficient tool for improving the reliability,
robustness and performance of the overall robotic system
(Nishivaki, 1986).  A fault tree is a model that represents var-
ious logical combinations of possible events that lead to the
top event (undesirable event (fault)) of a system.

In this paper, the importance of using the fuzzy fault
tree in the analysis of the accommodation signal output is
recognized. In the time optimal control with the error detection
scheme, one generally can divide faults into two types, first,
those errors that occur due to changes in the robot dynamics
and other robotic system events, and second, those errors that
occur due to actuator saturation in joints.  The second fault
can be eliminated by repeating appropriate trajectory planning
steps (Cahill et al., 1995).  Thus, in this case, it is not necessary
to use robot reconfiguration as required for the first fault.

To make a suitable fault tree, the following events in
the system are defined: A: the accommodation signal; X1: an
error in the robot path-tracking; X2: actuator saturation; X3:
an error in the robot dynamics and other faults.  Then, the
top event A (accommodation signal) can be described as

A = X3 ∨  (X1 ∧  X2). (28)

Given the fault probability of Xi and PXi, the probability
of the top event, A can be written as

PA(PX1, PX2, PX3) = 1 − (1 − PX3) (1 − PX1PX2).  (29)

The problem considered here is that of calculating the
possibility that the top event will appear as a fuzzy set.  This
is equivalent to determining the following fuzzy set:

PA(PX1, PX2, PX3) = 1 − (1 − PX3) (1 − PX1PX2),  (30)

where PXi is a fuzzy set defined on [0, 1].
It is often difficult to assign a unique numerical value

between 0 and 1 to a fault probability.  To overcome this
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difficulty, the fault probability can be defined in a certain range
on [0,1] and is used here instead of a unique value of the pro-
bability.  More specifically, the following type of fuzzy set
is considered when analysing a fault tree (Nishivaki, 1986).
The error probability is defined by

PXi = (qi
L, pi

L, pi
R, qi

R), (31)

which is defined by the following function:

   

PXi =

0 , for 0 ≤ p ≤ q i
L

1 –
p i

L – p

∆p i
L

, for q i
L ≤ p ≤ p i

L

1 , for p i
L ≤ p ≤ p i

R

1 –
p – p i

R

∆p i
R

, for p i
R ≤ p ≤ q i

R

0 , for q i
R ≤ p ≤ 1 ,

(32)

where p is the unique value of the event probability, ∆pi
L =

pi
L − qi

L is the difference between the left side nodes of the
fuzzy probability, as shown in Fig. 3, and ∆pi

R = qi
R − pi

R is
the difference between the right side nodes of the fuzzy
probability.  The membership function PXi(p) and the values
of the probability qi

L, pi
L, pi

R and qi
R are shown in Fig. 3.

Taking into account the extension principle, multiplying
fuzzy sets PXi PXj gives the following function:

   

PXiXj(p) =

0 , for 0 ≤ p ≤ q i
Lq j

L

1 –
h ij

L

2
+

p – p i
Lp j

L

∆p i
L∆p j

L
+ (

h ij
L

2
)2 , for q i

Lq j
L ≤ p ≤ p i

Lp j
L

1 , for p i
Lp j

L ≤ p ≤ p i
Rp j

R

1 +
h ij

R

2
–

p – p i
Rp j

R

∆p i
R∆p j

R
+ (

h ij
R

2
)2 , for p i

Rp j
R ≤ p ≤ q i

Rq j
R

0 , for q i
Rq j

R ≤ p ≤ 1 ,

(33)

where hi,j
L = (∆pi

Lpj
L + ∆pj

Lpi
L)/(∆pi

L∆pj
L) and hi,j

R = (∆pi
Rpj

R

+ ∆pj
Rpi

R)/(∆pi
R∆pj

R) are, accordingly, auxiliary functions used
for the compact presentation of PXiXj(p).

In order to calculate Eq. (30), the following equation
is needed:

1 − PXi = (1 − qj
R, 1 − pj

R, 1 − pj
L, 1 − qj

L).      (34)

In the following, some definitions are introduced to
compare fuzzy probabilities PXi and PXj (Nishivaki, 1986).  If
min(PXi, PXj) = PXi or max(PXi, PXj) = PXj, then the order relation
is defined as

PXi ≤ PXj. (35)

By using the order relation, it is possible to decide which
fuzzy probability would be worse.  In this case, event Xj should
be considered more serious than event Xi.  The following order
relation exists since the probability of the top event PA(p) is

Fig. 3. Membership function PXi(p).
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an increasing function with respect to the probability p.  It
is assumed that Eq. (35) is true; then, the following index
V(PXi, PXj) for measuring the difference between PXi and PXj

is introduced (Nishivaki, 1986):

V(PXi, PXj) = (qj
L − qi

L) + (pj
L − pi

L) + (pj
R − pi

R)

+ (qj
R − qi

R). (36)

For simplicity, one can define

PA(PX1, ..., PXi, ..., PXn) = PA, (37)

PA(PX1, ..., PXi, 0, PXi + 1, ..., PXn) = PAi. (38)

Then, the value V(PAi, PA) indicates the improvement
attained by eliminating the possibility of fault Xi.  For example,
if

V(PAi, PA) ≥ V(PAj, PA), (39)

then it is clear that preventing fault Xi is more efficient than
removing fault Xj.

Using the above-mentioned fault tree, the following
example is considered:

V(PA1, PA) = V(PA2, PA) =0.066,

V(PA3, PA) = 0.059.

Since V(PA1, PA) = V(PA2, PA) ≥ V(PA3, PA), the improvement
due to the prevention of the fault of X1 or X2 is greater than
that for X3.  Thus, if possible, the system should prevent and
be ready to accommodate faults X1 and X2 instead of X3 in
this case.

Application of this type of fuzzy logic element in the
robotic control system increases the overall robotic system
reliability and robustness.  The time period from the control
system response to the failure decreases.

VI. Simulation Results

In order to illustrate the proposed error detection scheme,
example simulations were carried out on links 2 and 3 of the
PUMA type robot RM-01 (prototype designed by Nokia Co.
(Finland) and Granat Co. (Belarus)) with six degrees of freedom.
The parameters of the PUMA (programmed universal
manipulator) are well known.  Accordingly with the time opti-
mal robot control, Steps 1 − 4 described in Section III were
completed.  The robot model included all the rigid body inertial
effects and independent coulumb and viscous friction terms
for each joint.  Torque limits in the form of Eq. (7) were formed
on the base of the current and voltage limits of joint motors
(τli = −90 Nm and τhi = 90 Nm).  More detailed experimental

data can be found in Veryha (1999).  The acceleration dis-
turbances qd”(t) experimentally identified from one experi-
ment were used later to predict the joint errors e(t) and com-
pensation torques τcm(t) for a number of subsequent experi-
ments with different controller gains.  For the calculation of
qd”(t), signals q(t) and q’(t) were obtained by means of finite
difference estimation of encoder data.  Thus, high levels of
noise were introduced into the calculated qd”(t) (Veryha, 1999)
using Eq. (12).  Therefore, to use qd”(t), the data were passed
through a low-pass Kalman filter.  Following Veryha (1999),
use of the low-pass filter for noise elimination allowed pre-
diction of the tracking error e(t) and compensation torque
τcm(t) with good accuracy.

The joint space path shown in Figs. 4 and 5 was con-
trolled to the described joints of the PUMA type robot with
the requirement that the joint errors e(t) be less than (0.005,
0.0025) radians.  The desired trajectories for both links are
curved lines with an amplitude of 20 degrees and, accordingly,
a period of 10 seconds with the appropriate scale dimensions
along the axes.  These trajectories are semicircles.  The initial
values of qd”(t) were obtained by driving the system with a
trajectory that was theoretically time optimal (Veryha, 1999).
After integrating qd”(t) through Eq. (12) with different gains,
the resulting gains kp = (191.4, 942.2) and kv = (27.7, 61.4)
were those at which the prescribed tolerance was obtained.
Thus, the system with this gain setting behaved in the optimal
way (the errors were within the given limits e and the optimal
quickness was obtained).  If under these conditions, deviations
(faults) appear, then the error accommodation system should
be used.

For error detection for two links of the PUMA type robot,
a three-layer sigmoidal neural network with 6 neurons in the
input layer, 35 neurons in the hidden layer and 3 neurons in

Fig. 4. (a) Joint angle and (b) neural network output for Link 2 of the PUMA
manipulator. (— desired trajectory, ---- real trajectory)
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the output layer was used.  Since the control law Eq. (5) was
a function of q and q’, the neural network was used to estimate
the function η(q, q’) = β(q, q’, τ(q, q’)) in all the simulations.
The inputs to the neural network were the vectors q and q’.
The filter pole equaled 1, the learning rate ΓΓ  was set to 2.
6, and the size of the hypershere for the projection algorithm
was selected as 12.  All the simulations were performed using
MathCAD.  The robotic system was simulated with an error
that occurred at t = 4 seconds, resulting in a 10% change in
the mass of a third  link of the PUMA robot.  This caused
deviation in M(q) and n(q, q’), resulting in a change in the
dynamics of the robotic system.  Figures 4 and 5 show plots
of the joint angles and neural network outputs.

Prior to the occurrence of a fault (t ≤ 4 sec), the control
law caused the joint angles to follow the required trajectories;
in this case, the outputs of the neural networks were nonzero.
As can be seen from Figs. 4 and 5, the fault at t = 4 sec caused
a significant tracking error in both links.  The neural network
outputs went to nonzero values very soon after the fault.  This
indicated the existence of the fault in the system.  Then, the
system reconfiguration was used that is clearly explained in
Section IV.  Figure 6 shows the trajectories of the robot links
when the reconfiguration control law was used.

Comparing this figure with Figs. 4 and 5, the following
conclusion follows.  The trajectory tracking error is consid-
erably reduced in Fig. 6.  Therefore, the fault was detected
and dealt with by the proposed method in a rather fast way.
These results illustrate the ability of the proposed error diag-
nosis scheme to deal with system failures via control
reconfiguration.  Nevertheless, there is still room to improve
the overall system performance.  Based on the simulation
results, the value of the time delay for system accommodation
(Fig. 6) was calculated.  This value was 0.34 sec in the given

simulation.  In the time optimal control with the error detection
scheme, it is possible to define two types of faults: first, those
errors that occur due to changes in the robot dynamics and
other robotic system events, and second, those errors that occur
due to actuator saturation in joints.  Here, in the simulated
example, the autonomous robotic system always used the
reconfiguration law when a fault occurred.  In the actual
system, a fault of the second type (actuator saturation) can
also take place in the robotic system (Cahill et al., 1995).  In
this case, the reconfiguration law is not required.  Generally
it is not easy in the autonomous system to distinguish a fault.
Thus, a further system simulation was performed using the
parameter estimation algorithm (Ayoubi, 1994) that allowed
to distinguish a fault.  This algorithm started with the assump-
tion that the fault was of the first type; then, an appropriate
procedure with the reconfiguration law was used.  If further
system behavior showed that the wrong assumption was wrong,
then the second procedure was used (repetition of appropriate
trajectory planning steps (Cahill et al., 1995)).  Generally, in
order to set the assumption for first or second fault priority,
it is necessary to use appropriate fuzzy sets (Veryha, 1999).
First, the above-mentioned simulation (Fig. 6) was performed
with the assumption of first fault priority, and the time delay
for accommodation was set to 0.34 sec.  Then, the simulation
was performed with the assumption of second fault priority.
The time delay for accommodation in the second case was
0.94 sec.  Thus, the time delay increased more than two times.
The best way to correctly determine the assumption for robotic
system fault accommodation is to use fuzzy logic as described
in Section V.  On the basis of the statistical and probabilistic
information about real equipment, the appropriate fuzzy sets

Fig. 6. Trajectories of the PUMA robot links when the reconfiguration
control law was used. (— desired trajectory, ---- real trajectory)

Fig. 5. (a) Joint angle and (b) neural network output for Link 3 of the PUMA
manipulator. (— desired trajectory, ---- real trajectory)
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can be formed, as discussed in Section V.  The formation of
appropriate fuzzy sets for the given autonomous robotic system
will be conducted in future research on the basis of experi-
mental data for industrial applications applied using the meth-
odology developed here.

VII. Conclusion

In this paper, the problem of error detection and diagnosis
in robotic manipulators has been investigated.  A learning
scheme with neural networks, as approximators of off-nominal
robotic system behavior under computed torque control with
time optimal path tracking, has been used to monitor the robotic
system for faults.  Approximation of the off-nominal robot
performance has provided a model of the error characteristics
that can be used for the detection of faults.  The use of fuzzy
logic elements in the robotic system control module has been
proposed in order to improve the robustness, reliability and
performance of the overall robotic system.  Simulation results
confirm the ability of the neural network based error diagnosis
method to detect and accommodate faults in two links of the
PUMA manipulator.

This paper has presented an approach to designing non-
linear fault diagnosis algorithms.  Future work will focus on
more detailed investigation of the system performance prop-
erties and fuzzy logic data formation based on actual imple-
mentation of the robotic system in industrial enterprises with
hazardous environments.

Acknowledgment

This research was supported in part by the Belarussian State
Polytechnical Academy under the Cooperative Research Program.  The
author wishes to express his gratitude to the referees for their valuable
comments and to my students who helped me to form computer models of
the simulated robotic system with the diagnosis unit.

References

Antsaklis, P. and K. Passino (1992)  An Introduction to Intelligent and
Autonomous Control. Kluwer, Norwell, MA, U.S.A.

Ayoubi, M. (1994)  Nonlinear dynamic system identification with dynamic
neural structure for fault diagnosis in technical processes.  Proc. IEEE
Int’l. Conf. Syst., Man and Cyb., San Antonio, TX, U.S.A.

Bobrow, J. (1988)  Optimal robot path planning using the minimum-time
criterion.  IEEE Trans. Robot. Automat., 4(1), 443-450.

Bobrow, J. E., S. Dubowsky, and J. S. Gibson (1985)  Time-optimal control
of robotic manipulators along specified paths.  Int’l. J. Robotics Res.,
4(3), 3-17.

Cahill, A. J., J. Kieffer, and M. R. James (1995)  On representing robot
modeling errors as disturbances in joint accelerations: Theory and
experiment.  Proc. IEEE Conf. Decision Contr., New Orleans, LA,
U.S.A.

Dash, P. K. and S. K. Panda (1996)  Gain-scheduling adaptive control
strategies for HDVC systems using fuzzy logic.  Proc. Int’l. Conf. Power
Electronics, Drives and Energy Systems, New Delhi, India.

Dawson, D. M., M. M. Bridges, and Z. Qu (1995)  Nonlinear Control of
Robotic Systems for Environmental Waste and Restoration. Prentice
Hall, Englewood Cliffs, NJ, U.S.A.

Driankov, D., H. Hellendoorn, and M. Reinfrank (1993)  An Introduction
to Fuzzy Control. Springer, Berlin, Germany.

Freyermuth, B. (1991)  An approach to model based fault diagnosis of
industrial robots.  Proc. IEEE Int’l. Conf. Robot. Automat., Sacramento,
CA, U.S.A.

Guez, A., J. L. Eilbert, and M. Kam (1998)  Neural network architecture
for control.  IEEE Contr. Syst. Mag., 8(2), 22-25.

Hocking, L. (1991)  Optimal Control. Clarendon, Oxford, U.K.
Ioannou, P. A. and J. Sun (1995)  Stable and Robust Adaptive Control.

Prentice-Hall, Englewood Cliffs, NJ, U.S.A.
Izermann, R. ( 1995)  Model based fault detection and diagnosis methods.

Proc. American Control Conf., Seattle, WA, U.S.A.
Kandel, A. and G. Langholz (1994)  Fuzzy Control Systems. CRC Press,

Boca Raton, FL, U.S.A.
Nishivaki, Y. (1986)  Possible application of fuzzy set theory to nuclear

safety analysis, risk perception and nuclear plant siting evaluation.  Proc.
Int’l. Conf. on Fuzzy Sets Appl., Berlin, Germany.

Veryha, Y. (1999)  Modelling of kinematic errors of robotic assembly
manipulators with probabilistic models,  Proc. Int’l. Symp. “Reliabi-
lity & Quality − 99” of Russian Academy of Science, Penza, Russia.



Y.B. Veryha

− 376 −

�� !"#$%&'()*+,-./01"234
�� !

YAUHENI B. VERYHA

Department of Machine Building
Belarussian State Polytechnical Academy

Minsk, Republic of Belarus

�� 

�� !"#$%#&'()*+,-./0123456 701 ��889:;01<=>?@ABC:

�� !"#$%&�'()*+!$,+-./012 345�67)89:;<=!#;>$?@A!'(B

�� !"#$%&'( )*+,-./01234+5,6789:;<=>?@ABCDEFGHIJ!KL

�� !"computed torque control�� !"#$%&'()*+,-'./0123456789:;<=>!
�on-line approximator�� !"#$%&'()*+,-./01234&56789:5;<=>?@A./&
�� !"#$%&'()*+,-./012345678'#$9(:;<=>"? @'AB3CDEFGH

�� !"#$%&'()*+,-./01,2


