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ABSTRACT

Error detection, diagnosis and accommodeation play key roles in the operation of autonomous robotic systems.
System faullts, which typically result in changes of critical system parameters or system dynamics, may lead to degradation
in performance. This fact is especially important for time optimal robot control when the system parameters reach
their critical values and even small changes can lead to accuracy degradation. This paper investigates the problem
of error diagnosisin robotic manipulators under computed torque control using neura network and fuzzy logic el ements.
A learning architecture with neural networks serving as on-line approximators with fuzzy logic elements in the control
unit is used for the diagnosis of robotic system errors and error accommodation. Approximation using neural networks
providesamode of the error characteristicsthat can be used for the detection and elimination of errorsin robot functioning.
Simulation results illustrate the ability of the neural network based error diagnosis method with the fuzzy elements
described in this paper to detect and accommodate errors in atwo-link robotic manipulator under time optimal control.

Key Words: timeoptimal control, adaptive robotic system, autonomous robotic system, error detection, neural network,

fuzzy logic element

[. Introduction

Robotic systems are widely used in different complex
engineering applications that demand high performance and
productivity. Interest in the problem of controlling robotic
manipulators in the minimum amount of time is motivated
by the desire to reduce the number of cycletimesin industrial
applications, such aslaser cutting, welding, high pressure water
jet cutting, etc.

Thewell-known gpproach to the problem of time optimal
control of robotic manipulators was proposed by Cahill et al.
(1995). He proposed the theory and two schemesfor adapting
time optimal trgjectory agorithms for application in robots
under computed torque control. Thisprovidesapractica foun-
dation for achieving near time optimal performance while
tracking pathsto aprescribed tolerance. Intime optimal control
of robotic manipulators, the main characteristics of the robotic
system (accuracy, cycle time and joint torques) reach their
critical values. This means that even a small change in the
robotic system parameters may significantly degrade robotic
system performance, including engine saturation and accuracy
degradation (Bobrow et al., 1985; Freyermuth, 1991).

| n gpplication environments, robotic system faults, which
aremainly characterized by changesin the system parameters
or in the manipulator dynamics, can result not only in loss
of productivity, but also in loss of accuracy, asisthe case with

time optimally controlled robots. Difficult and dangerous
environments limit the ability of humans to perform any
supervisory or corrective tasks (Ayoubi, 1994; Dawson et al.,
1995; |zermann, 1995; Nishivaki, 1986).

This paper presentsalearning method based on nonlinear
modeling techniques for detecting errorsin rigid link robotic
mani pulators under time optimal control. The robot dynamics
are assumed to be known exactly prior to the appearance of
errors. The multi-layered neural network is used to monitor
therobot for changesin dynamics. With the aid of the fuzzy
logic elements, the computational approach to the estimation
of robot faultsis significantly improved. Thisresultsin ade-
crease in the elapsed time for error accommodation. The
approximeation capabilities of the neural network are used here
not only to detect the occurrence of system failures, but also
to provideon-lineestimatesof thefault characterigtics (Antsaklis
and Passino, 1992; Ayoubi, 1994; Dash and Panda, 1996).

Themain component in the error monitoring architecture
is the development of anonlinear estimation scheme that al-
lows the use of systematic learning procedures for detecting
and accommodating errors (Dawson et al., 1995; Driankov
etal., 1993; Kandd and Langholz, 1994). The error diagnosis
agorithm relies on measurements from sensors used to control
the robotic manipulator. Hence, this approach doesnot reguire
any additional equipment. The process of error diagnosisin-
cludesthefollowing stages: detection, diagnosis (identification
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of the error cause) and accommodation (reconfiguration of the
robotic system to accommodate the error) (Izermann, 1995).

In many applications, error diagnosis schemes are built
using hardware redundancy. In these schemes, redundant
physical subsystems, for example, multiple sensors, are in-
corporated into the system. Generally, the additional cost and
complexity of the suggested redundant hardware makes these
architectures unattractive. Another approach isanalytical re-
dundancy. In these architectures, sensor measurements are
processed to estimate the value of a desirable variable using
arobot mode . The estimateisthen compared with themeasured
vaue of the variable to generate aresidud (Freyermuth, 1991;
Guez et al., 1998).

A number of researchers have worked on the problem
of designing automated error diagnosis schemes for robotic
systems using anaytical redundancy methods, but most of the
developed error diagnosis schemes exclusively uselinear nom-
inal robotic models with faults that are modeled as external
additiveinput signdsof time (Ayoubi, 1994). Accurate repre-
sentation of the robotic system requires nonlinear modeling.
The use of linear techniques resultsin modeling errorsleading
in some cases to degraded performance of the error diagnosis
system. Robotic system faults often cause unpredictable non-
linear changes in the dynamics of the robot. Thus, to take
into account a large class of practical failure situations, a
nonlinear modeling framework is required (I1zermann, 1995).

II. Robot Dynamics

The robot dynamics can be considered to be governed
by

T =M(a)q" +n(g q) - Ut -T)Ba, J, 1), 1)

where g, g and " are vectors of joint positions, velocities
and accelerations, respectively, 1 is the input torque vector,
M(q) is the inertia matrix, and n(q, q') represents coriolis,
centripetd, friction and gravity terms. Theterm 3(q, ', 1)
isavector which representsthe fault in the robotic manipul ator,
Wt — T) represents the time profile of the fault, and T is the
time of fault occurrence.

For convenience of anadysis, thechangesinthedynamics
due to a fault can be represented as

B(a, g, 1) =M(@QpB@a, d, T). )

With this representation of the faults, the robot dynamics can
be rewritten as

g =MHa)(T -n(@, q) +Ut-DRa.d, 7). Q)

Here, Bisafunction of time and not an explicit function of
the position q, the velocity ' and the input torque T.
Robotic manipulator failures are usualy characterized

by changesin critical system parameters, for example, themass
of alink, or introduction of some unknown structural dynamics,
both of which result in nonlinear changes in the manipulator
dynamics. Thus, an accurate description of fault conditions
resulting in a decrease in robot path tracking performance re-
quires nonlinear modeling of faults. This nonlinear modeling
alows deviations (3 to be nonlinear functions of the positions
and velocities of the joints and torque inputs to thelinks. For
example, the change of the inertia matrix M(q) to M(q) can
be represented in the formulation described in Eq. (3) by de-
fining B as

B@ o, 1)=M™a) -MHa)(T -n(@.q). (4

For ared robot functioning with the proposed error de-
tectioning method, it is necessary to gpproximete the unknown
nonlinear function 3 on-line. Recent progress in hardware
and software implementation has made it possible to use
sigmoida neural networks to approximate and analyze non-
linear models (Izermann, 1995).

The error detection scheme considered in this paper is
independent of the type of applied controller used in therobotic
system. Here, the computed-torque method is used to obtain
atrgjectory-tracking controller for the robotic manipulator Eq.
(1). The control law is given by

T=M(a)(a;” + k€ +kee) +n(q q), ®

where ¢ is the desired trgjectory, e = q; — q is the tracking
error, and ky, and k;, are vectors of controller gains.

[ll. Time Optimal Robot Control

The well-known time optimal trgjectory agorithms are
related to the following problem (Bobrow, 1988; Bobrow et
al., 1985). For agiven joint space path q = f(s) with the robot
dynamics

M(@) 9" +n(g, q) = T, (6)

and the actuator constraints

1;i(0, q) < 1, < 14(q, ), ™

it is necessary to determine the path-timing s(t); t 0 [0, t{] that
minimizes t; subject to the dynamicsin Eq. (6) and actuator
congraintsin Eq. (7) with q(t) = f(s(t)), where q is the vector
of joint displacements, s is the path parameter, M(q) is the
mass matrix, T represents the joint torques, and n(q, q') re-
presents coriolis, centripetal, friction and gravity terms. It can
be assumed that the path f(s) that is normally specified in task
space is given in joint space. This is done to simplify the
discussion congidering that converting task-space kinematics
to joint space path kinematics creates only technical problems
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that can easily be handled.

The solutions are based on the following reformuletion.
The first path constraint g = f(s) is used to eliminate g and
its derivatives, yielding dynamics in the form

A(9S’ +b(s s) =1, 8
subject to the following constraints:
(S, S) S T, < Ty(S S), ©)

where 1i(s, ) and 11,(s, S) arethe lowest and highest values
of the compensation torque T (S, S).

One of the most well-known methods for time optimal
trgjectory planning was first developed by Bobrow (1988).
Later, different improvements were made to this shooting
method based on the following. If the admissible control set
isconvex, then thetime-optimal solution will only use controls
from the boundary of the admissible set. Based on this princi-
ple, shooting methods construct thetime-optima (t) by means
of forward and backward integration in the s-s' plane, using
either maximum or minimum acceleration s’ (Hocking, 1991).
Thus, the above-mentioned algorithms can be used to deter-
mine the time-optimal path timing (t), which in turn deter-
mines the time-optimal joint trajectories q(t) = f(s(t)) and
torque trgjectories 7(t) (Cahill et al., 1995).

In practice, the described algorithms are of limited value
becausethey do not consider the modeling errors (disturbances)
or relate these errors to the robot’ s path-tracking performance.
It is known that errors for any single experiment can be re-
presented as disturbances (errors) in joint torques or in joint
accelerations (Cahill et al., 1995). Doing so is motivated by
the redlization that robot path-tracking errors and compensa
tion torques are driven by joint acceleration disturbances
through a linear dynamic system:

€'(t) + ke (1) + koe(t) = ag" (1) (10)

that can befoundif thered robot plant isrepresented asfollows:

M(@)g” +n(q, 9) + M(q)aq"(t) = T, (11)

where M(Q)q” + n(q, q') isthe nomina plant model and M
(o)aq” (t) accountsfor any torquesthat M(q)q” +n(q, q') cannot
take into account. Thus, q4" can be interpreted as a joint
acceleration disturbance. qq’(t) for any experiment (Cahill
et al., 1995) can be identified from on-line measurements of
0, q,andq" and 1 asfollows:

a¢" = M) (t - M(a)q” — n(a, ), (12

where 1 represents the torque that is actualy applied. As-
suming that joint acceleration disturbances remain approxi-
mately the same for similar trgjectories identified from atrial

execution of atrgjectory (Cahill et al., 1995), they can be used
to adjust controller gains to achieve a prescribed tracking
accuracy the next time that the trgjectory is executed and to
predict the compensation torques Ty, that will be reguired:

T=M(a)g" +n(a, q) + Tem, (13)
where

Tem = M(q() (kee' (1) + kpe(t)), (14
and

e(t) = qq(t) - a(t). (15)

In order to set the time optimal controller gains, it is
necessary to rewrite Eq. (10) in the following way:

A (1) + kA€ (1) + kAe(t) + ke = a4 (1), (16)

where eisthe required path-tracking accuracy and Aeis error
fluctuation. Then, error &t) can be written in the following

way:
e(t) = e + Ae(t). 17)

From Eqg. (16), itisclear that in order to receivethetime-
optimal controller gains, it is necessary to use the adaptive
controller for which the gain k, must equal

ko = 0" (/e (18)

In this case, the dynamic linear system Eq. (16) will set
the fluctuation values Aeto 0. The k, gain can be found by
using critical damping of the system k, = 2,/k ;..

The control system architecture for online trajectory
generation in the time optimal robot control is shownin

. Controller gainsare usualy set to their largest stable values

Signal for accommodation iagnosis unit

q(). 4'()

Computed
torque tracking
controller
generator

Trajectory
generator

Manipulator

q ,(’1)) i acluator saturation
g :
q:() ; control signal

Fig. 1. Control system architecture for online trgjectory generation in the
time optimal robot control.
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Fig. 2. Multi-layered neural network of the diagnosis unit.

in order to maximize tracking accuracy. But in this case, this
principle is not used because large gains will lead to dower
time-optimal solutions. Thus, the smallest controller gains
as from Eq. (18) that provide sufficient accuracy are used.
The method for choosing controller gains so asto satisfy
aprescribed tolerance for tracking accuracy and for predicting
the levels of the compensation torque includes the following
steps:
(2) identify g4” (t) viaEq. (12) for atrgjectory that issimilar
to the one considered;
(2) choose controller gains k, and k, via Eq. (18);
(3) use Eq. (14) to determine the compensation torque and
to estimate the required compensation torque margins
Tiem(S, S) and Tren(S, §) that bound T4.(S, S') (the
lowest and highest values of T (s, S));
(4) calculate a new time-optimal trajectory g.(t) with
Tiem(S, S) and Tre(S, S) held in reserve:

T|(SS) ~Tien(S S)S TS TK(S S) — Them(S S).  (19)

Thistrgjectory isimplemented with the controller gains
set to the values chosen a Step 2 of the method. Under the
assumption that the acceleration disturbances g4’ (t) will be
approximately the same as they were in the trid experiment
(Cahill et al., 1995; loannou and Sun, 1995), the system driven
by this new trgjectory should provide time-optimal tracking
while satisfying the prescribed tracking error tolerance.

IV. Error Detection Scheme

The error diagnosis scheme for robotic manipulators
relies on the following assumptions:

(2) Therobotic manipulator has no modeling uncertainties.
(2) In the presence of an error, the states of the robotic
system remain bounded.

In practice, assumption 1 cannot be realized due to the
fact that the presence of modeling errors will cause a discrep-
ancy between the actual plant and the nominal model, which
may result in false darms. There are different approaches

that help to resolve this problem: heuristic tools, threshold
vaue, and decoupling the effects of faults and disturbances
(Ayoubi, 1994; Izermann, 1995).

In this work, a small threshold is used in the residual
error to account for modeling uncertainties; in this case afault
is declared if the residua error is greater than the selected
threshold. Thethreshold value can be determined on the basis
of the example simulation of the robotic system.

As the detection module, the sigmoida neural network
isused. The schematic representation of the multi-layered
neural network is shown in

The multi-layered neural network characteristics can be
described by

y=p84aq,1,9), (20)

whereq, ', and T aretheinputsto the network, y is the output
of the network and @ represents the adjustable weights of the
network. Theweights &0) = &, of the selected neural network
can be initialized as

Ba q, 1, 6) =0, (21)

corresponding to the no-error situation. This can be realized
by initializing the output weights of the networks to zero.
Starting from these initial conditions, the main goa is to
calculate, using input and output information, the parameter
estimate 8(t) at eech timet sothat 3(q, ', T, 8) approximates
the unknown function Wt - T)B(q, ', 7) from Eq. (1). As
soon as this is achieved, the output of the neural network 8
can be used not only to detect any system errors (failures),
but also to set an estimate of the fault 3 as afunction of the
inputs g, g and 7.

An error measure between 8 and S is needed to update
parameter vector 6. A suitable error quantity for adjusting
the network weights needsto be obtai ned because Bisunknown
and unmeasurable. The following estimation mode is used
to generate an error measure required to update the weights
of the neural network:

T =-pM(0)(q’ — @) + M(g)w + n(a, )
-M(@)Ba, g, 1, 6), (22)
where wisthe estimate of the manipulator velocity vector and
pisapositive design constant. The estimate «(0) isinitialized
sothat «(0) = g’ (0). Theadvantage of the presented estimation

model is that it can be implemented in the form of a stable
filter as follows:

W =-pw+b(q, q, T, 6), w0) = q(0), ()

where wis the output of the filter w(s) = 1/(s + p), with the
input
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b(g,q, 7, 6
=pg +M*@)(r-n(@,q))+Ba.q,1,6. (24

The proposed estimation model Eq. (22) is easy to
implement and has satisfactory stability and performance
properties. The genera stability and performance properties
for the case of an abrupt failure that occurs at some unknown
timeinstant T wereinvestigated based on the report of loannou
and Sun (1995). The abrupt fault changes the dynamics of
the robot but retains the boundedness of the position and the
veocitiesof thejoints. Andysisof the systemleadsto aconclu-
sion that the overall system remains stable in the presence of
afault (loannou and Sun, 1995).

The error between the measured velocity vector and its
esimatescanhefoundusing E =g’ — w. Thefollowing adaptive
law can be used to adapt the weights of the neural network

for 6(0) = 6,
8=G[rZ'g], (25)

where I = I'" is a positive learning rate matrix, Z = [3(q,
q, 1, 8)/08isthe gradient matrix of the neural network with
respect to the weights, and G is the projection operator. The
projection operator restricts the parameter estimate vector 8
to some selected compact; for example, a convex region may
be used to avoid parameter drift, a phenomenon that may
appear with standard adaptive lawsin the presence of modeling
uncertainties (Dawson et al., 1995). An error is declared
whenever the output of the neural network becomes nonzero,
whichisingenerad equivaent totheestimation error E becoming
nonzero. Theway to improve the robustness of the algorithm
with respect to moddling uncertaintiesisto set athreshold value
for the fault whenever |E| = J, where dis a threshold value
that depends on the magnitude of the modeling uncertainties.

The main advantage of using the proposed learning
methodology in error diagnosisisthat it can be used not only
to detect the occurrence of an error, but aso to provide amodel
of the fault via the input-output characteristics of the neura
network. This error model can be used for failure diagnosis
and accommodation by reconfiguring the control law. Au-
tomated failure accommodeation is considered to be one of the
major challengesin designing intelligent robotic systems. One
of the nonlinear control tools for controller reconfiguration
is feedback linearization (Ayoubi, 1994). The core of this
method is transformation of the nonlinear system into alinear
one through a change of coordinates and nonlinear feedback.
If feedback linearization is achievable, then it is possible to
achieve cancellation of the nonlinear functions and the desired
closed-loop performance through application of the linear
control theory. The post-fault robotic system model can be
presented as

T =M(Q)Qq” +n(q, q) + M(a)n(a, q'; 6), (26)

where n is the neural network output. Using the feedback
linearization technique, the control law Eq. (5) can be trans-
formed to obtain

I.=1-M@n d; o), (27)

where 7 isthe nominal control law and 7 isthe reconfigured
contral law. Thistheory illugtratesthe ability of theerror diag-
nosis scheme to provide a post failure model that enables ac-
commodation of system failuresviathe control reconfiguration.

V. Fuzzy Logic Elements

In addition to the error detection method in the robotic
system control, it is important to consider the next level of
the control unit. Therefore, it isimportant to discuss the fault
(error) tree arising in the system. Fuzzy fault tree analysis
has become an efficient tool for improving the reliability,
robustness and performance of the overall robotic system
(Nishivaki, 1986). A fault treeisamode that represents var-
ious logical combinations of possible events that lead to the
top event (undesirable event (fault)) of a system.

In this paper, the importance of using the fuzzy fault
tree in the analysis of the accommodation signal output is
recognized. Inthetime optimal control with the error detection
scheme, one generaly can divide faults into two types, firdt,
those errors that occur due to changes in the robot dynamics
and other robotic system events, and second, those errors that
occur due to actuator saturation in joints. The second fault
can be eliminated by repesting appropriate trgjectory planning
steps (Cahill et al., 1995). Thus, inthiscase, itisnot necessary
to use robot reconfiguration as required for the first fault.

To make a suitable fault tree, the following eventsin
the system are defined: A: the accommodation signal; X;: an
error in the robot path-tracking; X»: actuator saturation; Xs:
an error in the robot dynamics and other faults. Then, the
top event A (accommodation signal) can be described as

A= Xg O (X OXy). (28)

Given the fault probability of X; and Py;, the probability
of the top event, A can be written as

Pa(Px1, Pxa, Pxa) =1 = (1 = Pxg) (1 = PxaPx2). (29)
The problem considered hereis that of caculating the

possibility that the top event will appear asafuzzy set. This
is equivalent to determining the following fuzzy set:

Pa(Px1, Px2, Px3) =1 = (1 = Px3) (1 = PxiPx2), (30)

where Py; is a fuzzy set defined on [0, 1].
It is often difficult to assign a unique numerical value
between 0 and 1 to a fault probability. To overcome this
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difficulty, thefault probability can be defined in acertain range
on [0,1] and is used hereinstead of a unique value of the pro-
bability. More specificaly, the following type of fuzzy set
is considered when analysing a fault tree (Nishivaki, 1986).
The error probability is defined by

EXi = (qiLv piLv piR! qiR)! (31)

which is defined by the following function:

0, for Osps<qt
pr—p
1- 'ApL , for g-<ps<pt
Py={ 1, for pf<p<pf (32)
p-pf
1- ApiRl , for pf<p<qf
0, for gR<p<1,

where p is the unique value of the event probability, Ap- =
pi- — g is the difference between the left side nodes of the
fuzzy probability, as shown in Fig. 3, and Ap® = g — pRis
the difference between the right side nodes of the fuzzy
probability. The membership function Py;(p) and the values
of the probability g, pi", p and g* are shown in Fig. 3.

Taking into account the extension principle, multiplying
fuzzy sets Py Py; gives the following function:

Pxlp)

Api

Fig. 3. Membership function Py;(p).

where hy b = (Ap'p" + AppH)/(ApApY) and hyjF = (Ap"pF
+ApRpR)/(ApRARF) are, accordingly, auxiliary functions used
for the compact presentation of Py;x;(p).

In order to calculate Eq. (30), the following equation
is needed:

1-Py=(1-qg%1-p®1-p-1-qgY. (34

In the following, some definitions are introduced to
compare fuzzy probabilities Py; and Py; (Nishivaki, 1986). If
min(Py;, Px;) = Px; or max(Py;, Px;) = Py, thenthe order relation
is defined as

Pyxi < Py;. (35

By using the order relation, it is possible to decide which
fuzzy probability would beworse. Inthis case, event X; should
be considered more serious than event X;. Thefollowing order
relation exists since the probability of the top event Pa(p) is

0, forOspsqiquL
hj p-p-p;

1--U 4 DL ” for gtat <p<plpt
2 Ap-apt (5 )? aFgf <p<ptp

BogP)=4 1. for pip} < p <ppf @

hif p—pRoR

1+-) — 2 for pRoR<p<gRgR
2 ApRAPR ( PrPf<p<dfq

0, for gfgf<p<1,
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an increasing function with respect to the probability p. It
is assumed that Eq. (35) is true; then, the following index
V(Px;, Px;) for measuring the difference between Py; and Py;
is introduced (Nishivaki, 1986):

V(Px, Px) = (" - a) + (5" — p") + (BF - p")

+ (g% - g"). (36)

For simplicity, one can define
Pa(Pxa; -y Pxiy -y Pxn) = Pa (37
Pa(Pxa, -y Py 0, Pxi 4 1, .., Pxn) = Pai. (38)

Then, the value V(P,;, Pa) indicates the improvement
atained by diminating the possibility of fault X;. For example,
if

V(Pai, Pa) = V(Pyj, Pa), (39)

then it is clear that preventing fault X; is more efficient than
removing fault X;.

Using the above-mentioned fault tree, the following
example is considered:

V(Pa1, Pa) = V(Pay, Pa) =0.066,
V(Paz, Pa) = 0.059.

Since V(Pa1, Pa) = V(Pao, Pa) = V(Pas, Pa), the improvement
due to the prevention of the fault of X; or X, is greater than
that for X3, Thus, if possible, the system should prevent and
be ready to accommodate faults X; and X, instead of X3 in
this case.

Application of this type of fuzzy logic element in the
robotic control system increases the overal robotic system
reliability and robustness. The time period from the control
system response to the failure decreases.

VI. Simulation Results

Inorder toillustrate the proposed error detection scheme,
example simulations were carried out on links 2 and 3 of the
PUMA type robot RM-01 (prototype designed by Nokia Co.
(Finland) and Granat Co. (Belarus)) with six degreesof freedom.
The parameters of the PUMA (programmed universal
manipulator) arewd| known. Accordingly with the time opti-
mal robot control, Steps 1 — 4 described in Section |11 were
completed. Therobot mode included al therigid body inertial
effects and independent coulumb and viscous friction terms
for eachjoint. Torquelimitsintheform of Eq. (7) wereformed
on the base of the current and voltage limits of joint motors
(1 =—90 Nmand 1; = 90 Nm). More detailed experimental

data can be found in Veryha (1999). The acceleration dis-
turbances qq4” (t) experimentally identified from one experi-
ment were used later to predict the joint errors &t) and com-
pensation torques Ty(t) for a number of subsequent experi-
ments with different controller gains. For the calculation of
dq’ (1), signasq(t) and g (t) were obtained by means of finite
difference estimation of encoder data. Thus, high levels of
noisewereintroduced into the calculated g4 (t) (Veryha, 1999)
using Eq. (12). Therefore, to use g4’ (t), the data were passed
through alow-pass Kaman filter. Following Veryha (1999),
use of the low-pass filter for noise elimination alowed pre-
diction of the tracking error e(t) and compensation torque
Ten(t) with good accuracy.

The joint space path shown in was con-
trolled to the described joints of the PUMA type robot with
the requirement that the joint errors e(t) be less than (0.005,
0.0025) radians. The desired trajectories for both links are
curved lineswith an amplitude of 20 degrees and, accordingly,
aperiod of 10 seconds with the appropriate scale dimensions
adong the axes. Thesetrgectories are semicircles. Theinitia
values of q4" (t) were obtained by driving the system with a
trgjectory that was theoretically time optimal (Veryha, 1999).
After integrating g4” (t) through Eq. (12) with different gains,
the resulting gains k, = (191.4, 942.2) and k, = (27.7, 61.4)
were those a which the prescribed tolerance was obtained.
Thus, the system with this gain setting behaved in the optimal
way (the errors were within the given limits e and the optimal
quicknesswas obtained). If under these conditions, deviations
(faults) appear, then the error accommodation system should
be used.

For error detection for two links of the PUMA typerobot,
athree-layer sgmoida neura network with 6 neuronsin the
input layer, 35 neurons in the hidden layer and 3 neuronsin

- 20

()

s 15

]

5 10

s

-

£ 07

= .5 ‘
-10 . |

0 2 4 6 8 10 12

= O 2N WA,
H

Neural Network Output
for Link 2

)
0 2 4 6 8 10 12
(b) ts

Fig. 4. (a) Joint angleand (b) neura network output for Link 2 of the PUMA
manipulator. (— desired trgjectory, ---- red trajectory)
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(a) t s

Neural network output
for link 3
& AN o
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(b) t,s

Fig. 5. (a) Joint angleand (b) neura network output for Link 3 of the PUMA
manipulator. (— desired trgjectory, ---- red trajectory)

the output layer was used. Since the control law Eqg. (5) was
afunction of gand ', the neural network was used to estimate
thefunction n(q, q') = B8(q, q', 7(g, 9')) in al the smulations.
The inputs to the neural network were the vectors g and .
The filter pole equaled 1, the learning rate I was set to 2.
6, and the size of the hypershere for the projection algorithm
was selected as 12. All the simulations were performed using
MathCAD. The robotic system was simulated with an error
that occurred at t = 4 seconds, resulting in a 10% change in
the mass of athird link of the PUMA robot. This caused
deviation in M(q) and n(qg, '), resulting in a change in the
dynamics of the robotic system. Figures 4 and 5 show plots
of the joint angles and neural network outputs.

Prior to the occurrence of afault (t < 4 sec), the control
law caused the joint anglesto follow the required trajectories,
in this case, the outputs of the neural networks were nonzero.
As can be seen from Figs. 4 and 5, the fault at t = 4 sec caused
adggnificant tracking error in both links. The neural network
outputs went to nonzero values very soon after thefault. This
indicated the existence of the fault in the system. Then, the
system reconfiguration was used that is clearly explained in
Section V. shows the trgjectories of the robot links
when the reconfiguration control law was used.

Comparing this figure with Figs. 4 and 5, the following
conclusion follows. The trgectory tracking error is consid-
erably reduced in Fig. 6. Therefore, the fault was detected
and dealt with by the proposed method in arather fast way.
These results illustrate the ability of the proposed error diag-
nosis scheme to deal with system failures via control
reconfiguration. Nevertheless, thereis still room to improve
the overall system performance. Based on the simulation
results, the value of the time delay for system accommodation
(Fig. 6) was calculated. Thisvaluewas 0.34 sec in the given

smulation. Inthetimeoptimal control with theerror detection
scheme, it is possible to define two types of faults: first, those
errors that occur due to changes in the robot dynamics and
other robotic system events, and second, those errorsthat occur
due to actuator saturation in joints. Here, in the simulated
example, the autonomous robotic system aways used the
reconfiguration law when a fault occurred. In the actual
system, a fault of the second type (actuator saturation) can
also take place in the robotic system (Cahill et al., 1995). In
this case, the reconfiguration law is not required. Generaly
it is not easy in the autonomous system to distinguish afaullt.
Thus, a further system simulation was performed using the
parameter estimation algorithm (Ayoubi, 1994) that allowed
to ditinguish afault. Thisalgorithm started with the assump-
tion that the fault was of the first type; then, an appropriate
procedure with the reconfiguration law was used. |If further
system behavior showed that the wrong assumption waswrong,
then the second procedure was used (repetition of appropriate
trgjectory planning steps (Cahill et al., 1995)). Generally, in
order to set the assumption for first or second fault priority,
it is necessary to use appropriate fuzzy sets (Veryha, 1999).
First, the above-mentioned simulation (Fig. 6) was performed
with the assumption of first fault priority, and the time delay
for accommodation was set to 0.34 sec. Then, the smulation
was performed with the assumption of second fault priority.
The time delay for accommodation in the second case was
0.94 sec. Thus, thetime delay increased more than two times.
Thebest way to correctly determine the assumption for robotic
system fault accommodation isto use fuzzy logic as described
in Section V. On the basis of the statistical and probabilistic
information about rea equipment, the appropriate fuzzy sets
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Fig. 6. Trajectories of the PUMA robot links when the reconfiguration
control law was used. (— desired trgjectory, ---- real trajectory)
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can be formed, as discussed in Section V. The formation of
appropriate fuzzy setsfor the given autonomous robotic system
will be conducted in future research on the basis of experi-
mental data for industrial applications applied using the meth-
odology developed here.

VII. Conclusion

Inthispaper, the problem of error detection and diagnosis
in robotic manipulators has been investigated. A learning
schemewith neural networks, asapproximators of off-nominal
robotic system behavior under computed torque control with
timeoptimal path tracking, has been used to monitor therobotic
system for faults. Approximation of the off-nominal robot
performance has provided amodd of the error characteristics
that can be used for the detection of faults. The use of fuzzy
logic dementsin the robotic system control module has been
proposed in order to improve the robustness, reliability and
performance of the overdl robotic system. Simulation results
confirm the ahility of the neura network based error diagnosis
method to detect and accommodate faultsin two links of the
PUMA manipulator.

This paper has presented an approach to designing non-
linear fault diagnosis algorithms. Future work will focus on
more detailed investigation of the system performance prop-
erties and fuzzy logic data formation based on actual imple-
mentation of the robotic system in industrial enterprises with
hazardous environments.

Acknowledgment

This research was supported in part by the Belarussian State
Polytechnical Academy under the Cooperative Research Program. The
author wishes to express his gratitude to the referees for their valuable
comments and to my students who helped me to form computer models of
the simulated robotic system with the diagnosis unit.

References

Antsaklis, P. and K. Passino (1992) An Introduction to Intelligent and
Autonomous Contral. Kluwer, Norwell, MA, U.SA.

Ayoubi, M. (1994) Nonlinear dynamic system identification with dynamic
neura structure for fault diagnosis in technica processes. Proc. I[EEE
Int'l. Conf. Syst., Man and Cyb., San Antonio, TX, U.SA.

Bobrow, J. (1988) Optimal robot path planning using the minimum-time
criterion. 1EEE Trans. Robot. Automat., 4(1), 443-450.

Bobrow, J. E., S. Dubowsky, and J. S. Gibson (1985) Time-optimal control
of robotic manipulators along specified paths. Int’l. J. Robotics Res.,
4(3), 3-17.

Cahill, A. J,, J. Kieffer, and M. R. James (1995) On representing robot
modeling errors as disturbances in joint accelerations. Theory and
experiment. Proc. IEEE Conf. Decision Contr., New Orleans, LA,
U.SA.

Dash, P. K. and S. K. Panda (1996) Gain-scheduling adaptive control
srategiesfor HDV C systems using fuzzy logic. Proc. Int’l. Conf. Power
Electronics, Drives and Energy Systems, New Delhi, India

Dawson, D. M., M. M. Bridges, and Z. Qu (1995) Nonlinear Control of
Robotic Systems for Environmental Waste and Restoration. Prentice
Hall, Englewood Cliffs, NJ, U.S.A.

Driankov, D., H. Hellendoorn, and M. Reinfrank (1993) An Introduction
to Fuzzy Control. Springer, Berlin, Germany.

Freyermuth, B. (1991) An approach to model based fault diagnosis of
industrial robots. Proc. |IEEE Int’l. Conf. Robot. Automat., Sacramento,
CA, USA.

Guez, A., J. L. Eilbert, and M. Kam (1998) Neura network architecture
for control. IEEE Contr. Syst. Mag., 8(2), 22-25.

Hocking, L. (1991) Optimal Control. Clarendon, Oxford, U.K.

loannou, P. A. and J. Sun (1995) Sable and Robust Adaptive Control.
Prentice-Hall, Englewood Cliffs, NJ, U.S.A.

Izermann, R. (1995) Model based fault detection and diagnosis methods.
Proc. American Control Conf., Seattle, WA, U.SA.

Kandel, A. and G. Langholz (1994) Fuzzy Control Systems. CRC Press,
Boca Raton, FL, U.SA.

Nishivaki, Y. (1986) Possible application of fuzzy set theory to nuclear
safety analysis, risk perception and nuclear plant siting evaluation. Proc.
Int’l. Conf. on Fuzzy Sets Appl., Berlin, Germany.

Veryha, Y. (1999) Modelling of kinematic errors of robotic assembly
manipulators with probabilistic models, Proc. Int'l. Symp. “ Reliabi-
lity & Quality —99” of Russian Academy of Science, Penza, Russia.

-375 -



Y.B. Veryha

DA Heis A R e e e e B8 A IRFET AR (R L RS a e
ZANTEIE

YauHeNI B. VERYHA

Department of Machine Building
Belarussian Sate Polytechnical Academy
Minsk, Republic of Belarus

B =

PHARIAEI ~ 320 ~ BlASZE B F RS RO E BRI RMIUSERE &8 A1 R G 2 Bl @) ReE A4
LI tﬁllﬁtfﬁfhﬁﬁﬁ’]iiﬁ PEAE I G b2 AR e G LR e B R - INRELIETE T > R
WCH S AERABEE - T R AR MRS 7 th g BB & K BEAR o IURER SO R FH A eg DU R B SR B R AL B
J1EEER (computed torque control ) "TNSR A\SHEREZENAORIRE » P bt 0 2278 SR . & — RIS 8 £ BIIRR & 2%
(on-line approximator ) LUK /45115 75 i AR i BE 0 A HE T 0 28 AR SERREZ I B 8 o 1) FH A g HE 1 TRy
ETTEHE T REAREHBIAEAY > AT F AR LA R AR A DIRE L RUSEaR o MEEERS RENGE TR HHnyER TR B 2 LUEBETE
IRF I B A L P2 I Rl B A R SE 3 (EH B 25 8

- 376 -



