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ABSTRACT

The effects on surface-generated ambient noise of medium inhomogenieties caused by small sound-speed
perturbation are considered.  A noise-generation model combined with the wave propagation solution in a random
medium is applied to a typical oceanic environment to study the characteristics of the surface-generated noise field.
Based upon leading-order analysis, the effects of medium inhomogenieties on the noise field, including the wavenumber
spectrum, noise intensity, and spatial correlation, are analyzed.  The results show that the sound-speed perturbations
have an effect equivalent to that of medium absorption so that the efficiency of waveguide propagation is degraded.
In particular, the normal modes become less prominent, which in turn reduces the noise intensity in the waveguide.
Furthermore, the spatial coherence of the noise field decreases with increasing randomness in the medium, indicating
that the coherence of the noise field is partly attributable to the characteristics of the medium inhomogenieties.
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I. Introduction

ACOUSTIC WAVE PROPAGATION in an ocean
waveguide is subject to loss of energy due to various factors.
These include intrinsic absorption of seawater, geometric
spreading of propagation, boundary transmission and scattering,
and volume scattering; each attenuation mechanism is induced
by specific physical processes.  Volume scattering may be
caused by interaction between acoustic wave and objects
obstructing its propagation, or by random perturbations of the
acoustic properties, including the density and sound speed,
of the medium itself.  In seawater, perturbations of the density
and sound speed may originate from oceanographic mixing
and internal waves, and it has been reported that the variation
of the sound speed is an order of magnitude larger than that
of the density (Chernov, 1960).  As a result, a substantial
amount of research has focused on scattering due to sound-
speed variation (Dozier and Tappert, 1977; Desaubies, 1978;
Essen et al., 1983). The subject of this paper is the effects
of sound-speed perturbations in the medium on ambient noise
generated by surface random sources.

Our interest in surface-generated ambient noise in an
oceanic environment stems from the fact that it is an important
part of underwater sound.  Due to its persistent existence and
wide coverage in the noise spectrum, surface-generated ambient
noise is likely to contaminate any signal propagating in an
ocean.  In view of this, it has been regarded as a destructive

factor in traditional analysis, particularly in sonar applications.
However, surface-generated ambient noise also reflects many
useful properties of the marine environment, including the
surface itself and the media supporting wave propagation, thus
allowing us to extract the desired information from ambient
noise. In either case, to implement practical applications, it
is necessary that the composition of ambient noise and any
physical processes affecting it be extensively explored and well
understood.

The problem under consideration is schematically shown
in Fig. 1, which shows a water column with density ρ1 and
sound speed c1 overlying a semi-infinite fluid half-space with
density ρ2 and sound speed c2, where the sound speed in each
medium is subject to small random perturbations.  Near the
top of the water column, there exists an infinite plane of
monopoles, used to simulate the noise sources between the
air and water interface.  This noise generation model was first
proposed by Kuperman and Ingenito (1980), and later was
applied by Schmidt and Kuperman (1988) to study the effects
of seismic waves on the estimation of low-frequency ambient
noise level.  The present analysis considers the effects of medi-
um inhomogenieties due to sound-speed variations on the
characteristics of the noise field, thus supplying further infor-
mation about the noise field subject to the influence of en-
vironmental variability.

The analysis requires the use of formulations for wave
propagation in a random medium as well as for the cross-
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correlation function of the noise field.  In the following sections,
we shall first formulate the problem and then give numerical
examples to demonstrate various effects of medium random-
ness on the noise field.

II. Formulations

In this section, we will first summarize the formulation
for wave propagation in a random medium, and then derive
the cross-correlation function of the noise field.  The derivation
process is parallel to those employed byKuperman and Ingenito
(1980), Liu et al. (1993), and Tang and Frisk (1991) for noise
generation, scattering, and propagation in a random medium,
respectively.

1. Wave Propagation in a Random Medium

Consider an acoustic monotonic wave with time depen-
dent e−iωt propagating in a medium i whose sound speed is
subject to a small random perturbation:

   c i = c i + c i′ , (1)

where  c i  is the ensemble average of the sound speed and
c i′(x,y,z), with the property   c i′  = 0, is the random perturbation;
with the time-dependent term suppressed, the acoustic wave
satisfies the Helmholtz equation

   ∇2p i + k i
2p i = 0 , (2)

where ki(x,y,z) = ω/ci(x,y,z) is the wavenumber.  Under the
assumption of small perturbation of the sound speed, i.e.,

   c i′ << c i , it is readily seen that the wavenumber can be
replaced by the following approximation:

   
k i

2 = ω
c i + c i′

2
≅ ω

c i

1 –
c i′
c i

2

   
≅ k i

2
1 –

2c i′
c i

. (3)

According to small perturbation analysis, the total acous-
tic field pi may be decomposed into a coherent mean field

 p i  and an incoherent scattered field  p i
s :

  p i = p i + p i
s , (4)

where  p i
s  is assumed to be of the same order as   c i′  so that

  p i
s << p i .  Substituting Eqs. (3) and (4) into Eq. (2),

taking the ensemble average, and then subtracting the resulting
equation from Eq. (2), one can obtain the governing equations

for the mean field and the scattered field (Tang and Frisk,
1991):

   ∇2 p i + k i
2 p i = – k i

2 ε ip i
s , (5)

   ∇2p i
s + k i

2p i
s = – ε i k i

2 p i + k i
2 ε ip i

s – ε ip i
s ,

(6)

where εi = −2    c i′/ c i .  It is noted that the term on the right-
hand-side of Eq. (5) is built in to represent the effect of
randomness on the mean field.  Dropping the second-order
terms in Eq. (6) and invoking the Green’s theorem, we have

    
p i

s(R) =
k i

2

4π ε i(R ') p i(R ') G i(R; R ')dV' ,
V '

        (7)

where R=(r,z) and Gi(R; R') is the Green’s function, repre-
senting the acoustic pressure at point R due to the unit point
source at R' in the volume V'.  Substituting Eq. (7) into Eq.
(5) results in an integro-differential equation which must be
satisfied by the mean field:

    ∇2 p i(R) + k i
2 p i(R)

    
= –

k i
4

4π ε i(R)ε i(R ')
V '

× p i(R ') G i(R; R ')dV' . (8)

The solution of Eq. (8) depends upon the randomness
of the medium and is, in general, not available in closed form
so that a numerical procedure must be invoked.  However,
under certain circumstances, a semi-analytical form express-
ible in terms of amenable integrals can be obtained.  For
example, the solution for the random half-space with a special
class of sound-speed perturbation was derived by Frisk (1979)
and Tang and Frisk (1991), and shall be applied in a later section
in this study.

Fig. 1. Environmental model: Noise field generated by surface random
sources in an oceanic environment with perturbed sound-speed
distributions.
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2. Cross-Correlation Function of the Noise Field

The objective of this derivation is to obtain the cross-
correlation function of the noise field resulting from random
noise sources.  Applying the concept of plane-wave decom-
position of the noise field (Jensen et al., 1994), the pressure
field in a layer i due to a point source of strength Sω at
(rs,zs) can be represented by the Fourier integral:

    p i
ps(r, z; rs, z s) = 1

2π d 2kS ω(rs, z s)p i(k, z)e – ik(r – r s),
(9)

where    p i(k,z) is the solution of the depth-dependent wave
equation in layer i.  The total contribution from an infinite
plane of random monopoles located at z = zs is then determined
by integration over the source plane, yielding

    p i(r, z; z s) = 1
2π d 2rsd

2kS ω(rs, z s)p i(k, z)e – ik(r – r s).
(10)

It is noted that Sω is a random variable, so as p i(k,z) in the
layer that is random.

The solution for the pressure field in the random medium
can also be represented by a mean field and a scattered field
as shown in Eq. (4), which by taking the Fourier transform,
becomes

  p i = p i c i
' + p i

s , (11)

where the subscript c' stands for ensemble averaging over the
random medium.  Substituting Eq. (11) into Eq. (10), and then
taking the ensemble average of the product of pi(r1, z1; zs) and

 p i
*(r2, z2; zs), with * standing for the complex conjugate, we

can obtain the cross-correlation function of the noise field:

   C(r 1, r 2, z 1, z 2)

   = p i(r 1, z 1; z s)p i
*(r 2, z 2; z s)

    = 1
(2π)2

d 2rs
'd 2rs

"d 2k1d
2k 2

    × e – ik 1 ⋅ (r1 – r s
' )e – ik 2 ⋅ (r2 – r s

") S ω(r s
' )S ω

* (r s
")

    × p i(k1,z 1) c i
' + p i

s(k1,z 1)

    
× p i(k2,z 2) c i

' + p i
s(k2,z 2)

*

. (12)

To proceed, the expression inside the angle bracket   can

be expanded as

    
S ω(r s

' )S s
*(r s

") p i(k1,z 1) c i
' + p i

s(k1,z 1)

    
× p i(k2,z 2) c i

' + p i
s(k2,z 2)

*

    = S ω(r s
' )S ω

* (r s
") p i(k1,z 1) c i

' p i(k2,z 2) c i
'

*

    
+ S ω(r s

' )S ω
* (r s

")p i
s(k1,z 1)p i

s, *(k2,z 2)

    
+ S ω(r s

' )S ω
* (r s

") p i(k1,z 1) c i
'
p i

s, *(k2,z 2)

    
+ S ω(r s

' )S ω
* (r s

")p i
s(k1,z 1) p i(k2,z 2) c i

'

*
. (13)

Based on the solution of the scattered field shown in Eq. (7),
and with the assumptions that the random noise sources Sω
are statistically independent of the random sound speed varia-
tions εi in the medium, the last two terms in Eq. (13) vanish
due to the zero mean assumption (i.e.,   ε i  = 0).  As a result,
the cross-correlation function becomes

   C(r 1, r 2, z 1, z 2)

    = 1
(2π)2

d 2r s
' d 2r s

"d 2k1d
2k2e

– ik i ⋅ (r1 – r s
' )e ik 2 ⋅ (r2 – r s

")

    
× S ω(r s

' )S ω
* (r s

") p i(k1,z 1) c i
'

p i(k2,z 2) c i
'

*

    
+ S ω(r s

' )S ω
* (r s

")p i
s(k1,z 1)p i

s, *(k2,z 2) . (14)

The first and second terms in the square bracket ([...]) are,
respectively, the correlation functions for the mean field and
scattered field.

In the present analysis, we shall focus on the effect of
medium inhomogenieties on the spatial correlation of the mean
noise field.  In this regard, it is noted that the term representing
the correlation of the scattered field is a second-order term;
therefore, it is suppressed in this study.  To further simplify
the analysis, it is assumed that the random noise sources are
wide-sense stationary, meaning that the spatial correlation
depends upon the their separation, not on their absolute positions.
Therefore, letting  r = r1−r2 and    r s = r s

' – r s
" , denoting
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Sω   (r s
' )Sω   (r s

") as    S ω
2 N    ( r s ), substituting the above definition

into Eq. (14), and then integrating over r" and k2, we can obtain

    C( r ,z 1,z 2) = S ω
2 d 2 r d 2kN( r s )e ik ⋅ ( r – r s)

    × p i(k,z 1) c i
'

p i(k,z 2) c i
'

*
. (15)

If we define the spatial correlation of the noise sources as the
Fourier transform of the spectrum

    N( r s ) = 1
2π d 2kP(k)e ik ⋅ r s , (16)

then Eq. (15) can be simplified as

   C( r ,z 1,z 2) = p i(r 1,z 1;z s)p i
*(r 2,z 2;z s)

    = 2π S ω
2 d 2kP(k)

    × p i(k,z 1) c i
'

p i(k,z 2) c i
'

*
e ik ⋅ r .       (17)

It is noted that, for the case of isotropic random noise
sources, the power spectrum is only a function of |k|.
Furthermore, if the random sound-speed variations can be
decomposed into a product of vertical and horizontal
components, with the horizontal randomness being homoge-
neous so that it is isotropic and wide-sense stationary in

the horizontal direction, then    p i(k,z 1) c i
'  is also angular

independent.  Under these assumptions, Eq. (17) can be reduced
to a one-dimensional integral:

  C( r ,z 1,z 2)

   = 4π 2 S ω
2 P(k r)

0

∞

   × p i(k r,z 1) c i
'

p i(k r,z 2) c i
'

*
J 0(k r r )k rdk r . (18)

By setting  r  = 0 and z1 = z2 = z, an integral leading to a
quantity proportional to the noise intensity can be obtained
as

   I(z) = 4π 2 S ω
2 P(k r)

0

∞
p i(k r,z)

c i
'

2
k rdk r .       (19)

III. Numerical Examples

In this section, we shall apply the above formulations
to demonstrate the effect of medium inhomogenieties on
the noise field.  In view of Eqs. (17) − (19), we must first
derive the solution of the mean field in the random medium.

Despite the fact that Eq. (17) is capable of computing the
correlation of the noise field generated by any random sources
describable by a power spectrum, its efficiency heavily de-
pends on the complexities of the solution in the random
medium.

1. Solution of the Mean Field in the Random Medium

For initial analysis, we shall assume that the noise
sources are white so that P(k) = constant, and that the overall
environment is a uniform water column overlying a fluid half-
space with small random sound-speed perturbations, i.e., c 1

'

= 0 and c2 =   c 2 + c 2
' .  Moreover, we shall also assume that

the spatial correlation of the sound-speed perturbation is
separable and satisfies the following relation (Ivakin and
Lysanov, 1981; Yamamoto, 1989):

    ε2(R 1)ε2(R 2) = 4σ 2N( r ) M( z ) , (20)

where σ represents the RMS randomness of   c 2
' / c 2 , and  r

= | r1−r2|,  z  = |z1−z2|; N(  r ) and M(  z ) are, respectively, the
horizontal and vertical correlation functions of the random
sound-speed variations.  In view of its simplicity, the horizontal
correlation is considered to be a Gaussian function, i.e.,

  N( r ) = e – r 2/L 0
2
, with L0 being the horizontal correlation

distance; furthermore, M(  z ) is considered to be δ-correlated,
i.e., M(  z ) = z0δ(  z ), so that it measures the degree of ran-
domness in the vertical direction.

With the correlation function given by Eq. (20) and the
Green’s function for the half-space represented as

    
G 2(R;R ') = – 1

ik z,2
e – ik z,2 z – z' + R21e

– ik z,2 z' – ik z,2z

0

∞

   × J 0(k rr)k rdk r , (21)

Tang and Frisk (1991) have shown that the solution for the
coherent field can be expressed as

   
p 2(kr,z)

c i
'
= A2

+(kr) e – iηz + e – iηz

2iη f(ξ)dξ
0

z

   
+ e iηz

2iη f(ξ)e – i2ηξdξ
z

∞
, (22)

where

   
f(ξ) = 2 k2

4σ 2z 0
iR21

k z,2
e – i2k z,2ξH(k,kr )kdk

0

∞

,      (23)

  H(k,kr ) = 1
2

L 0
2e – (k r

2 + k 3)L 0
2/4I0(k rkL 0

2/2) , (24)
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R21 =

ρ1k z,2 – ρ2k z,1

ρ1k z,2 + ρ2k z,1
, (25)

   
η2 = k 2

2 1 –
k r

2

k 2
2

+ c(k r) , (26)

   
c(k r) = 2 k 2

2σ 2z 0
i

k z,2
H(k,k r)kdk

0

∞

, (27)

  k z,2 = k 2
2 – k r

2 . (28)

The parameter  A2
+(kr) is a constant, representing the amplitude

of the down-going wave.  The solution is valid for the case
in which z0 << λ, where λ is the acoustic wavelength.

With the solution of the coherent field in the lower half-
space given by Eq. (22), and with the solution in the water
column readily derived as

   
p 1(kr,z) = A1

+(kr)e
– ik z,1z + A1

–(kr)e
ik z,1z +

e – ik z,1 z – zs

4πik z,1
,

(29)

where kz,1=   k 1
2 – k r

2  and   A1
±(kr) are unknown constants, a

linear system can be established by invoking the boundary
conditions of the continuities of pressure and vertical
displacement:

Fig. 2. Wavenumber spectrum.

   

1 1 0

e – ik z,1D e ik z,1D – 1 – 1
2iη f(ξ)e – 2iηξdξ

0

∞

–
ik z,1

ρ1ω2
e – ik z,1D

ik z,1

ρ1ω2
e ik z,1

D 1
ρ2ω2

iη – 1
2

f(ξ)e – 2iηξdξ
0

∞

×

A1
–(k r)

A1
+(k r)

A2
+(k r)

= – 1
4πi

1
k z,1

e
– ik z,1 zs

1
k z,1

e
– ik z,1 D – zs

– i
ρ1ω2

e
– ik z,1 D – zs

. (30)

The above linear system can be solved for each value of kr,
leading to solutions for  p 1 and   p 2  and other derived quan-
tities of interest.

IV. Results and Discussion

To reveal the properties of the noise field under the
influence of sound-speed perturbations, we shall consider the
wavenumber spectrum, noise intensity, and spatial correlation.
It is stressed here that the numerical results generated in this
study are meant to demonstrate the qualitative effects of sound-
speed perturbation on the noise field; therefore, the absolute

values presented in the figures, such as the mean-noise levels,
are not compared with the experimental data, a procedure
requiring much more extensive analysis, which is beyond the
scope of this study (Schmidt and Kuperman, 1988).

The wavenumber spectrum of the noise field reveals the
spectral contents in the noise field and can be presented by

plotting log   p i(kr ,z)  versus kr.  Figure 2 shows the wave-

number spectrum for a frequency of 50 Hz in a 100 m water
column; all the other parameters are explained in the legend.
The curves in the figure demonstrate the variations of the

spectral levels in the water column for various degrees of
randomness measured based on the parameter σ.  It is seen
that between    k 2 = ω/ c 2  = 0.196 m−1 and k1 = ω/c1 =
0.209 m−1, there exist two normal modes, with the second mode
(right most peak) showing greater strength (a higher level and
sharper peak) in this case.  For kr less than   k 2 , it is the
continuous regime, representing wave components interacting
with the interface with a gazing angle higher than the critical
angle, so that the wave continues to lose energy into the lower
medium when it propagates through the waveguide.  Figure
2 shows that in the continuous spectral regime, the curves are
roughly at the same level, indicating that the randomness in
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the lower medium has little effect on these wave components.
However, in the normal mode regime, these curves show a
discernible discrepancy; in particular, both modes becomes
less prominent as they become lower and wider.  It is also
noted that the modal wavenumbers are slightly displaced due
to the change of the medium property.  The decrease in modal
strength occurs due to the fact that scattering in the lower
medium has an effect resembling that of medium absorption
so that, despite the impingment of the wave on the interface
with an incident angle shallower than the critical angle, energy
penetrates into the lower medium through volume scattering,
making the characteristics of the normal modes less prominent.

Next, we will consider the noise intensity. Equation (19)
presents the formulas for noise intensity at depth z. It indicates
that the noise intensity is only a function of the depth coordinate
and is independent of the range. Furthermore, the integral
shows that the total intensity is a direct integration of the
wavenumber spectrum weighted over the random noise
spectrum, in contrast to the computation of the transmission
loss as a function of the range for a discrete source, where
the integration is heavily influenced by phase interference.
Therefore, in the present case, all the wave components,
including the continuous spectrum and normal modes, are
important, which is unlike the case with discrete sources, in
which the normal modes are the mechanisms dominating
waveguide propagation. Figure 3 shows the intensity distri-
bution inside the water column for various values of σ. The
results clearly indicate that the intensity is affected by the
medium inhomogenieties, with the amount of reduction in
intensity increasing with the degree of randomness measured
based on the parameter σ. Again, this is due to leakage of
energy into the lower medium through volume scattering.

Finally, the spatial correlation of the noise field will be
considered.  The correlation function, Eq. (17), characterizes
the spatial statistics of the noise field through its magnitude
and decay rate.  Figure 4 shows the magnitude of the horizontal
correlation of the noise field for the lower medium with and
without sound-speed perturbations, represented, respectively,

by the solid and dashed curves.  The results demonstrate that
the magnitude of the correlation in the water column decreases
if the medium is subject to random sound-speed perturbations,
indicating that the energy in the coherent field is extracted
and dispersed into the scattered field.

To observe the characteristics of the noise field in terms
of the relative relationship, a normalized correlation function
with respect to zero-separation can be employed.  Figure 5
shows the normalized correlation of the noise field for three
values of the correlation length of the random medium L0.
The results show that the larger the value of L0, the more slowly
the corresponding curve decays, demonstrating that the degree
of incoherence of the noise field increases with that of the
medium inhomogenieties.  This is consistent with our general
perception that the randomness of the noise field is partly
attributable to that of the random medium.

V. Conclusions and Remarks

In this analysis, we have studied the effects of medium
inhomogenieties due to sound-speed perturbations on surface-

Fig. 4. Horizontal spatial correlation of the noise field.

Fig. 3. Intensity distribution.

Fig. 5. Normalized horizontal spatial correlation for various correlation
length of random medium.
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generated ambient noise. By applying a formulation similar
to a previously developed noise-generation model with con-
sideration of medium randomness, we have been able to
analyze the characteristics of the noise field, including its
intensity and spatial correlation.

The results have demonstrated that the medium
inhomogenieties reduce the efficiency of waveguide propa-
gation because volume scattering serves as a mechanism for
transmitting energy out of waveguide, which in turn reduces
the strength of the normal modes.  As a result, the coherent
energy inside the waveguide decreases according to the degree
of randomness in the medium, which is equivalent to the effect
of medium absorption.  Moreover, the spatial coherence of
the noise field has been studied, and it has been found that
the decay rate of the spatial correlation function increases with
a decrease of the medium correlation length, indicating that
the coherence of the noise field decreases as the medium
becomes more random.

It is noted that, since we have only conducted leading-
order analysis in this study, some features embedded in the
scattered field are not found in the results, in particular the
spatial structure of the noise field.  However, the noise intensity,
which in this case is not subject to any phase-interference effect
[see Eq. (19)], should be less susceptible to the higher-order
effect.  In view of the fact that the spatial correlation of the
noise field depends upon the source spectrum, medium
randomness, and waveguide regularity, complete analysis of
the noise field remains for future work.
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隨機不均勻介質對海面所產生之環境噪聲的影響

劉金源　黃千芬

國立中山大學海下技術研究所

摘　要

本文在於探討由於隨機聲速分佈所造成介質之不均勻性，對海面所產生之環境噪聲的影響。藉由噪聲產生模式與

隨機不均勻介質中聲波傳播原理，本文推導出平均噪聲模式，並應用於典型的海洋環境以便探討噪聲場性質，包括波

數譜、噪聲聲強分佈、空間關連性等。本文結果顯示，隨機不均勻聲速分佈對聲場所造成的影響，相當於具有吸收性

介質的效應，因此，使得波導中之簡正模態變得較不顯著，也隨即降低了噪聲聲強的大小。另一方面，噪聲場的空間

均致性也會隨著隨機聲速的亂度增加而減小，顯示環境噪聲場之空間關連性亦會受到不均勻聲速分佈的影響。


