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ABSTRACT

The problem of finding an optimal loading layout for packing identical boxes onto a pallet is known
as the pallet loading problem. If the boxes are stacked on their bottom, side, or end surfaces, the cube
utilization of a pallet will increase, but the stability of the unit load may drop. To quantify the stability
of the unit load, this paper defines the stability coefficient between any two adjoined layers. According
to the stability coefficient, a method with five phases that packs boxes of the same size onto one pallet
is proposed. The objective of this method 1s to maximize the smallest stability coefficient of the interface
in the unit load based on the maximum cube utilization of a unit load. An example 1llustrates how the
method works, and the method has been tested using 216 box sizes and 3 standard pallets combinations.
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l. Introduction

The problem of finding an optimal loading layout
for packing identical boxes onto a pallet - the so-
called pallet loading problem - arises frequently in
logistics. In the pallet loading problem, the size
Ixw of the box and the size LXW of the pallet are the
two major parameters used to determine the maximum
number of boxes that can be loaded on the pallet. These
methods may produce solutions that do not satisfy
real-life problems such as load stability. Therefore,
Carpenter and Dowsland (1985) proposed the sup-
portive criterion, base contact criterion, and non-
guillotine criterion to ensure the stability of pallet
loading patterns that maximize the number of boxes
loaded.

Bischoff (1991) considered the stability objective
in the pallet loading problem and examined approaches
for generating stable stacking patterns that are also
optimal for area utilization. By using compacting,
centering blocks and distributing gaps procedures,
Bischoff extended the Bischoff-Dowsland algorithm
(Bischoff and Dowsland, 1982) to generate more stable
layouts under the same criteria proposed by Carpenter
and Dowsland (1985).

Liu and Hsiao (1997) integrated the methods for
cube utilization and the criteria for stability, and as-
sumed that the stability of the unit load is the sum of
the stability coefficients of every interface from the

highest layer to the lowest layer. A five-phase method
was proposed to determine the loading patterns and the
stacking sequence which had the highest level of sta-
bility while achieving the maximum number of boxes
on the pallet. This method provides the best cube
utilization and stability.

From a practical point of view, the smallest
value of the stability coefficients in the unit load is
the weakest interface that influences the stability
of the unit load. Extending our previous work, a
max-min model, where a solution is sought such that
the smallest value of the stability between two adjoin-
ing layers is as high as possible, is proposed in this
paper.

Since the max-min model is more complex than
the max-sum model, mathematical programming com-
puter software packages can not be used to solve the
IP Code directly. In this paper, we propose two upper
bounds and one lower bound for the max-min model.
Using these bounds and the characteristic of the sta-
bility coefficient, the max-min mode!l can be solved in
reasonable time.

In this paper, we present a new method for com-
puting the stability coefficient between any two adjoin-
ing layers. This method considers characteristics
such as the relative position of the box on the pallet,
the number of contacts in the Supportive criterion,
and the size of the contact area in the Base contact
criterion.
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Il. Definition of Stability Coefficients

Different methods may increase the stability of
a unit load with different costs. Using an analytical
approach to generate optimum loading patterns results
in lower costs than do other methods such as stretch
wrapping, shrink wrapping, strapping, gluing, and
applied tie sheets (Cox and Van Tassel, 1985). To find
the best loading pattern, we quantify the stability criteria
and define the stability coefficients between adjoining
layers.

Usually, a pallet is loaded with multiple layers.
The interfaces of the adjoining layers affect the sta-
bility of the whole unit load. The principles for de-
fining the stability coefficients of the adjoining layers
are as follows:

(1) One layer stacked on another layer has a certain
stability.

(2)For two adjoining layers, the stability of the
upper layer depends on its loading pattern and
that of the lower layer as well.

(3) The stability of a layer is determined by the
stability of every box in the layer.

(4) Because boxes on the corner and perimeter of
a pallet are in contact with the forklift, it is
prudent to pay more attention to these areas to
reduce any possible damage.

(5)A box’s center of gravity is on its center of
geometry.

(6) The stability of two adjoining layers can be
evaluated by means of the stability criteria.

Let o, represent the stability coefficient of the
interface when an i-pattern layer is stacked on a j-
pattern layer. The definition of the stability coefficient,
@y, is based on the Supportive criterion and Base contact
criterion (Carpenter and Dowsland, 1985).

(1) Supportive criterion: If the base of a box k in
an i-pattern layer is in contact with at least two
boxes in the j-pattern layer, and each contact
must include more than 0,% of a box’s base area,
we say that this box satisfies the Supportive
criterion.

(2) Base contact criterion: If at least 6,% of its
base area of a box k in an i-pattern layer has is
in contact with the layer below, we say that this
box satisfies the Base contact criterion.

The Supportive criterion tends to tie boxes to-
gether by bridging boxes. Let CN, be the number of
boxes in the lower layer that are in contact with box
k in the upper layer, for example, (see Fig. 1), CN,=4,
CNy,=2. The arrangement with the higher CN, value
is preferred. Depending on the box's dimensions, we
can specify a threshold value, CN*, for the Supportive
criterion.

lower layer lower layer
upper layer upper layer
box k1 box k2

Fig. 1. The stacking status for the Supportive criterion.

The Base contact criterion tends to increase the
area of the box in contact with the layer below. Let
CA; be the area of box k in the upper layer in contact
with boxes in the lower layer. The higher CA; is
preferred.

Since the locations of the boxes in a layer play
a significant role in their stability, we assume that their
stability is proportionally weighted by their distance
to the center of the pallet. Let d; be the weighting factor
of box k for computing the stability coefficient. d; is
computed as the distance between the center of box k
and the center of the pallet. Hence, the corner box will
have more stability weighting.

As mentioned above, the stability coefficient, @,;,
can be defined as follows:

Q

CN CA
Dok k)
- gN V—k>6,%

d
Z
0, = )

- 3&<0-b%’

CA

where

Q, is the total number of boxes in the i-pattern
layer,

ps is the weighting factor of the Supportive cri-
terion,

pp 1s the ‘weighting factor of the Base contact
criterion,

ps+pb=17
CA’=the area of the box.

lll. A Method for Pallet Loading

Boxes with dimensions /Xwxh have to be loaded
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onto a pallet of size LXxW, subject to a height limit of
H. The unit load will be handled by a forklift with
weight capacity M. The objective of the method is to
maximize the degree of stability while achieving the
maximum cube utilization of a unit load under the
following assumptions:
(1) the boxes may be stacked on their bottom, side,
or end surfaces;
(2) all the boxes within a layer must be stacked on
the same surface;
(3)the degree of stability between any two adjoin-
ing layers is determined by the stability coef-
ficient.

1. Phase 1: Determining the Maximum Num-
ber of Boxes for Each of the Three Possible
Types of Layers.

Three loading types are defined as follows:

(1) B-type layer: a layer of boxes with a height of
h (and bottom surface Ixw);

(2) S-type layer: a layer of boxes with a height of
w (and side sufface Ixh);

(3)E-type layer: a layer of boxes with a height of
! (and end surface wxh).

There are many approaches (Steudel, 1979; Smith
and de Cani, 1980; Bischoff and Dowsland, 1982) that
may achieve better area utilization for the three
basic loading types. Any effective approach can be
applied to generate B-, S-, and E-type layers in this
phase.

Let the maximum number of boxes in a B-type
layer be denoted by Np, the maximum in an S-type layer
by Ng and the maximum in an E-type layer by Ng. Let
the associated loading patterns for B-, S-, and E-type
layers be Bo, So, and Eo, respectively.

2. Phase 2: Constructing Three Related Pat-
terns for Each Type of Layer.

Each of the three basic loading patterns obtained
in Phase 1 is transformed by means of the following
methods (Carpenter and Dowsland, 1985):

(1) o-transformation: mirror reflection along one
side of the pattern;

(2) B-transformation: mirror reflection along the
other side of the pattern; R

(3) y-transformation: 180 degree rotation on the same
plane of the pattern.

Hence, the Bo pattern is transformed into patterns
Ba, BB, and By. Similarly, So is transformed into Se,
SB, and Sy, and Eo is transformed into Ecx, Ef, and EY,
for a total of twelve patterns that may -be selected for
stacking.

3. Phase 3: Finding the Maximum Number of
Boxes That Can Be Included in the Loading
Cube of the Pallet.

Let variables Zp, Zg, and Zf represent the number
of B-, S-, and E-type layers stacked on the pallet,
respectively. The maximum number of boxes
(A") loaded on the pallet can be found by solving the
following integer programming (IP) problem:

A'=Max. (NgxZg+NgxZs+NpxZg), )
subject to

hXZpgtwXZe+IXZp<H 3)

NpXZp+ NgXZ e+ NpXZg

<Min[LM/m], L(LxWxH)/(Ixwxh) ]1, )

where m is the weight of the box and Z, Zs, Zg are
integers.

Equation (3) ensures that the stacking height does
not exceed the limit of the unit load. The weight and
volumetric limitations are presented in Eq. (4).

4. Phase 4: Computing the Stability Coefficients
of 144 Possible Interfaces.

Using Eq. (1), 144 stability coefficients are com-
puted using all possible combinations of twelve pos-
sible layer patterns provided by Phase 2. Let Q be the
matrix that comprises the stability coefficients (@, of
all possible interfaces.

5. Phase 5: Determining the Stacking Sequence
of the Pattern That Will Construct a Unit
Load with Maximum Stability.

To obtain the maximum stability of a unit load,
the number of layers of each possible pattern for each
type and the stacking sequence of the layers must be
determined in this phase.

Every possible stacking sequence has (Zg+Zg
+Zp)-1 interfaces between layers. Let y, be the number
of times. an i-pattern layer is included in the unit
load, and X be the number of interfaces that the i-
pattern layer stacks on the j-pattern layer. The con-
straints for determining the stacking sequence are as
follows:

YBotYBatYBptYBy=ZB:s )

Ysot+YsatYsptYsy=Zss (6)
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YEotYEatYERYEFZE Y
%5+ Xy =Yi (VieP), 8)
E,)x”ij:yj (VjeP), )
,gi xy=1, (10)
Zoxy=1, amn

X=(x;e G, (Vi,jeP), 12)

where
B={Bo, Ba, Bf, By}, S={So, Sa, SB, Sy},

E={Eo, Ea, EB, Ev},

P=BUSUE,
G= {xzyl,é 1§R X< i;& ¥i— 1 for every nonempty

subset R of P and y;>0},

V represents the virtual layer of a unit load at the
top or the bottom,

y; is an integer, VieP,
x, is an integer, Vi, jeP,
x,y is binary, VieP,

xy; is binary, VjeP.

Equation (5) shows that the sum of the number
of Bo-, Ba-, Bf-, and By-patterns must equal Zj.
Equations (6) and (7) are the same constraints for S-
type and E-type layers. Equation (8) shows that in-
stances of the i-pattern have y; interfaces with the layers
beneath them, including the virtual layer. Equation (9)
shows that instances of the j-pattern have y; interfaces
with the layers above them, including the virtual layer.
Equation (10) indicates that there is only one layer
beneath the virtual layer in the unit load. Similarly,
Eq. (11) indicates that there is only one layer above
the virtual layer in the unit load.

Equation (12) can eliminate the possibility of
unsuitable outcomes and guarantee that the stacking
sequence of the unit load will be a single non-simple
path from V to V. The general expression of Eq. (12)
can be written as Eqgs. (13)-(15):

2 2 x5S Zy-1+ X K(1-4) (VRCP),

ieRjeR (13)
y,2, (VieR), (15)

where A; is the auxiliary binary variable for Vie R and
K is a sufficiently large number.

Consider a unit load including ¢ layers, where
t=Zp+Zs+Zg. Let wy(r) indicate the stability coefficient
of the interface such that the r-th layer in a stack is
an i-pattern instance and the (r+1)-th layer is a j-pattern
instance. The loading patterns of the unit load from
the highest layer to the lowest layer are pl, p2, ..., pt.
Hence, the ¢t—1 stability coefficients in the sequence
will be (Dplpz(l), Cl)pzp3(2), ciey Cl)p(,_g)p(,_“(f‘-z),
Opir-1ype(t-1).

If we assume that the stability of the unit load,
0, is the sum of the stability coefficients of every
interface from the highest layer to the lowest layer,
then

=1

0= rgl @1, where t=Zg+Zs+Zg. (16)

The greatest stability of the unit load can be
indicated by the stacking sequence with the maximum
0 value:

Model O1: objective function

1-1
0" - Zl () =Max (EPEP W) . aa7)

We also define that @y is 67/(t—1). The max-
sum model has been proposed by Liu and Hsiao
(1997).

From a practical point of view, we want the smallest
value of the stability coefficient between adjoining
layers, 7, to be as high as possible. Hence, we consider
a max-min objective function with the same constraints
as in Egs. (5)-(12):

7[=Min{wplp2(1)’ a)p2p3(2)a cees wp(t—Z)p(t-])(t_z),
Opr-1ypr(t-1) }. (18)

Model O2 seeking the stacking sequence with maxi-
mum 7 value is as follows:

Model 02: objective function 7'=Max OM;I}I,(%),
a9

where @ is the set of all feasible stacking sequences.
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IV. The Solution Procedure for the
Max-min Stability Model

To solve Model O2, we remodel it as Model O3,
which is a general mixed-integer programming model.
The objective function and the four additional con-
straints are:

Model O3: objective function Max. (7),

(20)

subject to
r<ogu+K(1-u) (VijeP), (1)
x,;<Ku, (VijeP), 22)
x2u; (VijeP), (23)
2 Xu>1, (24)

1eP jeP A

where u;; is binary (Vi,je P) and K is a sufficiently large
number.

Hence, 433 (144x3+1) additional constraints
and 144 additional binary variables (u;;) are incor-
porated. Because u;; is the yes-no type variable for a
decision, the model will be difficult to solve in a
reasonable amount of time. We introduce three
ways to reduce the complexity of the model in the
following.

1. Reduce the Problem Size by Means of the
Characteristic of the Stability Coeff1c1ent
Matrix.

The stability coefficients matrix Q can be decom-
posed into nine submatrices, Qj.y, where I and J are
B, S, and E. The size of each submatrix is 4x4, with
16 entries.

Since the relative positions for some adja-
cent stacking layers are identical, their stability coef-
ficients can be represented by one of them. For in-
stance, in the submatrix Qpgys, @Pposo=PBasa=
Oppsp=Wpysy Eqs. (21)-(23) for (i, j) ={(Bo, So),
(Ba, Sa), (BB, SB), (By, SY} can be simplified as
follows:

T WpoSoUBoso+K(1—Uposo), (25)
xBoSo+xBOAS‘a+xBBSﬁ+xB7/Sy—KuBaSa’ (26)
XBoSo+XBasatXBASEHXBysyZUBoSo- 27

Similarly, since Wposa= Dpaso= Oppsy=Dpysps Wposp=

Opasy= Oppso=WVpyses and Wp,5y=WVpass=Vppsa=Wpyso» the
associated equations also can be rewritten. Hence, for
the submatrix Qpg,g, instead of 16 variables and 48
constraints, only 4 variables and 12 constraints are
required.

The same process is also implemented to the other
eight submatrices. The problem size is substantially
reduced. :

2. Eliminate Redundant Variables

Consider the loading pattern adjoined to the vir-
tual layer V (x;v); there is no difference among the four
loading patterns of a layer type. Therefore, Eq. (8) can
be reduced to

%xi,- +x,y=y, (Vie {Bo, So, Eo)), (28)
)

Z;,’x,.j=y,. (VieP-{Bo, So, Eo}). (29)
j€

Nine x;y variables are eliminated. Equation (11) can be
rewritten as

XBovtXsovtXEoy= 1. 30)

3. Bounds of the 7 Value

We provide three bounds of the x value to speed
up the branch-and-bound solution procedure of Model
O3 as follows.

Theorem IV 1.

@nin and @ave of Model Ol are the lower and upper
bounds of m; that is, wnunSn*Swave where @min=
Min. { @p1,2(1), w;2p3(2), - w;(t—l)pt(t Dy,

Proof .
Suppose 7'>@yve is a feasible solution of Model O3.
Then, there exists a stacking sequence @,1,2(1), ...,

Bpp3(@), ..., ‘p(, it = 1) such that 7'=Min{ @y,(1),
&)p2p3(2)’ seesy p(t 1)pt(t 1)} So V (r)> ave . There-
fore,
By1pa D)+ @@ -+ D1yt — 1> — DO
=6 (31)

Since Models O3 and Ol have the same con-
straints, the stacking @,1,0(1), @,,,,2), ..,
@y 1),,,(t D is also feasible for Model Ol, and
@1 oD @,353(2) 4.+ Dpe_ 1)t = 1) should not be

greater than 6. Therefore, Eq. (31) is in conflict to
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the definition of 6" and @s. in Model O1. Therefore,
any feasible solution of model O3, 7, cannot be greater
than @aye; that is, Wyve should be the upper bound of
Model O3.

Because Models Ol and O3 have the same con-
straints, Onin is also a feasible solution of Model 03.
Therefore, 'a):r{)in is a lower bound of 7.

Theorem IV.2. .

7 is the upper bound of 7, r'<it , where 7 is the
optimal solution of Model O3 without including
Eq. (12).

Proof . .
Let the stacking sequence @,1,x(1), @,,3(2), .

p(t 1€ — 1), have the optimal solution of Model
03- relax 7. If the stacking sequence does not
violate Eq. (12), it is also the optimal solution of
Model O3. Otherwise, the optimal solution of
Model O3 will be less than 7 because adding con-
straints to the maximum model would decrease the
objective value.

Therefore, we need four steps to solve the max-

min problem.

(l)Step 1: Solve Model O1 to obtain @min and Dave .
If @Wave<0, then Model O3 has no feasible solu-
tion and go to Adjustment Procedure. Other-
wise, go to Step 2.

2) Step 2: Solve Model O3- relax with lower bound
@mun and upper bound Ope. If 7 <0, Model O3
has no feasible solutlon and go to Adjustment
Procedure. 1f 7 = Opyn, the 0pt1mal SOlUthIl of
Model O3 is @min and stop. If T >®py, go to
Step 3.

3) Step 3: Solve the Model O3 with lower bound
@i and upper bound 2

(4) Step 4: A trace of the solutlon of Model O3 from
V to V forms a single non-simple path that is
the stacking sequence of the unit load.

V. Adjustment Procedure

The five-phase method may be mathematically
infeasible or may yield an impractical pallet loading
de51gn Three cases might occur with this method. Case
1: Oe <0, there is no feasible solution for Model O3.
Case 2: T <0, there is no feasible solution for Model
03. Case 3: " is too small to stack for practical
consideration.

Since the loading types generated in Phase | are
the caused factors, we suggest three alternative pro-
cedures to increase the solution spaces. Method 1:
Adjust the loading patterns generated in Phase | by
using the compacting, centering blocks and distribut-

:are shown in Table 1.

ing gaps procedures. Method 2: Find another basic
loading pattern of B, S, or E-type layer in Phase 1.
Method 3: Scarify some cube utilization by setting the
objective of Phase 3 to less than A"

VI. A Numerical Example

The five-phase method was coded into a computer
program running on a DOS-based PC. LINDO (Schrage,
1991 ) was used to solve the IP models of Phase 3 and
Phase 5.

Consider the problem of loading a pallet with
packages of potato chips packed in fiberboard boxes
with /=37 cm, w=25 cm, h=20 cm, and m=2.3 kg.
Assume that the size of the pallet is L=120 cm, W=100
cm, H=140 cm, and that the maximum weight'is M=1500
kg. In this example, the value of the stability criterion
is 10% for o, and 50% for o,. The effects of the
Supportive criterion and Base contact criterion are
equal, that is, p,=p,=0.5.

Phase 1 reveals that the maximum number of
boxes in a B-type layer is 12, in an S-type layer is 15,
and in an E-type layer is 24, respectively. The
area utilization of B-, S-, and E-type layers is 92.5%,
92.5% and 100.0%. Detailed results of Phase 1
The twelve possible loading
patterns formed in Phase 2 are shown in Fig. 2. In
Phase 3, we can formulate the problem in the following
way:

A'=Max.(12Zz+15Zs+24Zp),
subject to

20Z5+25Z5+37Z5<140,

1275415 Zg+24Z5<90,

where Zg, Zs, Zp are integers.

Solving the above problem, the number of B-type
layers (Zp) is 2. of S-type layers (Zg) is 1, and of E-
type layers (Zg) is 2. The stability coefficient matrix
Q obtained in Phase 4 is listed in Table 2. In Phase
5, we first solve Model O1, and the non-zero variables

solution is xpyr,=2, Xsgpy=1, XEosp=1, Xeov=1, xva,=1.

Table 1. The Characteristics of B-, S-, and E-type Layers

B-type S-type E-type
Surface area (A,, cmxcm)  37()x25(w) 37(1)x20(h) 25(w)x20(h)
No. of boxes per layer (V) 12 15 24
Area Utilization (%) 92.5 92.5 100
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So-pattern
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Fig. 2. Pallet stack construction.

Bo Ba BB By | So Sa
Bo 0.63 070 0.65 0.71 0.69 0.79
Ba 0.70 063 0.71 060 | 079 0.69
BB 0.69 071 0.63 070 | 0.6 0.76
By 0.71 0.69 0.70 063 | 076 0.76
So 0 64 0.75 0.71 0.69 | 062 0.71
Sa 0.75 0.64 0.69 0.71 0.71 0.62
sB 0.71 0.69 0.64 075 | 069 0.65
Sy 0.69-  0.71 0.75 064 | 0.65 0.69
Eo 0.67 0.67 0.67 067 | 0.69 0.69
Ea 0.67 0.67 0.67 067 | 0.69 0.69
EB 0.67 067 0.67 0.67 0.69 0.69
Ey 0.67  0.67 0.67 067 | 069 0.69

Table 2. The Matnx of 144 Stability Coefficients for 12 Possible Patterns (Q=[®,])

Sp Sy | Eo Ea EB Ey
0.76 0.76 0.91 0.91 096 0.96
0.76 076 | o091 0.91 096 0.96
0.69 079 | 096 0.96 0.91 0.91
0.79 0.69 | 0.96 0.96 0.91 0.91
0.69 065 | 0.82 0.82 0.81 0.81
0.65 0.69 0.82 0.82 0.81 0.81
062 071 | os1 0.81 0.82 0.82
0.71 0.62 | 081 0.81 0.82 0.82
0.69 0.69 | 0.62 0.62 0.77 0.77
0.69 0.69 | 0.2 0.62 0.77 0.77
0.69 0.69 0.77 0.77 062 0.62
0.69 069 | 077 0.77 0.62 0.62

Since the total stability coefficient (8") is 3.36, we set
the upper and lower bounds of Model O3-relax to
Wyve=3.36/4=0.84 and @min=0.69. The solution of
Model O3-relax, 0.75, is the upper bound of Model
03. After running Model O3, the non-zero variables
solution is xB,,S0=1, X503a=1, xBaEﬁ=l. xEﬁEO=1, xEoV=1a
xvpe=1. The trace of the ngn-zero variables solution
1S XvBa—>XBaso—XSopa—>XBaEF—>XEBEo—>XEov. The
stacking sequences of the unit load from the top to
the pallet are Ba, So, Ba, EB, and Eo as shown in Fig.
3,

VIl. Performance Analysis

To evaluate the performance of the proposed
method, box sizes were generated in 2 ¢cm increments,
with A=10 cm to 20 cm, w—h=0 cm to 10 cm, /-w=0
cm to 10 cm, for a total of 216 (=6x6x6) box sizes.
The three pallet sizes, 110x110 cm, 120100 cm, and
12080 cm (Jansen, 1983), were set to the pallet speci-
fications (L, W). The loading height and weight were
H=140 cm, and M=1500 kg.

The weighting factors. p; and p, influenced the
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Virtual layer

Ba-pattern

So-pattern

Ba-pattern

Ep-pattern

Eo-pattern

irtual layer

Fig. 3. Stacking sequence.

stability coefficients. Five combinations of weighting
factors were set for each box and pallet combination
to test the sensitivity. Each setting was solved for the

max-sum and max-min stability models.

‘Table 4 shows the results for the 110x110 cm
pallet size. For instance, with a combination of 0.25
and 0.75 for the 216 box sizes, two box sizes no feasible
solutions that need to be modified by the Adjustment
Procedure.” There are 35 box sizes that have 7">®min.
The average improvement for these 35 box sizes is
1.77%. The maximum improvement among these 35
box sizes is 5.06%. The number of improvement
solutions decreases as the p; value increases. The average
and maximum improved values (ﬂ*—a)r;in) increase as
the p; value increases.

From Eq. (1), the possible values for CN,/CN are:
1/4, 2/4, 3/4, and 4/4. The value of CA,/CA" is in the
range [0.5, 1]. By definition, the CA,/CA" values are
only slightly different. Hence, the variance of the
elements in the matrix Q becomes more sensitive as
the p, value increases.

If the Base contact criterion is more significant
in.defining the stability coefficient, as p,=0 and p,=1.0,
the max-min model has more improved solutions but
with little improvement. On the other hand, if the
Supportive criterion is more significant, as the p;=1 and

Table 3. Stacking Sequence of Unit Load for Model O1, O3-relax, and O3

Model Stacking Sequence Stability Coefficients Total Max. Min.
o1 By, Eo, SB, By, Eo 0.96, 0.69, 0.75, 0.96 3.36 0.96 0.69
03-relax (V,Bo), (Bo,So), (Eo,Ep) 0.79, 0.75, 0.77, 0.77 3.08# 0.79# 0.75#
03 Ba, So, Ba, EB, Eo 0.79, 0.75, 0.96, 0.77 3.27 0.96 0.75
Notes: ( ): a subtour
#: it is not a feasible solution of Model O3
Table 4. Computational Results for 110x110 cm Pallet

Ps 0.25 0.5 0.75 1.0

Py 1.0 0.75 0.5 0.25
No. of no feasible solution 2 2 2 2 2
No. of feasible solutions has 7">®n;, (ny) 55 35 27 23 24
(" - Opin) Opinl/n, (%) 1.49 1.77 4.11 8.29 12.12
Max.[(1 "~ O )/ Opin] (%) 6.67 5.06 19.05 26.92 50.00

Table 5. Computational Results for 120100 cm Pallet

Ps 0.25 0.5 0.75 1.0

3 1.0 0.75 0.5 0.25 0
No. of no feasible solution 5 5 5 5 5
No. of feasible solutions has 7">®};, (ny) 67 34 38 30 29
(7" = @Dhgin) Dppin) /1 (%) 1.29 1.50 3.97 6.82 9.77
Max.[(7" = Opin)/ @min] (%) 5.62 8.33 23.53 33.33 32.61
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Table 6. Computational Results for 120x80 cm Pallet

Ps 0.25 0.5 0.75 1.0
P 1.0 0.75 0.5 0.25 0
No. of no feasible solution 4 4 4 4 4
No. of feasible solutions has 7*>®p, (ny) 26 36 20 18 25
E[(A*=Ogun) Orunl/n, (%) 1.53 2.39 5.05 10.39 13.24
Max [(7*—@pmun) Orun] (%) 4.26 10.53 12.68 22.22 45.71
Table 7. Average and Variance of nt”
Ps 0 0.25 0.5 0.75 1.0
o3 1.0 0.75 0.5 0.25 0
average variance average  variance  average  varilance  average variance  average  variance
110x110 cm 0.98 0.0009 0.85 0.0013 0.73 0.0047 0.61 0.0088 0.49 0.0159
120x100 cm 0.99 0.0003 0.85 0.0010 0.72 0.0042 0.59 0.0090 0.46 0.0168
120x80 cm 0.99 0.0006 0.85 0.0012 0.71 0.0069 0.59 0.0093 0.47 0.0171

p»=0, the max-min model has fewer improved solu-
tions, but the solutions have more improvement.

For these products that mainly depend on the
interlock of the boxes for loading stability, the effect
of the Supportive criterion is more significant than that
of the Base contact criterion. The max-min model will
provide better performance for the pallet loading de-
sign.

Tables 5 and 6 display the results for the 216 box
sizes loaded on pallets with size 120x100 cm and
120x80 cm, respectively. The observations given in
the previous paragraph are also relevant here.

Table 7 displays the averages and variances of the
7" value of the 216 box sizes for each pallet under five
weighting combinations. On average, the 7" value
decreases as the p; value increases. Under each weight-
ing combination, the average of the 7 values for the
three pallets are similar. We may conclude that the
performance of the proposed method has no significant
difference for the pallet size.

VIll. Conclusions

In this paper, a five-phase method with an adjust-
ment procedure has been proposed to solve the three-
dimensional pallet loading problem. Under the first
objective, greatest cube utilization, the method is to
search for loading patterns of the stacking sequence
such that the smallest value of the stability coefficient
between adjoining layers is as high as possible. Po-
tential applications of this thethod are numerous since
many products can be positioned and transported on
their end or side surfaces without incurring damage,
and the stability of unit load often is influenced by the

interface with the smallest value of the stability coef-
ficient.

The computational time for one pallet with 216
box sizes is about 6 hours on a Pentium-100 PC. The
average computational time for single-size boxes to be
stacked is about 100 seconds, which is acceptable for
practical design purposes. However, one box and pallet
combination may have many different loading patterns.
The greater the number of loading patterns that can be
selected, the more the objective function of maximum
stability can be improved. The complexity of the
problem increases with the number of different loading
patterns.

The heuristics of seeking the best sequence in
Phase 5 can be stated in terms of graph theory. The
loading sequence problem can be treated as a Trans-
portation Problem or a Traveling Salesman Problem
with side conditions. A variety of methods can be
applied to solve the problem. It will be worthwhile
to study these methods.

This method can be extended to cases where the
boxes are not all the same size. If two-dimensional
pallet loading with mixed box sizes is known in Phase
1, then the max-min stability problem of the stacking
sequence of the unit load can be obtained by Phase 2
through Phase 5.
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