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ABSTRACT

In hyperspectral image analysis, determining a distinct material number is an important task for subsequent
classification processes.  Identifying the number of distinct materials is essentially the same task as determining the
intrinsic dimensionality of the imaging spectrometer data.  Minimum noise fraction (MNF) transformation or noise-
adjusted principal component analysis (NAPCA) is a highly effective means of determining the inherent dimensionality
of image data.  However, inaccuracy in the noise estimation degrades the validity of this estimation.  To effectively
resolve this problem, this work presents a novel visual disk (VD) approach which incorporates the NAPCA method
into a transformed Gerschgorin disk (TGD) approach.  By means of multiple linear regression, Gerschgorin disks
in VD can be formed into two distinct, non-overlapping collections; one for signals and the other for noises.  Hence,
the number of distinct materials can be visually determined by counting the number of Gerschgorin disks for signals.
In addition, the VD approach is evaluated based on both simulated and imaging spectrometer data sets collected by
the Airborne Visible Infrared Imaging Spectrometer (AVIRIS).  Experimental results demonstrate that the method
proposed herein can be used to effectively solve the intrinsic dimensionality problem.

Key Words: noise-adjusted principal components analysis, transformed Gerschgorin disk  approach, visual disk
approach
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I. Introduction

Imaging spectrometry in Earth remote sensing applica-
tions largely focuses on determining the identities and abun-
dances of materials in a geographic area of interest.  In remote
sensing image analysis, the limited spatial resolution of scan-
ners frequently leads to the presence of more than one ground
cover type within the instantaneous field of view.  Therefore,
each spatial coverage pixel often encompasses multiple ma-
terials.  Under such circumstances, identifying the number of
endmembers is equivalent to determining the intrinsic dimen-
sionality of the data rather than the number of clusters of
distinct pixels.  In multispectral imaging systems, the data
dimensionality is often substantially larger than the number
of spectral channels.  This fact implies that while the intrinsic
dimensionality problem is severe for multispectral sensors,
only hyperspectral imaging spectrometers have a sufficient
number of spectral channels to directly solve this problem.
For instance, the NASA Jet Propulsion Laboratory’s Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) simulta-
neously collects 224 spectral bands, each with a 10 nm band-
width distributed over the 0.4 to 2.4 µm range.  However, the

Thematic Mapper (TM) used in LANDSAT has only seven
spectral bands (Vane and Goetz, 1988).

Conventionally, intrinsic dimensionality is estimated by
detecting a gap in singular values.  A statistical approach ap-
plies hypothesis tests to eigenvalues, which have been derived
by means of principal components analysis (PCA) (Anderson,
1984).  However, this approach is limited in that it requires
a proper set of threshold levels for the dependent sequential
test.  Moreover, PCA is a linear method, and most noise co-
variance structures are not known a priori.  Therefore, using
a simple standard PCA in remote sensing is occasionally in-
adequate.  For instance, a previous investigation has demon-
strated that when PCA is used in image enhancement (Green
et al., 1988), some minor components may contain relevant
information rather than only noise or unimportant variance.
If these minor components are discarded, the estimation of
the intrinsic dimensionality becomes inaccurate.  In contrast,
when attempting to keep the minor components, the intrinsic
dimensionality must be determined by means of image-by-
image inspection throughout the entire data space.  This makes
PCA impractical for application to a hyperspectral image cube.

While addressing similar problems associated with the
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statistical approach, Wax and Kailath (1985) proposed a novel
approach to solving the problem of source number detection.
This approach was based on an information theoretical criteria
(AIC) (Akaike, 1974) and the minimum description length
(MDL) (Rissanen, 1978) criteria.  Both the AIC and MDL
criteria were adapted to the exponential model-fitting problem.
The fact that no subjective judgment is required in these
determination processes accounts for why the number of
sources can be naturally determined by minimizing the AIC
or MDL criterion.  However, these two likelihood detectors
are derived by means of statistically independent Gaussian
random noise with zero mean and the covariance matrix Rn

= σ 2I.  Therefore, these techniques can not be directly applied
to hyperspectral images since their noise covariance structures
are not known in general.  In a related work, Wu et al. (1995)
proposed a transformed Gerschgorin disk approach (TGD) in
conjunction with the AIC and MDL criteria to alleviate this
problem in the non-Gaussian noise situation and significantly
improved the detection performance.

If knowledge or an estimation of the noise covariance
is available, the minimum noise fraction (MNF) transforma-
tion proposed by Green et al. (1988) effectively solves the
inherent dimensionality problem.  A later investigation by Lee
et al. (1990) further interpreted this transform as noise-adjusted
principal component analysis (NAPCA) with a rapid version
proposed by Roger (1990).  NAPCA is largely limited in that
its noise whitening process requires complete knowledge of
the noise structure for the processed data.  More specifically,
NAPCA must accurately estimate the noise covariance matrix
based on the available data.  Inaccuracy in the noise estimation
degrades NAPCA’s ability to calculate the intrinsic dimen-
sionality.

In this work, we present a novel method in two stages
to solve the problem of intrinsic dimensionality.  The first stage
entails as well as involves defining a modified version of the
Transformed Gerschgorin Disk approach (MTGD), which
incorporates the NAPCA method into TGD.  MTGD is ad-
vantageous in that it retains the capabilities of both the NAPCA
and TGD approaches and simultaneously attempts to deter-
mine the intrinsic dimensionality.  The second stage, which
is now called the Visual Disk (VD) method, is based on mul-
tiple linear regression (Anderson, 1984) and functions as a
new transform kernel to upgrade the estimation ability and
the visualization capability of MTGD.  Based on these two
stages, the new Gerschgorin disks derived from VD can be
formed into two, more distinct signal and noise collections
than is the case with TGD and MTGD.  Therefore, the number
of endmembers can be easily determined by visually counting
the number of Gerschgorin disks of signals derived by VD.
Experimental results for both simulated and imaging spec-
trometer data sets collected by the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) demonstrate that the pro-
posed method can be used to accurately determine the intrinsic
dimensionality.

II. Problem Formulation

1. Linear Mixture Model for Hyperspectral Images

The linear spectral mixture model is extensively used
in remotely sensed imagery to determine and quantify mul-
ticomponents.  Let ri be an l × 1 column vector and denote
the i-th pixel in a hyperspectral image, where l denotes the
number of bands.  A linear mixture model for the pixel ri in
a hyperspectral image can be described by (Adams and Smith,
1986)

ri = Mαα i + ni, (1)

and its covariance matrix is defined as

    R = E[r ir i
T] = ME(αα iαα i

T)M T + R n , (2)

where M is an l × p matrix denoted by (m1, m2, …, mp) and
mi is an l × 1 column vector for the spectral signature of the
j-th distinct material; p denotes the number of different materials;
ααi is a p × 1 column vector given by (α1, α2, …, αp)

T, where
αj represents the fraction of the j-th signature present in ri;
ni is an l × 1 column vector for the combined noise, which
is assumed to be a wide sense stationary Gaussian process
with zero mean and covariance matrix Rn.

Equivalently, Eq. (1) can be expressed as a standard
signal model:

ri = si + ni. (3)

When the noise n and signal s are assumed to be uncorrelated,
the covariance matrix R in Eq. (2) can be represented as fol-
lows:

R = Rs + Rn. (4)

Notably, the covariance matrix R is an l × l matrix.
Meanwhile, the noise covariance matrix Rn is of full rank l,
and the signal covariance matrix Rs = ME[ααααT]MT is of rank
p.  Therefore, the inherent dimensionality problem attempts
to determine the value of p based on a given  R.

However, our problem largely focuses on accurately
finding the inherent dimensionality in a low SNR situation,
where some materials may have a low probability of occur-
rence within the scene.  This low probability implies that these
materials only appear in a small number of pixels or mixed
pixels.  When the signal energy of materials is smaller than
the noise energy in the entire image, the intrinsic dimension-
ality is generally underestimated.  Restated, the intrinsic di-
mensionality may be underestimated when some eigenvalues
in the estimated signal-subspace are extremely close to an
increasing, estimated noise variance.
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2. Determining the Intrinsic Dimensionality by Means
of PCA

PCA is perhaps the simplest estimation scheme for
application to the inherent dimensionality problem (Anderson,
1984).  The PCA technique, also known as the Karhunen-
Loeve transform, is a decorrelation scheme used to compress
and interpret data.  In addition, the gap in the distribution of
singular values is the primary source used to determine the
inherent dimensionality by PCA.

PCA can be initiated by assuming that the covariance
matrix R expressed in Eq. (4) is nonnegative and can be de-
composed as

    
R = ΦΛΦΛΦΦ T = [ΦΦsΦΦn]

ΛΛ s 0
0 ΛΛ n

[ΦΦsΦΦn]T , (5)

where ΦΦ  is a matrix whose columns consist of all the distinct
eigenvectors of R.  This matrix can be further partitioned into
two parts, i.e., ΦΦ s and ΦΦ n, corresponding to signal s and noise
n, respectively.

According to Eq. (5), if the noise statistics are assumed
to have a Gaussian distribution with zero mean and covariance
matrix Rn = σ2I, then ΛΛ s = diag(λ1, λ2, …, λp) with    {λ i}i = 1

p

=  λ i
′ + σ2 and ΛΛ n = diag(λp+1, λp+2, …, λl) with    {λ i}i = p + 1

l

= σ2 are eigenvalues corresponding to ΦΦ s and ΦΦ n, respectively.
Based on the distribution of singular values, the dimensionality
(p) can be estimated because a gap is expected to exist between
the p largest eigenvalues and the remaining noise eigenvalues.
Unfortunately, the knowledge of Rn is generally unavailable
in practice, and its statistical property must be obtained from
the given data.  Hence, determining the data dimensionality
becomes tricky, particularly for a low SNR situation, where
some eigenvalues in the estimated signal-subspace are nearly
equal to the estimated noise variance.  A well-known statistical
multiple-hypothesis testing procedure, the Lawley-Bartlett test
(Anderson, 1984), seems to be useful here.  However, this
test is limited in a practical sense in that it requires a proper
set of threshold levels for the dependent sequential test.  A
previous investigation (Anderson, 1984) demonstrated that
this test function is essentially the generalized likelihood ratio
test, implying that thresholds of this test do not ensure that
all minor components consist of noises or unimportant vari-
ance only.  Therefore, the PCA approach can not be directly
applied to hyperspectral images to determine their intrinsic
dimensionality.

3. Determining the Intrinsic Dimensionality by Means
of NAPCA

In PCA, a transformed band with small variance does
not imply poor image quality; it may be a high SNR band
in which others are of large variance or are low SNR bands.
To address this problem, Green et al. (1988) proposed a

minimum noise fraction (MNF) transformation to arrange
principal components in a descending order of the image
quality rather than of the variance.  Subsequent investigations
by Lee et al. (1990) and Roger (1990) reinterpreted this
transform as NAPCA.  The NAPCA approach can be regarded
as a two-stage, cascaded principal component transformation
with a diagonalization procedure (Fukanaga, 1990) used to
achieve the maximum signal-noise-ratio (MSNR), i.e., to
derive a matrix A such that

   
max

A

A TRA
A TR nA

= max
A

A TR sA

A TR nA
+ 1 (6a)

(due to Eq. (4)) or, equivalently,

ATRA = ΛΛ (6b)

and

ATRnA = I. (6c)

To obtain the desired transformation in Eq. (6), a whitening
process can be designed to simultaneously transform Rn and
R.  Restated,

WTRnW = I (7a)

and

WTRW = Radj, (7b)

where W = ΦΦ n    ΛΛ n
– 1/2 denotes the transformation matrix, and

ΛΛn and ΦΦ n represent eigenvalue and eigenvector matrices of
Rn, respectively.  The adjusted covariance matrix Radj is, in
general, not a diagonal but a symmetric matrix.

Using the eigenvectors of Radj , i.e., ΦΦ adj , as the basis
for the second transformation leads to

    ΦΦadj
T IΦΦadj = I  (due to   ΦΦadj

T ΦΦ adj = I) (8a)

and

    ΦΦadj
T RadjΦΦadj = ΛΛ adj . (8b)

Consequently, the desired NAPCA transform can be derived
by using

    A = ΦΦnΛΛ n
– 1/2ΦΦadj . (9)

The subsequent transformed covariance matrix is, then, ex-
pressed as

RY, NAPCA

   = A TRA
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=

λ 1 0 0 0 0

0 0 λ p 0 0

0 0 0 λ p + 1 0

0 0 0 0 λ l

.

(10)

Consider a situation in which the noise covariance matrix
Rn is accurately estimated based on the data.  This allows us
to partition the transformed data space into two portions: one
consists of eigenvalues larger than one and the other eigen-
values of unity.  This observation implies that    { λ i}i = 1

p  = λ i

+ 1 and     { λ i}i = p + 1
l  = 1, where    {λ i}i = 1

p  represents the as-
sociated eigenvalues for the signal covariance matrix Rs.
Under such circumstances, the inherent dimensionality of the
data can be determined by examining the number of eigen-
values larger than unity.  However, this algorithm does not,
in general, function properly, particularly in remote sensing
images, owing to a variety of unknown noises and unexpected
interferences from the atmosphere.  If the condition that noise
statistics be estimated is not of concern, then eigenvalues for
noises are not simply unity or near-unity, but increases due
to the incompleteness of the estimated noise statistics.  Actually,
it is implied that the more incomplete the  noise statistics, the
larger the noise eigenvalues.  Consequently, the intrinsic di-
mensionality may be underestimated when some eigenvalues
in the estimated signal-subspace are very near the increased
estimated noise variance in a low SNR situation.

III. The Gerschgorin Disk Theorem and
Its Transformation

The Gerschgorin disk theorem (Alan, 1977) and Wu’s
related transformation approach (Wu et al., 1995) are reviewed
in the following:

1. Gerschgorin Disk Theorem

If  A is an l × l real or complex matrix, ajk denotes the
elements of A, j, k = 1, …, l, and

   ρ j = a jkΣ
k = 1
k ≠ j

l
, (11)

then each eigenvalue of A lies in one of the disks in the com-
plex plane

Dj = {z: |z − ajj| ≤ ρj},  j = 1, 2, …, l, (12)

where ajj and ρj are called the Gerschgorin center and

Gerschgorin radius, respectively.  The proof of this theorem
given by Alan (1977) demonstrates not only that each eigen-
value of A must lie in a Gerschgorin disk, but also that if the
j-th component of an eigenvector is maximum, the correspond-
ing eigenvalue must lie in the j-th disk.

According to Wu et al. (1995), the Gerschgorin disks
of the covariance matrix (e.g., R) provide no assistance in de-
termining the number of sources because the Gerschgorin disks
for this matrix could tightly overlap when its eigenvalues are
spread over a large range.  Based on this fact, the Gerschgorin
disks for the original covariance matrix are not facilitative in
determining the intrinsic dimensionality in a hyperspectral
image either.

2. Wu’s Transformation Approach

To make Gerschgorin’s disk theorem effective, Wu et
al. (1995) proposed a proper unitary transformation, called
the transformed Gerschgorin disk (TGD) approach, to rotate
the sample covariance matrix.  The designed unitary trans-
formation has the ability to render the noise Gerschgorin disks
as small and as remote from the signal Gerschgorin disks as
possible.  After this transformation, Gerschgorin disks can be
divided into two collections for signals and noises, respectively.
The signal collection has a larger Gerschgorin radii and contains
exactly p largest signal eigenvalues while the noise collection
has a small Gerschgorin radii and contains the remaining noise
eigenvalues.  In this manner, the number of endmembers can
be determined by counting the number of signal Gerschgorin
disks.

Following the notation defined in Eq. (4), where R
denotes the covariance matrix of r, the unitary transform starts
by rewriting the covariance matrix R into a partition form as
follows:

   
R =

C c l

c l
T c l, l

, (13)

where   c l
T = [cl, 1, cl, 2, …, cl, l − 1] and C is an (l − 1) × (l −

1) leading principal submatrix of R obtained by deleting the
last row and column of this covariance matrix.  More specifically,
C can be regarded as the reduced covariance matrix obtained
by removing the l-th sensor from the imaging system but
keeping all other (l − 1) sensors.  Since C is symmetric and
nonnegative, it can be decomposed by means of its eigenstructure
as

    C = QcΛΛ cQc
T , (14)

where elements of the diagonal matrix ΛΛ c are eigenvalues of
the reduced covariance matrix arranged in descending order,
i.e., ΛΛ c = diag(  λ1,  λ2, ...,    λ l – 1) with  λ1 ≥  λ2, ..., ≥    λ l – 1.  Qc

= (q1, q2, …, qp, …, ql − 1) is an (l − 1) × (l − 1) unitary matrix
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whose columns are the corresponding orthonormal eigenvec-
tors of C.

Now, an l × l unitary transformation matrix Q is con-
structed so as to rotate the covariance matrix R given in Eq.
(13). This unitary matrix is defined by

   
Q =

Q c 0
0 1

. (15)

The transformed covariance matrix becomes

   
R Y, TGD = Q TRQ =

Q c
TCQ c Q c

T c l

c l
TQ c c l, l

   

=

λ1 0 0 γ1

0 λ2 0 γ2

0 0 λ l – 1 γ l – 1

γ1 γ2 γ l – 1 c l, l

, (16)

where λ i and γi =    q i
T c l  (i = 1, 2, …, l −1) are the i-th transformed

Gerschgorin center and Gerschgorin radius, respectively.  When
the noise statistics have a Gaussian distribution with zero mean
and covariance matrix Rn = σ2I, Eq. (16) results in

    

R Y, TGD =

λ1 0 0 0 γ1

0 λp 0 0 γp

0 0 σ 2 0 0

0 σ 2 0

γ1 γp 0 0 c l, l

. (17)

Comparing Eq. (17) with Eq. (16) reveals that all of the
values for γi, i = p + 1, p + 2, …, l − 1, are equal to zero
because the noise eigenvectors qi are orthogonal to the signal
covariance energies cl.  Restated, disks with zero Gerschgorin
radii can be regarded as the collection of noise Gerschgorin
disks while the remaining disks containing non-zero Gerschgorin
radii and larger center values (i.e.,  λ1,  λ2, ...,  λp ) can be re-
garded as the signal Gerschgorin disks.  The notion of using
the TGD to determine the intrinsic dimensionality arises from
the phenomenon that noise disks with zero Gerschgorin radii
can be easily separated from signal disks.  Hence, the number
of endmembers can be visually determined by counting the
number of signal Gerschgorin disks.  However, as in PCA

and NAPCA, noise eigenvectors    (q i)i = p + 1
l – 1  may not be or-

thogonal to  c l  when the structure of the noise is not known
a priori.  This phenomenon again implies that Rn ≠ σ2I and
noise disks do not have zero Gerschgorin radii.  At this point,
the signal and noise disks may overlap when the SNR is low.

IV. The Visual Disk Approach

1. Incorporating NAPCA into TGD

The above discussion clearly indicates that the NAPCA
and TGD approaches have their distinctive strengths.  A
strategy for simultaneously retaining the merits of both the
NAPCA and TGD approaches involves putting these noise
Gerschgorin centers in perspective by incorporating the NAPCA
approach in order to produce smaller Gerschgorin values.  To
implement this strategy, the R in Eq. (13) should be replaced
by Radj, the noise-adjusted covariance matrix in Eq. (7).  Pro-
ceeding in the same manner as in Eqs. (13) − (15) leads to

   
Radj =

C c l

c l
T c l, l

(18a)

with the same eigenstructure as in Eq. (14),

    C = Q cΛΛ cQ c
T , (18b)

and the same transform kernel as in Eq. (15),

   
Q =

Q c 0
0 1

. (18c)

By using the transform structure of the TGD method,
a modified TGD (MTGD) transformation method which has
the strengths of both the NAPCA and TGD approaches can,
therefore, be constructed as follows:

  R Y, MTGD

   = Q TE(r adjr adj
T )Q = Q TR adjQ = E(yyT)

   

=

λ1 0 0 0 γ 1

0 λp 0 0 γ p

0 0 λp + 1( ≈ 1) 0 γ p + 1( ≈ 0)

0 0 0 λ l – 1( ≈ 1) γ l – 1( ≈ 0)

γ 1 γ p γ p + 1 γ l – 1 c l, l

,

(19a)
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   y = Q Tradj , (19b)

where radj denotes the noise-adjusted observation vector with
a noise-adjusted covariance matrix, i.e., Radj.

Comparing Eq. (19a) with Eq. (17) reveals that the
centers of the noise Gerschgorin disks, i.e.,    (λ1)i = p + 1

l – 1  versus
   (λ i)i = p + 1

l – 1 , are reduced from σ2 to unity.  Restated, the sub-
sequent noise disk collection obtained by MTGD is more
remote from the signal disk collection obtained by TGD.
Therefore, MTGD is obviously more appropriate for deter-
mining the intrinsic dimensionality than is TGD.  Moreover,
when the noise statistics can not be completely estimated, the
NAPCA method fails in a low SNR situation; however, MTGD
may not.  Under such circumstances, determining the intrinsic
dimensionality should depend on the connection conditions
of the Gerschgorin disks. Such a situation implies that MTGD
will be underestimated if a few signal Gerschgorin disks with
small eigenvalues overlap with the largest noise Gerschgorin
disk.  In contrast, MTGD works successfully if these two
collections do not overlap.  Consequently, the Gerschgorin
radius heavily influences the determination of the intrinsic
dimensionality.  Hence, the method capable of reducing the
size of the radii of Gerschgorin disks should help solve this
problem.

2. The Proposed VD

In light of these requirements, an effective intrinsic
dimensionality estimation method must select a proper trans-
formation having the ability to reduce the size of the radii of
Gerschgorin disks as much as possible and to make noisy
Gerschgorin disks as remote from signal Gerschgorin disks
as possible.  In this section, we will present a novel transform
kernel based on the concept of multiple linear regression to
improve MTGD.

Similar to the partition structure used in the MTGD
method, a noise-adjusted observation vector radj can be par-
titioned as [r, rl]

T, where r = [r1, r2, …, rl − 1]
T.  According

to the definition of multiple linear regression (Anderson,
1984), the maximum correlation between rl and the linear
combination   ββ T r is called the multiple correlation coefficient
between rl and the linear combination r, which is defined as

    
ρ r l, ββ T r =

c l
TC – 1 c l

c l,l
, (20)

where the multiple correlation coefficient,     ρr l, ββ T r , lies in the
range of [0, 1] but not [−1, 1].  ββ represents the partial regres-
sion coefficients and ββ = C−1cl.

An important property of multiple linear regression
(Anderson, 1984) which is useful in our discussions is as
follows: For every vector αα,

corr(rl,   ββ T r) ≥ corr(rl, ααTr). (21)

According to the definition of multiple linear regression,
the correlation between rl and the linear combination ααTr can
be derived as

    ρr l, αα T r =
ααT c l

c l, l ααTCαα
. (22)

A situation in which the eigenvectors Qc = (q1, q2, ...,
qp, ...,    q l – 1) defined in Eq. (18b) are used to replace αα in
Eq. (22) leads to

    
ρr l, q i

T r =
q i

T c l

c l, l q i
TCq i

=
q i

T c l

c l, l λ i

=
γ i

c l, l λ i

,

i = 1, 2, ..., l − 1. (23)

Recalling Eq. (19), note that both the transformed
Gerschgorin radius     γ i = q i

T c l  in Eq. (19) and     ρr l, q i
T r in Eq.

(23) have the same form but different normalized factors.
Nevertheless,     ρr l, q i

T r is the standard correlation coefficient,
and it lies in the range [−1,1] but not [0,1].

From the point of view of signal energy, the vector  c l

can be regarded as a collection of the redundancy energies
between the last band numbered l and the first (l − 1) bands.
Thus, the radius γ i (     γ i = q i

T c l ) for a transformed covariance
is the magnitude of the projection from q i  to  c l , which can
also be interpreted as a transformed redundancy.  However,
although eigenvectors    (q i)i = 1

l – 1 are orthonormal, it is not guar-
anteed that no overlapping will occur between two adjacent
transformed redundancies.  This observation implies that

    γ i = q i
T c l  and     γ i + 1 = q i + 1

T c l could overlap each other. Hence,
a limitation of using the transformed covariance as the
Gerschgorin radius is that the smallest signal Gerschgorin disk
may overlap with the subsequent noise Gerschgorin disks.

In contrast to the transformed covariance  γ i, the cor-
relation coefficient     ρr l, q i

T r is a correlation relationship between
rl and the transformed coefficients y.  According to Eq. (19),
the noise-adjusted observation vector radj is partitioned as
[r, rl]

T, where r = [r1, r2, …, rl − 1]
T.  The pixel rl represents

the signal received from the l-th sensor and can be expressed
in standard form as rl = sl + nl.  Actually, the noise energy
must be overwhelmingly less than the signal energy in this
single band for a very clear image.  Therefore, when q i  is
an eigenvector of a signal, the correlation coefficient     ρr l, q i

T r
is not zero.      ρr l, q i

T r can be regarded as a predication degree
by using the transformed coefficient yi (yi =  q i

Tr)  to accurately
predict the final band signal rl.  This implies that the higher
this correlation coefficient, the better the predication.  If q i

is a noise eigenvector, then     ρr l, q i
T r is near-zero because the

noise eigenvector is orthogonal to the signal rl.  Based on this
fact, by using     ρr l, q i

T r to replace γ i as a new Gerschgorin radius,
the radii size of Gerschgorin disks can be reduced until it is
as small as possible, and the noisy Gerschgorin disks can be
kept as far from the signal Gerschgorin disks as possible.
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Consequently, the correlation coefficient     ρr l, q i
T r is more

likely to be a Gerschgorin radius than the transformed covar-
iance  γ i.  So that     ρr l, q i

T r can be used to replace γ i in Eq.
(19a), a nonsingular matrix is defined as follows:

    D = diag( λ1 c l, l , λ2 c l, l , ..., λ l – 1 c l, l , 1)

= diag(κ1, κ2, …, κl − 1, 1), (24)

where    κ i = λ i c l, l , i = 1, 2, …, l − 1.  Inserting Eq. (24)
into Eq. (19a) results in a form similar to that of Eq. (19a).
Then, the VD approach can be derived as

     

Y = D – 1Q TR adjQD =

λ1 0 0 0 γ 1/κ 1 (< 1)

0 λp 0 0 γ p/κ p (< 1)

0 0 λp + 1 (≈ 1) 0 γ p + 1/κ p + 1 (≈ 0)

0 0 0 λ l – 1 (≈ 1) γ l – 1/κ l – 1 (≈ 0)

γ 1 ⋅ κ 1 γ p ⋅ κ p γ p + 1 ⋅ κ p + 1 γ l – 1 ⋅ κ l – 1 c l, l

. (25)

Hence, the first (l − 1) Gerschgorin disks possess the new
Gerschgorin radii:

     
γ i′ =

γ i
κ i

=
q i

T c l

λ i c l,l

, i = 1, ..., l − 1. (26)

3. Implementation Considerations

In practice, the probability distributions governing r are
not known.  Consequently, the statistical covariance matrices
used in the above derivations are unavailable but must be
estimated by means of the sample covariance matrix R =

    1
N

rir i
TΣ

i = 1

N
, where    {r i}i = 1

N  denotes a sequence of N observation

vectors.  The VD procedure is, then, executed as follows.
(1) First, the noise covariance matrix Rn is estimated based

on the hyperspectral image cube.  The simplest method
for making such an estimation is the “shift difference”
approach, which is a sub-function available in the com-
mercial package ENVI (ENVI, 1997).  This approach
assumes that each pixel contains both signal and noise;
therefore, adjacent pixels contain the same signal but
different noise.  The “shift difference” method is
performed on the data by differencing adjacent pixels
to the right and above each pixel and averaging the
results to obtain the “noise” value that should be
assigned to the pixel being processed.  However, the

optimal noise estimate is derived from the shift-dif-
ference statistics of a homogeneous area rather than
the entire image.

(2) Implement the whitening process of NAPCA in Eq.
(7) to obtain Radj.  Here, the second stage in NAPCA,
i.e., the standard PCA, is not necessary.

(3) Calculate the unitary and nonsingular matrices by
means of Eqs. (18c) and (24), respectively.

(4) When D, Q, and Radj are obtained, the VD approach
can be implemented by using Eq. (25).  The first
l − 1 Gerschgorin disks can then be plotted.

(5) Determine the number of endmembers by counting

the number of signal Gerschgorin disks.  After this
is done, the task is completed.

V. Experimental Results

The analysis performed in this study included two data
cubes acquired over the Cuprite, Nevada, and the Lunar Crater
Volcanic Field (LCVF), Northern Nye County, Nevada, in
1992 using the NASA/JPL AVIRIS instrument.  Experiment
for each location included a simulator and actual detection data.
Four methods were evaluated in the experiments: (1) the PCA
transform given by Eq. (5), (2) the NAPCA transform given
by Eq. (10), (3) the MTGD transform given by Eq. (19a) and
(4) the proposed VD transform given by Eq. (25).

Experiment 1.  The data set used in the first experiment was
a subsection of the Cuprite image, which is a 200 × 200 pixel
scene.  Figure 1 depicts the 0.752 µm band of the image. Since
bands corresponding to the water absorption regions and the
low SNR bands had no useful energy, they were removed prior
to processing, which left 192 bands in this study.  This area
has been extensively studied using field measurements (Swayze
et al., 1992), where the “alphabet” symbols denote the regions
of pure materials, which have been found to contain six signifi-
cant materials: playa, kaolinite, alunite, silica, buddingtonite,
and varnished tuff.  Figure 2 displays the radiance spectra for
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playa, kaolinite, and silica.

In the simulation experiment, a simulated 50 × 50 pixel
scene was produced with three endmembers: playa, kaolinite,
and silica.  Each pixel in the simulated scene randomly contained
a distinct abundance of endmembers forming the signal co-
variance matrix Rs.  That is, a simulated pixel could be x%
kaolinite, y% playa, and z% silica with x + y + z = 100.  The

noise covariance matrix Rn was directly estimated from the
water region in the original Cuprite image.  Rs + Rn represents
the covariance matrix R of this simulation experiment.  Figure
3 summarizes the simulation results. Although a total of 192
eigenvalues were obtained in the experiment, this figure and

Fig. 2.  Endmember radiance spectra in Simulation 1.

Fig. 1. A subsection of the Cuprite scene. The upper-case letters denote
the positions of the pure materials found. The letter “A” stands for
playa, “B” for kaolinite, “C” for alunite, “D” for silica, “E” for
buddingtonite, and “F” for varnished tuff.

Fig. 3. Simulation 1 results for the four techniques. (a) PCA, (b) NAPCA, (c) MTGD and (d) the proposed VD transform. Only the first 50 eigenvalues
are plotted for clarity.
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the remaining experimental results only include the first fifty
eigenvalues for clarity.  Results obtained from PCA and shown
in Fig. 3(a) provide clear identification of only the first two
signal eigenvalues.  Figure 3(b) displays the NAPCA results.
According to this figure, all the small eigenvalues are from
noise while the other large eigenvalues were from the signal.
The gap between large and small eigenvalues shown in this
figure is obvious, so three endmembers were found by NAPCA.
Figure 3(c) summarizes the results the MTGD transform.  The
centers and radii of the disks shown in this figure originated
from eigenvalues and corresponding transformed covariances,
respectively.  The MTGD transform is advantageous in that
all separated large disks denote signals while connected small
disks denote noises.  Although the resemble ellipses or lines
due to the different scales for the x- and y-axis, all the “disks”
displayed in the related figures derived using both the MTGD
and VD methods are actually circles.  According to our results,
three endmembers were found, as shown in Fig. 3(c).  The
VD transform utilizes correlation values as the radii of disks
to produce clearer separation than MTGD can.  Figure 3(d)
shows that although three endmembers could also be found,
a better visual effect, i.e., disks kept farther away than in the
case of MTGD, was obtained using VD.

Next, these four techniques were directly applied to the
subsection of the actual detected Cuprite image. Figure 4
summarizes those results.  Figure 4(a) shows the PCA results.
It is obviously an overestimate.  According to Fig. 4(b), only
the first five eigenvalues produced by NAPCA could be clearly
separated while the gap between other consecutive signals and
noise eigenvalues was inadequately large.  Figure 4(c) and
(d) summarize the MTGD and VD results, respectively.
Although the sixth disk shown in Fig. 4(c) can be regarded
as a signal disk, there appears to be a slight connection with
the noise disks.  On the contrary, the result obtained using
VD displays the separation clearly.  Therefore, the VD method
is the optimum scheme for solving the intrinsic dimensionality
problem.

Experiment 2.  The experiments in the second example
involved a subsection of the LCVF image, which is also a
200 × 200 pixel scene.  Figure 5 illustrates the 0.752 µm band
of the image.  This scene contains 158 bands in this study.
This area has also been studied extensively using field meas-
urements (Farrand, 1991), and the area has been modeled
previously using spectral mixture analysis (Farrand, 1991;
Harsanyi and Chang, 1994).  The upper-case letters denote

Fig. 4.  Actual detection results for the four techniques. (a) PCA, (b) NAPCA, (c) MTGD, and (d) VD.
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the positions of the pure materials found, which contained four
significant materials: dry playa lakebed, vegetation, red oxi-
dized basaltic cinders, and rhyolite.

In the simulated part, vegetation, red oxidized basaltic
cinders, and rhyolite were used as the endmembers for a
simulated 50 × 50 pixel scene.  Figure 6 depicts the radiance

spectra for these three materials.  The procedure for generating
simulated pixels for this experiment was the same as that
adopted in Experiment 1.  However, Rn was directly estimated
from the homogenous region of the dry playa lakebed herein.
Figure 7 summarizes the simulation results obtained using
these four methods.  According to this figure, all four tech-
niques could accurately estimate the number of simulated

Fig. 5. A subsection of the LCVF scene. The upper-case letters denote the
positions of the pure materials found.  The letter “A” satnds for
dry playa lakebed, “B” for vegetation, “C” for red oxidized basaltic
cinders, and “D” for rhyolite.

Fig. 7.  Simulation 1 results for the four techniques. (a) PCA, (b) NAPCA, (c) MTGD, and (d) VD.

Fig. 6. Endmenber radiance spectra in Simulation 2.
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endmembers.
Again, these four techniques were directly applied to

the subsection of the LCVF image.  Figure 8 displays the
results.  Results obtained using PCA and shown in Fig. 8(a)
provide clearly indicate only the first three signal eigenvalues.
As for the NAPCA results shown in Fig. 8(b), although the
largest two signal eigenvalues could be clearly separated, the
next two were close to the noise eigenvalues.  Hence, the
performance of NAPCA in determining the intrinsic dimen-
sionality was not satisfactory.  Figure 8(c) reveals that although
MTGD produced four larger disks for signals, they were  con-
nected to the noise disks except for the first (largest) one.  The
VD results shown in Fig. 8(d) reveal four signal disks clearly
since their radii are small enough.  Moreover, the fifth signal
disk can be seen in Fig. 8(d) although it appears to be loosely
overlapping the noise disks.  If we enlarge the scale of the
x-axis in Fig. 8(c) and (d), the distribution of the first ten
eigenvalues can be displayed, as it is in Fig. 9(a) and (b).
Obviously, the fifth signal disk shown in Fig. 9(a) slightly
overlaps the collection of noise disks, but could be separated
from noise disks as shown in Fig. 9(b).  This finding suggests
that previous modeling efforts could have been improved by
considering an additional endmember in the spectral mixture
analysis.  Information of the fifth eigenvalue indicates that

Fig. 8.  Actual detection results for the three techniques. (a) PCA, (b) NAPCA, (c) MTGD, and (d) VD.

Fig. 9. An enlarged version of Fig. 8(c) and (d), which display only the
first ten eigenvalues.
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extra material with a low probability of occurrence exists
within the scene.  This material may be only present in a small
number of pixels or mixed pixels.  This finding closely cor-
responds to our earlier work (Tu et al., 1998), which used a
noise subspace projection (NSP) approach to perform target
signature detection in this scene.

VI. Conclusion

This work has presented two novel approaches to de-
termining the intrinsic dimensionality, or equivalently, the
number of image endmembers in a hyperspectral data cube.
The first approach is a modified version of the MTGD, which
incorporates NAPCA into a TGD approach and retains the
merits of both NAPCA and TGD simultaneously.  The second
method, referred to as the VD method, is based on multiple
linear regression.  In addition, a novel transform kernel has
been derived to upgrade the estimation ability and visualization
effect of MTGD.  The subsequent Gerschgorin disks in VD
can be formed into two more distinct signal and noise col-
lections compared to both  TGD and MTGD.  Experimental
results indicate that VD not only performs better than NAPCA
and MTGD in computer simulations, but also operates effec-
tively with AVIRIS data, whereas NAPCA and MTGD appear
to underestimate the number of endmembers in a low SNR
situation.
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應用一個視碟法來決定超高維影像的本質維度
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摘　要

在衛星遙測影像的分析中，對於地物的種類及其分布量的判釋一直是相當重要的一環；然而在未知背景的環境

下，我們必須先探勘出觀測環境中所含的地物數量，才能作為進一步處理的依據。理論上，探勘地物的數量與決定影

像的本質維度是相同的問題。在過去，雜訊調整主值分析法一直是探勘地物數量的一項重要工具；然而，它在實用時

必須先準確地估測出所要分析影像的雜訊模式，才能得到正確的結果；如果雜訊模式估測不準確，本質維度也就無法

正確的估測。為了解決這個問題，本文中我們提出了一個新的視碟法，結合了雜訊調整主值分析法與轉換高須哥令碟

法，並利用多重線性迴歸將代表訊號與雜訊次空間的高須哥令碟分隔成二個不會重疊的部分；如此我們僅需計數訊號

次空間的碟數，即可找出所要分析影像的本質維度。根據視碟法應用在AVIRIS影像的實驗結果顯示，視碟法的確是
一個估測影像本質維度的好方法。


