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ABSTRACT

This paper deals with the use of high-resolution non-oscillatory shock-capturing difference schemes
to solve steady and unsteady one-dimensional flows with steep waves in channels. Such transcritical flow
may be either free surface (subcritical/supercritical) or free surface/pressurized in a pipe. The main features
of a class of high-resolution schemes are described with reference to the unsteady one-dimensional shallow
water equations. The operator splitting method is utilized to compute the flows with bottom slope and
friction terms, and the method of characteristics with second-order accuracy is also incorporated in the
present model to treat the external and internal boundary conditions. Numerical results are obtained for
a series of one-dimensional test cases by means of the proposed model and are compared with analytical
solutions or experimental measurements. It is shown that the proposed model is accurate, robust and highly
stable in capturing strong gradients and discontinuities in such transcritical flows, and is a reliable
mathematical model for one-dimensional practical hydraulic engineering applications.

Key Words: high-resolution non-oscillatory shock-capturing difference schemes, unsteady one-dimen-
sional shallow water equations, transcritical flows

I. Introduction MacCormack scheme to simulate one and two-dimen-
sional dam-break flows. An important feature is the

Transcritical flow or an abrupt change in waterrequirement of additional artificial dissipation terms in
depth often occurs in channels. The resulting flow mawprder to remove oscillations around discontinuities using
be a subcritical/supercritical free surface flow or a freg¢hese classical higher-order schemes. This requires
surface/pressurized flow if the channel is closed (pipe)good judgement and empiricism. Roe (1981) defined
For example, the operation of fixed and dynamican approximate Jacobian for conservative splitting of
hydraulic structures sometimes leads to the formatiothe flux difference in Euler equations. Harten (1983)
of shock, that is, hydraulic jumps or surges. Otheintroduced the total variation diminishing (TVD)
occurrences of transcritical flow include dam-breakschemes, which have the ability not only to damp
waves and flow through channels with severe widtloscillations, but also to highly resolve discontinuities,
contractions or local high-bed elevations. The mathand which contain no terms depending on adjustable
ematical modeling of transcritical flow is an extremelyparameters. The Roe scheme and TVD schemes were
difficult problem due to the presence of rapidly varyingemployed to solve the one-dimensional transcritical
discontinuous hydraulic characteristics. flow in many researches (Glaister, 1988; Alcrueto

A number of shock-capturing finite difference al., 1992; Baine®t al., 1992; Yanget al., 1993; Nujic,
schemes exists for solving hyperbolic systems of cont995; Jhaet al, 1995; Jin and Fread, 1997; Meselhe
servation laws in the field of aerodynamics. Becauset al, 1997). Because the TVD schemes are required
the 1-D shallow water equations are similar to the 1to revert to first-order at the local extrema of the
D compressible Navier-Stokes equations, many worksolutions, Harten and Osher (1987) developed the
in the last decade have focused on the numerical sessentially non-oscillatory (ENO) schemes, which are
lution of the de Saint Venant equations and have mainlgble to achieve uniformly higher-order accuracy both
attempted to accurately capture discontinuities withouat the local extrema of the solutions and in other smooth
spurious oscillations. Fennema and Chaudhry (198%¢egions. The ENO schemes were extended to solve the
1990) used the Beam and Warming scheme and thlmne-dimensional dam-break problem by a few inves-
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tigators (Yanget al, 1993; Nujic, 1995). Although 0

the preyiqqs researches reported good results near S:(glz+gA(SO—Sf))’

discontinuities, most of them were proposed for only

the prismatic channel, or neglected the source terms,

and some of them used only first-order scheme, owheret is time; x is the horizontal distance along the

required tuning of the artificial viscosity coefficient. channel;A is the wetted cross-sectional ar€aijs the
Recently, Tseng (1999) applied a class of nonvolume rate of flowg is the gravitational acceleration;

oscillatory shock-capturing Roe, TVD, and ENOand is the bed slope. The frictional slog the

schemes to the simulation of two-dimensional rapidyydrostatic pressure fordg and the pressure force due

varied open-channel flows. His results demonstratetf longitudinal width variatiorl, are defined as

that the above schemes are accurate, robust and highly

stable even in flows with strong gradients. In this QQln? het)

paper, these high-resolution explicit schemes are ex-  S=—_——, I,= ’ (h—nb,mdn,

tended to solve the one-dimensional transcritical flow. AR 0

Also, the entropy correction function suggested by

Harten and Hyman (1983) is used to eliminate the trial hext)

procedure for the entropy inequality condition. At | =f (h_n)ab(xﬂ)dn, )
. L. . 2 oX

boundaries, the method of characteristics with second-

order accuracy is also incorporated in the present

schemes to treat the time-dependent hydraulic engj- _ o _
neering problem. To verify the reliability of the pro- whereb(x,7)=0Ax,n)/dn; h=total water depthn=the

posed model for hydraulic engineering applications, Mapnmg s roughness coefficient; afethe hydraulic

. . . dius.
e e oy res ™ channel coss sections are ectangulr, i
mental data. gular or trapezoidal, thig andl, terms can be expressed

The contents of this paper are organized as followsa}S
Governing equations are described in Section Il. The
numerical model is presented in Section IIl. In Section
IV, several one-dimensional, steady and unsteady,
rapidly varying, transcritical flow computations are whereB is the channel bottom width, aisl is the side
used to validate and demonstrate the accurate, robusdbpe of the channel (vertical to horizontal). The no-
and stable features of the proposed model. Finallytations of a trapezoidal cross section are shownidn
conclusions are given in the last section.

-n2zB IS —h21dB . hdS.
=G ) AN G gty ad) ©)

Equation (1) can be further expressed in quasi-

. Governing Equations linear form as
; 0Q 0Q
Under the assumption of a homogeneous, - _0OF
p g P +ATX S, A 0 (4)

incompressible, viscous flow characterized by a hydro-
static pressure distribution, v_wth wind and anohs here A is the Jacobian matrix and has two real
forces neglected, the depth-integrated equations ar. .

: g eigenvalues:
motion form the fundamental equations for open-chan-

nel flows. The governing equations, based on conser-

vation of mass and of momentum, for one-dimensional hSy B
unsteady flow in a nonprismatic channel of arbitrary |4 }l{
cross section, can be expressed as H T
I
|
Q . oF _ )
at tox =S (1) ; h
|
I
in which | ¢
’4— B —p
_(A _ Q
Q - (Q) ’ - 2A_1 " | )
Q aly Fig. 1. Notations of a trapezoidal cross section.

- 655 -



M.H. Tseng

—WA 1+ a1+ 68 | =1 2
+C,and /\2:%_0, (5) LP(AJ+% )uy}+% 95:+%)aj+%, ,(l,o)

>0

A=

in whichc (=,/gA/T ) is the wave celerity, an@lis the  where o] ,1 represents the characteristic variables,
water surface width. defined ag

The corresponding right and left eigenvector
matrices forA are

aj+%:|—j+%(Qj+1_Qj)v (11)

1/ 1 -1 L = -2 1 (6) and other higher-order terms are given by

x|l A, -2, A, 1]
0@)=39@- 123, (12)
Due to the hyperbolicity, we have
2 3 2 .
@) ~ :j(rz—3r2+22)/6, |f‘a}_%‘s‘a}+%‘

@z*-|z|)6, otherwise,

Free surface/pressurized flow conditions may (13)

also be considered in a pipeline by introducing the

Preissmann’s slot (Cunget al., 1980) attached to and

the pipe crown and over the entire length of the

pipe. The result is still a free surface flow, but since e]! =mla},1-fM@ al,1,0,0l,1), a1
the wave speed iggA/Bg, whereBs is the channel z 2 z 2
width at the free surface, pressurized flow with a large
wave speed is simulated as the water level enters the
slot.

+pm@ a1, 8.0 9], (14)

W(A_aj'_; ,A,raj'_;), if ‘ aj'_;‘ < ‘ aj',r;
I _ 2 2 2 2

[1l. Numerical Model
i\ .
m@_al,1,A,al,1), otherwise,
1. Roe/TVD/ENO Schemes @- s J*%)
(15)
Define a uniform meshx,t"}, with mesh sizeAx,
time incrementAt and 1=At/AX, called the mesh ratio.
A conservative scheme for Eq. (1), with the source term

oA )€ ,,—e)a,1, if a,120
omitted temporarily, can be written as ( ”E)( L) "2 I3

=
+

NI~

’ ) 0, otherwise,
Q" =Qf -1l .1-F; 1, (8) (16)

whereF;,1 andF;_1 are the so-called modified nu-

merical fluzxes.

The first-order Roe scheme (Roe, 1981) and higher-
order schemes (Harten, 1983; Harten and Osher, 1987; 51!+
Hsu, 1995), including the second-order TVD and ENO
schemes and the third-order ENO scheme, can be ex-

pressed in the form of Eq. (8) by defining the modified
numerical flux as In the above expressionsjs a dummy variable;

A, is the forward difference/A- is the backward

| | | :
TO. 0], ~dDal,1, if af 10
0, otherwise.
(17)

/—/R —

F~j+;=l[F- +F +R 1@ ,1]. @) difference; the limiter functionsy and m are defined
> 2 j i+570+3 as
The components ofp. are defined as
P 143 ab) fsmin(\a,b), if sgna=sgnb=s;
m(a,b) = )
g 1= el +el ol )+ 6] + ], ) T () 0, otherwise, (18)
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a, i
b otherwise,

m(ab)= (19) Q=L@ 5]
L@Q!'=Q] - T[If]-"+; —Fj_1] : (24)
and the entropy fix functiom is AL2 ?
L Q' =Q] +AtS”+— ) sy

¢(z):f if |z|z¢€;

\(22+£2)/2£, if |z|<e, (20)

For stability in an explicit scheme, the Courant-
Friedrichs-Lewy condition must be satisfied; i.e., the
in which ¢ is a small positive number whose value hasCourant numbe€, must be less than or equal to unity.
to be determined for each individual problem. In thisin other words, the time increment is limited as
paper, a formula suggested by Harten and Hyman (198%9!lows:
is used to cut down trial process:

At=C [BX]. (25)
| _ | | i
%+%-max[0’ i+3 "1’/‘1+1 /\j+%] (21) 2. Boundary Conditions
| | | '
& _1=max][0, A “A_ A=A . . .
i-3 [ -3 Mi-rd "é]f The above schemes are only for the interior points.

If one of the flow variables is prescribed at one of the
In the above equations, the three parameters boundary sections, then a solution for the other depen-

2] andB are used to enable the first-order Roe schemeent variable is still needed. It should be recalled that
(ROE1), the second-order TVD scheme (TVD2), thethe only general technique available to obtain a solution
second-order ENO scheme (ENO2) and the third-ordeP this problem is the method of characteristics (MOC).

ENO scheme (ENO3) to be expressed in the saml@ this paper, second-order accuracy boundary condi-
formulations. In addition, the relations are tions based on the method of characteristics are em-

ployed at the boundaries. For subcritical flows, one

external condition must be specified at the inflow
p=06=0p=0 - ROEl\L boundary whereas the other is required at the outflow
p=16=0p=0 - TVD2 | (22) boundary, and the remaining unknown variables on
p=16=0p=05 - ENO2 both sides are furnished by the MOC. Supercritical
p=16=1p=0 - ENG3 flows require the imposition of two inflow boundary

conditions, and all the variables at the downstream side

The subscripj+1/2 denotes the intermediate state@r€ solved by the MOC. _
between grid pointg andj+l, and can be defined =~ The characteristic equations for Eq. (1) may be
following the lead of Roe (1981) as written as

Q. . Q. /A dA_
e \/7u+ /AJ+1U,+1 T G TCaTY T g T92t9AG-S), (26)

) i+d
Ui 2 /A +. /A . 1%3
which are known to hold along characteristic lines:

gA(; 1 1)
Ciil:m. (23) x_Q, /9 (27)
2 %5 dt ~ A~ T

A special situation arises in the case of a wave The first equation(., forward) is used at the end
tip overrunning a dry bed. For this case, the valuesf the reach, the secon€( backward) at the inlet.
Uj+1/2=U; andcj:1,=0 are used. Since a fixed grid is being considered, a proper spatial

For Eq. (1) with a non-zero source term, theinterpolation is needed in the numerical evaluation of
operator splitting technique (Strang, 1968) is employedhe integrals in Egs. (26) and (27). In this paper, the
to maintain in the above schemes uniform second-orddfartree method (Liggett and Cunge, 1975; Garcia-
accuracy, and the resulting method can be expressétavarro and Saviron, 1992) is employed to achieve
as second-order accuracy for boundary point solutions.
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Stoker’s solution (Stoker, 1957). The simulated water
surface profiles follow closely the analytical solution
for both the positive and negative waves except for the
ROEL1 scheme, which is only a first-order scheme and
has significant numerical damping, leading to stronger
smearing of the discontinuities and slower shock
Fig. 2. Schematic diagram of a dam-break flow. movement. A comparison of the computed and ana-
lytical discharge profiles is shown in Fig. 3(b). The
excellent match reveals the mass conservation charac-
V. Model Applications teristic of the TVD2, ENO2 and ENO3 schemes. Since
the ROE1 scheme has only first-order accuracy, sig-
In this section, numerical simulations of severalnificant differences from the other three schemes are
one-dimensional transcritical flows, including dam-exhibited.
break flows under both wet and dry bed conditions, The study of a flood wave due to sudden failure
pressurization in a single pipe, a hydraulic jump apof a hydraulic structure over an initially dry bed may
plication and steady flow over a ladder of weirs, arde important. In this test, the water surface and dis-
presented to validate and demonstrate the robustneskarge profiles with a dry bed downstreahmg;=0.0),
and accuracy of the proposed model. In all cases, the
grid systems are designed so as to be fine enough to

meet the requirements of adequate accuracy as well i T T .

reasonable execution time. 10 ]
X —— Analytical
. I Initial
1. Idealized Dam-Break Flow on Wet and Dry P N e ROET ]
Beds N\ - VD2

------------- ENO2
- ENO3
The first test case for the present schemes is a

idealized dam-break flow in a rectangular, frictionless
channel. shows a schematic diagram of the “r
problem, wheréh, andh, are the initial water depths -
in the reservoir and in the tail water, respectively. At 2}
time t=0, the dam is removed instantly, and water is i
released into the downstream side in the form of a shoc ol .
wave. Based on the geometry and upstream condition ° 200
an analytic solution can be found. The flow can be

subcritical or supercritical, depending on the depth (a) Water depth
ratio (h¢/h,). The value of the depth ratio is largely

responsible for the problems encountered in simulating  3f L
the dam-break flow. The severity of the problem L ’:(‘)aE";““'
increases as the depth ratio decreases. Fennema e | —————. TVD2
Chaudhry (1987) showed that if the depth ratio is les: [ === ENO2
than 0.05, then most numerical schemes do not giv TTTTT BNes
accurate results at the bore. In this study, the com
putational domain was comprised of a 1000 m lonc
channel with a horizontal channel bottom. The damr [
was located at a downstream distanc&=00 m. The ol
initial water depth in the reservoir was=10 m. Time i
evolution of the water depth could be used to examint  s[
the shock-capturing capability of the numerical scheme 1

Elevation (m)

400 800 800 1000
Distance (m)

n
S
T

Discharge (cms)

shows the variation of the water depth 0 v o .
along the channel for a dam-break flow with a depth ~ ° 20 * Distance (m) o o0
ratio hy/h,=0.001 at tim&=30 sec. The flow domain ,
was discretized into 100 uniform grids, and the ROE1 (b) Discharge

TVD2, ENO2, and ENO3 schemes withy=| were  rig. 3. comparison of idealized dam-break solutionsHgin,=0.001
adopted. The analytical solutions were obtained using (t=30 s).
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—T T T T T

Dam 1 Table 1. L2 Norm for Computed Water Depth
10 .
Analyticat ]
Initial 1 h/h, Scheme ROE1 TVD2 ENO2 ENO3
-\ T ROE1 ]
1 S N VD2 0.001 0.0375 0.0262 0.0252 0.0253

------------- ENO2 0.0 0.0149 0.0076 0.0068 0.0068
ENO3

Elevation (m)

] in which np is the grid number. These results indicate
that the ENO2 and ENO3 schemes have better accuracy
] than the other two schemes. The CPU time required
is 1 second for the ENO2 scheme, and the computer

, e time is almost equal among the ROE1, TVD2, ENO2
0 200 “istance (m) 800 1000 and ENO3 schemes. The second-order ENO scheme

is, therefore, proposed for simulation of the transcritical

(a) Water depth flow when overall accuracy and applicability are

% ————— T —T . considered.
Analytical 2 1
----- ROE1

- 2. Dam-Break Experiment

] The above test cases only compared simulation
] results with analytic solutions of idealized dam-break
] flows. In order to demonstrate that the proposed model
] is capable of describing a real dam-break scenario,
1 laboratory dam-break experiments carried out at the
Waterway Experiment Station (WES), U.S. Corps of
Engineers (1960), were also simulated in this study.
] The experiments were conducted in a rectangular
0 Y, R ] channel with a channel length of 122 m, a width of
0 20 “Poistance () 800 1000 1.22 m, a bottom slope of 0.005, and a Manning’s
i roughness coefficient of 0.009. The water depth
(b) Discharge upstream of the dam was 0.305 m, and the downstream
Fig. 4. Comparison of idealized dam-break solutions ligh,=0.0 ~ water depth was zero (dry bed). The flow domain was
(t=20 s). discretized into 122 grids with uniform distribution.
shows a comparison between the computed
after sudden removal of the dam at the midsection, wer@nd measured water depth variations along the centerline
computed using the ROE1, TVD2, ENO2 and ENO3f the flume at timet=10 sec. Figure 5(b) and (c)
schemes witiAx=5 m andC,=1. The simulated results compare the simulated and experimental data at down-
and the analytical solutions, &t20 seconds after dam stream distances &£70.1 m anck=85.4 m, respectively.
removal, are shown iR 1) The analytical The good agreement between the computed and mea-
solutions are obtained by using Ritter’'s methodsured water depth demonstrates that the proposed model
(Henderson, 1966). The TVD2, ENO2 and ENO3is capable of dam-break flow simulation.
schemes give nearly the same results as the analytical
solutions. Since the ROE1 scheme has only first-orde3. Pressurization in a Single Pipe
accuracy, it again exhibits significant differences, such
as those in the front parts of positive and negative  An unsteady free-surface pressurized flow de-
waves, between the ROE1 and the other three schemessribed by Wiggert and Sundquist (1978) was simulated.
A quantitative comparison of the relative error inThe length of the horizontal rough pipe was 10 m, the
theL2 norm between the computed results and analytwidth was 0.51 m, the height was 0.148 m and the
cal solutions is shown ifiable 1, where theL2 norm  Preissmann’s slot width above that was0.01 m. A
is defined as computational grid witlhx=0.125 m and a Manning’s

Discharge (cms)

np np
L2= zl (Y smulated, i — Y analytical, )l igl (Y anaiytical, )2 (28)
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Simulated
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Distance (m)

(a)t=10s
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Measured
Simulated

Time (sec)

(b)x =70.1 m

T

o Measured
Simulated
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20 40 60 80 100 120
Time (sec)

() x=854m

roughness coefficient ofi=0.012 were used.

Initially free surface flow conditions with zero
discharge and initial water depth=0.128 m were
presented. Then a wave coming from the upstream side
caused the closed channel to pressurize, starting
upstream, and caused an interface separating the pres-
surized flow from the free surface flow to move
downstream. The upstream boundary condition was a
given hydrograph, and the downstream boundary con-
dition was a fixed water level equal to 0.128 fir

show the results of the variation in time
of the water level at=3.5 m and=5.5 m, respectively.
The horizontal lines in both figures represent the channel
ceiling, and the agreement between the numerical results
and the experimental data (Wiggert and Sundquist,
1978) are satisfactory.

4. ldealized Hydraulic Jump

Garcia-Navarroet al. (1992) first presented a
steady frictionless bell-shaped hump flow, where an
analytic solution existed for the analysis of the perfor-
mance of the algorithm. At the upstream end, a water
depth of 9.775 m was imposed while the downstream
water depth was held fixed at a value of 7 m. These
conditions led to a subcritical accelerating flow before
the hump, which reached a critical condition at its top
and then became supercritical downhill. A hydraulic
jump developed at some location and connected the
supercritical profile with the subcritical one imposed
by the downstream condition. The steady-state solu-
tion obtained from a subcritical initial condition of the
linear water surface profile by means of a time-march-
ing procedure using the proposed scheme is presented
in along with the analytical solution. The
analytical solutions were derived from the conservation
of mass and energy combined with the specific force
relation (Henderson, 1966). Forty-one uniformly dis-
tributed grids withC,=1 were used in this computation.
As can be seen, the agreement between the analytical
solution and the numerical solution is very good.

Another interesting test case considered by Garcia-
Navarroet al. (1992) was that of the steady flow across
a converging-diverging section in a rectangular, hori-
zontal and frictionless channel. The width variation
modified the steady-state profiles as well as those of
the propagating fronts. In a 500 m long channel, a
sinusoidal width variation was assumed to exist be-
tweenx=100 m andx=400 m from a maximum width
value ofb=5 m. A constant discharge at the upstream
end was 20 cms, and the downstream water depth was
held fixed at a value of 1.8 m. The Subcritical initial
condition was started at a linear water surface profile,

Fig. 5. Comparison of dam-break solutions for a WES experimentand the steady-state solution obtained by means of a
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0.20 — T T LA R A
0 oo 0° 1
g |
[e] ]
015 | J -
E
3
I oto} R
b o Measured
o Simulated
0.05 |- .
0.00 L 1 P | | - L 1
0 1 2 3 4 5 6 7
Time {sec)
(@)x=35m
0.20 7 T T T T T T
e}
co0 ©
0.15 | / ]
E
B
£ o0 ]
b o} Measured
& Simulated
0.05 |- |
0.00 -‘ PEEPEEESE SRR L L ol il i Lot 4
0 1 2 3 4 5 6 7
Time (sec)
b)x=55m

Fig. 6. Pressurization wave in a single pipe.

time-marching procedure using 51 uniform grids i
shown in Fig. 7(b) along with the analytical solution
The result produced the water accelerated as it a
proached the point of maximum contractiob.<

problem. To demonstrate the shock-capturing capabil-
ity of the proposed model, the computed results were
compared with laboratory measurements obtained by
Gharangik and Chaudhry (1991) for a 13.9 m long,
straight, horizontal, rectangular channel with a up-
stream Froude number d¥,=4.23 and 6.65. The
Manning’s roughness coefficient was reported to
range from 0.008 to 0.011 for the six tests conducted.
When the numerical model was applied the grid size
was 0.3 m,C, was 1, and a Manning’'s roughness
coefficientn of 0.009 was adopted. For the case of
F.=4.23, the upstream flow discharge and depth were
set at 0.053 cms and 0.043 m, respectively, while the
downstream depth was set at 0.222 m. The upstream
flow discharge and depth were 0.035 cms and 0.024
m for theF,=6.65 case, respectively, while the down-
stream depth was 0.195 ni: dem-

Analytical
Simulated

Elevation (m}

n
T
1

o 250 500

Distance {m)

750 1000

(a) Flow over a hump

25 . —

— T T T

Analytical

< Simulated

3.587 m in this example), the flow became critica z s
there, then the flow changed to supercritical and £
hydraulic jump formed and connected with the subcriti & o
cal downstream condition. It is evident that the pra
posed scheme causes the numerical solution to clos:
follow the analytical solution while avoiding
oscillations.

0.5

0.0

5. Hydraulic Jump Experiments

Considering the many applications of the hydrau
lic jump, it is desirable that a general-purpose numeri-

cal model be found that is capable of solving thisFig. 7. Comparison of solutions for an idealized hydraulic jump.
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0.30

ing the appearance of oscillations around them. The
results of calculation carried out using the proposed
] scheme on &x=10 m grid withC,=1 are shown in

© © . The proposed model showed good performance in
ez ] the presence of sharp jumps in the steady-state solution
6 Messured ] while avoiding oscillations. This model also could
o8 Simulated ] efficiently deal with multiple hydraulic jumps for steady

] flow over a ladder of weirs. The computed result
0.0 - b compares favorably with the numerical solution ob-
tained by Garcia-Navarrel al. (1992).

025 |- -1

Elevation (m)

0.05 |- -1

V. Conclusions

* Distance (m) * In this study, a general-purpose mathematical
model was developed to solve one-dimensional shallow
(@) Fr=4.23 water flow equations. The model is based on high-
resolution non-oscillatory shock-capturing explicit
schemes, including a first-order Roe scheme, second-
1 order TVD and ENO schemes, and a third-order ENO
0z ] scheme.
] The model has been applied to a wide variety of
020 - 0%%%00 o hydraulics problems, including dam-break flows under
] both wet and dry bed conditions, pressurization in a
o1s | © “S"m:zg . single pipe, a hydraulic jump application and discon-
] tinuous steady flow over a ladder of weirs. For each
ot f ] of these cases, the computed results have been com-
] pared with analytical solutions, experimental data or
005 |- ] other numerical solutions. The agreement between the
: i ] computed results and experimental measurements or
P N T T A B analytical solutions has been found to be satisfactory.
*Distance (m) 8 0 It is evident that the proposed transcritical flow
model can be successfully applied to a wide variety of
(b) Fr=6.65 hydraulics problems, especially flows with steep gra-
dient and strong shock features. The proposed model
Fig. 8. Comparison of solutions for hydraulic jump experiments. js g significant improvement over most of the existing
models that have been developed to solve only the

0.00

0.30 —r——r——T——— T ——

Elevation (m)

onstrate that the proposed model reproduced the ex-
perimental data accurately.

6. Discontinuous Steady Flow over a Ladder of N
Weirs Prasan

This test example involved computation of the
discontinuous stationary flow in a 500 m long rectan-
gular channel 6 m wide that contained three identical
weirs of 0.25 m in height. The bottom slope vigs
0.008, and the Manning’s roughness coefficient was
n=0.015. The discharge was 20 cms, and the initial
water depth was 2 m. For the flow over the internal
weirs, the characteristic equations together with mass
continuity and a rating curve for weir flow were used. T ") 500
The proposed model located the sharp discontinuities Distance (m)
of the corresponding stationary solution, thus preventrig. 9. Computed discontinuous steady flow over a ladder of weirs.

Elevation (m}
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