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ABSTRACT

This paper deals with the use of high-resolution non-oscillatory shock-capturing difference schemes
to solve steady and unsteady one-dimensional flows with steep waves in channels.  Such transcritical flow
may be either free surface (subcritical/supercritical) or free surface/pressurized in a pipe.  The main features
of a class of high-resolution schemes are described with reference to the unsteady one-dimensional shallow
water equations.  The operator splitting method is utilized to compute the flows with bottom slope and
friction terms, and the method of characteristics with second-order accuracy is also incorporated in the
present model to treat the external and internal boundary conditions.  Numerical results are obtained for
a series of one-dimensional test cases by means of the proposed model and are compared with analytical
solutions or experimental measurements.  It is shown that the proposed model is accurate, robust and highly
stable in capturing strong gradients and discontinuities in such transcritical flows, and is a reliable
mathematical model for one-dimensional practical hydraulic engineering applications.

Key Words: high-resolution non-oscillatory shock-capturing difference schemes, unsteady one-dimen-
sional shallow water equations, transcritical flows
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I. Introduction

Transcritical flow or an abrupt change in water
depth often occurs in channels.  The resulting flow may
be a subcritical/supercritical free surface flow or a free
surface/pressurized flow if the channel is closed (pipe).
For example, the operation of fixed and dynamic
hydraulic structures sometimes leads to the formation
of shock, that is, hydraulic jumps or surges.  Other
occurrences of transcritical flow include dam-break
waves and flow through channels with severe width
contractions or local high-bed elevations.  The math-
ematical modeling of transcritical flow is an extremely
difficult problem due to the presence of rapidly varying
discontinuous hydraulic characteristics.

A number of shock-capturing finite difference
schemes exists for solving hyperbolic systems of con-
servation laws in the field of aerodynamics.  Because
the 1-D shallow water equations are similar to the 1-
D compressible Navier-Stokes equations, many works
in the last decade have focused on the numerical so-
lution of the de Saint Venant equations and have mainly
attempted to accurately capture discontinuities without
spurious oscillations.  Fennema and Chaudhry (1987,
1990) used the Beam and Warming scheme and the

MacCormack scheme to simulate one and two-dimen-
sional dam-break flows.  An important feature is the
requirement of additional artificial dissipation terms in
order to remove oscillations around discontinuities using
these classical higher-order schemes.  This requires
good judgement and empiricism.  Roe (1981) defined
an approximate Jacobian for conservative splitting of
the flux difference in Euler equations.  Harten (1983)
introduced the total variation diminishing (TVD)
schemes, which have the ability not only to damp
oscillations, but also to highly resolve discontinuities,
and which contain no terms depending on adjustable
parameters.  The Roe scheme and TVD schemes were
employed to solve the one-dimensional transcritical
flow in many researches (Glaister, 1988; Alcrudo et
al., 1992; Baines et al., 1992; Yang et al., 1993; Nujic,
1995; Jha et al., 1995; Jin and Fread, 1997; Meselhe
et al., 1997).  Because the TVD schemes are required
to revert to first-order at the local extrema of the
solutions, Harten and Osher (1987) developed the
essentially non-oscillatory (ENO) schemes, which are
able to achieve uniformly higher-order accuracy both
at the local extrema of the solutions and in other smooth
regions.  The ENO schemes were extended to solve the
one-dimensional dam-break problem by a few inves-
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tigators (Yang et al., 1993; Nujic, 1995).  Although
the previous researches reported good results near
discontinuities, most of them were proposed for only
the prismatic channel, or neglected the source terms,
and some of them used only first-order scheme, or
required tuning of the artificial viscosity coefficient.

Recently, Tseng (1999) applied a class of non-
oscillatory shock-capturing Roe, TVD, and ENO
schemes to the simulation of two-dimensional rapidly
varied open-channel flows.  His results demonstrated
that the above schemes are accurate, robust and highly
stable even in flows with strong gradients.  In this
paper, these high-resolution explicit schemes are ex-
tended to solve the one-dimensional transcritical flow.
Also, the entropy correction function suggested by
Harten and Hyman (1983) is used to eliminate the trial
procedure for the entropy inequality condition.  At
boundaries, the method of characteristics with second-
order accuracy is also incorporated in the present
schemes to treat the time-dependent hydraulic engi-
neering problem.  To verify the reliability of the pro-
posed model for hydraulic engineering applications, a
series of test cases are presented, and simulation results
are compared with the analytical solution or experi-
mental data.

The contents of this paper are organized as follows.
Governing equations are described in Section II.  The
numerical model is presented in Section III.  In Section
IV, several one-dimensional, steady and unsteady,
rapidly varying, transcritical flow computations are
used to validate and demonstrate the accurate, robust
and stable features of the proposed model.  Finally,
conclusions are given in the last section.

II. Governing Equations

Under the assumption of a homogeneous,
incompressible, viscous flow characterized by a hydro-
static pressure distribution, with wind and Coriolis
forces neglected, the depth-integrated equations of
motion form the fundamental equations for open-chan-
nel flows.  The governing equations, based on conser-
vation of mass and of momentum, for one-dimensional
unsteady flow in a nonprismatic channel of arbitrary
cross section, can be expressed as

    ∂Q
∂t

+ ∂F
∂x = S , (1)

in which

   
Q = A

Q
, F =

Q

Q 2A– 1 + gI1

,

   S = 0
gI2 + gA(S 0 – S f)

,

where t is time; x is the horizontal distance along the
channel; A is the wetted cross-sectional area; Q is the
volume rate of flow; g is the gravitational acceleration;
and S0 is the bed slope.  The frictional slope Sf, the
hydrostatic pressure force I1, and the pressure force due
to longitudinal width variation I2 are defined as

   
S f =

Q Q n 2

A2R4/3
, I1 = (h – η)b(x,η)dη

0

h(x,t)

,

   
I2 = (h – η)

∂b(x,η)
∂x dη

0

h(x,t)

, (2)

where b(x,η)=∂A(x,η)/∂η; h=total water depth; n=the
Manning’s roughness coefficient; and R=the hydraulic
radius.

If channel cross sections are rectangular, trian-
gular or trapezoidal, the I1 and I2 terms can be expressed
as

  I1 = h 2(B
2

+
hS L

3
) , I2 = h 2(1

2
dB
dx

+ h
3

dS L

dx
) , (3)

where B is the channel bottom width, and SL is the side
slope of the channel (vertical to horizontal).  The no-
tations of a trapezoidal cross section are shown in Fig.
1.

Equation (1) can be further expressed in quasi-
linear form as

    ∂Q
∂t

+ A
∂Q
∂x = S , A = ∂F

∂Q
, (4)

where A is the Jacobian matrix and has two real
eigenvalues:

Fig. 1. Notations of a trapezoidal cross section.
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   λ1 =
Q
A

+ c , and λ2 =
Q
A

– c , (5)

in which c (=   gA/T ) is the wave celerity, and T is the
water surface width.

The corresponding right and left eigenvector
matrices for A are

    
R = 1

2c
1 – 1

λ1 – λ2

, L =
– λ2 1

– λ1 1
. (6)

Due to the hyperbolicity, we have

(7)

Free surface/pressurized flow conditions may
also be considered in a pipeline by introducing the
Preissmann’s slot (Cunge et al., 1980) attached to
the pipe crown and over the entire length of the
pipe.  The result is still a free surface flow, but since
the wave speed is   gA/BS , where BS is the channel
width at the free surface, pressurized flow with a large
wave speed is simulated as the water level enters the
slot.

III. Numerical Model

1. Roe/TVD/ENO Schemes

Define a uniform mesh {xj,t
n}, with mesh size ∆x,

time increment ∆t and τ=∆t/∆x, called the mesh ratio.
A conservative scheme for Eq. (1), with the source term
omitted temporarily, can be written as

    Q j
n + 1 = Q j

n – τ[F j + 1
2

– F j – 1
2
] , (8)

where    F j + 1
2
 and    F j – 1

2
 are the so-called modified nu-

merical fluxes.
The first-order Roe scheme (Roe, 1981) and higher-

order schemes (Harten, 1983; Harten and Osher, 1987;
Hsu, 1995), including the second-order TVD and ENO
schemes and the third-order ENO scheme, can be ex-
pressed in the form of Eq. (8) by defining the modified
numerical flux as

    F j + 1
2

= 1
2

[F j + F j + 1 + R j + 1
2
ΦΦj + 1

2
] . (9)

The components of    ΦΦj + 1
2
 are defined as

   φj + 1
2

l = µ(e j
l + e j + 1

l )σ(λ j + 1
2

l ) + θ(d j
l + d j + 1

l ) σ (λ j + 1
2

l )

   – Ψ(λ j + 1
2

l + µγ j + 1
2

l + θδ j + 1
2

l )αj + 1
2

l ,   l=1, 2,
(10)

where    αj + 1
2

l  represents the characteristic variables,
defined as

    ααj + 1
2

= L j + 1
2
(Q j + 1 – Q j) , (11)

and other higher-order terms are given by

   σ(z) = 1
2

[ϕ(z) – τz 2] , (12)

   

σ (z) =
(τ 2 z 3– 3τ z 2+ 2 z )/6 , if αj – 1

2

l ≤ αj + 1
2

l

(τ 2 z 3 – z )/6 , otherwise ,

(13)

and

   e j
l = m[αj + 1

2

l – β m (∆–αj + 1
2

l , ∆+αj+ 1
2

l ) , αj– 1
2

l

   + β m (∆–αj– 1
2

l , ∆+αj– 1
2

l )] , (14)

   

d j
l =

m (∆–αj– 1
2

l , ∆+αj– 1
2

l ) , if αj– 1
2

l ≤ αj+ 1
2

l

m (∆–αj + 1
2

l , ∆+αj + 1
2

l ) , otherwise ,

(15)

   

γ j + 1
2

l =
σ(λ j + 1

2

l )(e j + 1
l – e j

l)/αj+ 1
2

l , if αj+ 1
2

l ≠ 0

0 , otherwise ,

(16)

   

δ j + 1
2

l =
σ (λ j + 1

2

l )(d j + 1
l – d j

l)/αj + 1
2

l , if αj + 1
2

l ≠ 0

0 , otherwise .

(17)

In the above expressions, z is a dummy variable;
∆+ is the forward difference; ∆− is the backward
difference; the limiter functions m and   m  are defined
as

  

m(a,b) =
s min ( a , b ) , if sgn a = sgn b = s ;

0 , otherwise , (18)
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m (a,b) =

a , if a ≤ b ;

b otherwise ,
(19)

and the entropy fix function ϕ is

   
ϕ(z) =

z , if z ≥ ε ;

(z 2 + ε2)/2ε , if z < ε ,
(20)

in which ε is a small positive number whose value has
to be determined for each individual problem.  In this
paper, a formula suggested by Harten and Hyman (1983)
is used to cut down trial process:

   
εj + 1

2

l = max [0, λ j + 1
2

l – λ j
l, λ j + 1

l – λ j + 1
2

l ]

εj – 1
2

l = max [0, λ j – 1
2

l – λ j – 1
l , λ j

l – λ j – 1
2

l ]
. (21)

In the above equations, the three parameters µ,
θ and β are used to enable the first-order Roe scheme
(ROE1), the second-order TVD scheme (TVD2), the
second-order ENO scheme (ENO2) and the third-order
ENO scheme (ENO3) to be expressed in the same
formulations.  In addition, the relations are

  µ = 0 θ = 0 β = 0 → ROE1
µ = 1 θ = 0 β = 0 → TVD2
µ = 1 θ = 0 β = 0.5 → ENO2
µ = 1 θ = 1 β = 0 → ENO3

. (22)

The subscript j±1/2 denotes the intermediate state
between grid points j  and j+l, and can be defined
following the lead of Roe (1981) as

   
u j ± 1

2
=

Aj u j + Aj ± 1 u j ± 1

Aj + Aj ± 1

, h j ± 1
2

= (h j + h j ± 1)/2 ,

   
c j ± 1

2
=

gA(h j ± 1
2
)

T(h j ± 1
2
)

. (23)

A special situation arises in the case of a wave
tip overrunning a dry bed.  For this case, the values
uj±1/2=uj and cj±1/2=0 are used.

For Eq. (1) with a non-zero source term, the
operator splitting technique (Strang, 1968) is employed
to maintain in the above schemes uniform second-order
accuracy, and the resulting method can be expressed
as

    
Q j

n + 1 = L s(
∆t
2

)L(∆t)L s(
∆t
2

)Q j
n

L(∆t)Q j
n ≡ Q j

n – τ[F j + 1
2

n – F j – 1
2

n ]

L s(∆t)Q j
n ≡ Q j

n + ∆tS j
n + ∆t 2

2
(∂S
∂Q

)j
nS j

n

. (24)

For stability in an explicit scheme, the Courant-
Friedrichs-Lewy condition must be satisfied; i.e., the
Courant number Cr must be less than or equal to unity.
In other words, the time increment ∆t is limited as
follows:

   ∆t = C r[
∆x

u + c ] . (25)

2. Boundary Conditions

The above schemes are only for the interior points.
If one of the flow variables is prescribed at one of the
boundary sections, then a solution for the other depen-
dent variable is still needed.  It should be recalled that
the only general technique available to obtain a solution
to this problem is the method of characteristics (MOC).
In this paper, second-order accuracy boundary condi-
tions based on the method of characteristics are em-
ployed at the boundaries.  For subcritical flows, one
external condition must be specified at the inflow
boundary whereas the other is required at the outflow
boundary, and the remaining unknown variables on
both sides are furnished by the MOC.  Supercritical
flows require the imposition of two inflow boundary
conditions, and all the variables at the downstream side
are solved by the MOC.

The characteristic equations for Eq. (1) may be
written as

   dQ
dt

+ ( –
Q
A

±
gA
T

)dA
dt

= gI2 + gA(S 0 – S f) ,    (26)

which are known to hold along characteristic lines:

   dx
dt

=
Q
A

±
gA
T

. (27)

The first equation (C+, forward) is used at the end
of the reach, the second (C−, backward) at the inlet.
Since a fixed grid is being considered, a proper spatial
interpolation is needed in the numerical evaluation of
the integrals in Eqs. (26) and (27).  In this paper, the
Hartree method (Liggett and Cunge, 1975; Garcia-
Navarro and Saviron, 1992) is employed to achieve
second-order accuracy for boundary point solutions.
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IV. Model Applications

In this section, numerical simulations of several
one-dimensional transcritical flows, including dam-
break flows under both wet and dry bed conditions,
pressurization in a single pipe, a hydraulic jump ap-
plication and steady flow over a ladder of weirs, are
presented to validate and demonstrate the robustness
and accuracy of the proposed model.  In all cases, the
grid systems are designed so as to be fine enough to
meet the requirements of adequate accuracy as well as
reasonable execution time.

1. Idealized Dam-Break Flow on Wet and Dry
Beds

The first test case for the present schemes is an
idealized dam-break flow in a rectangular, frictionless
channel.  Figure 2 shows a schematic diagram of the
problem, where hr and ht are the initial water depths
in the reservoir and in the tail water, respectively.  At
time t=0, the dam is removed instantly, and water is
released into the downstream side in the form of a shock
wave.  Based on the geometry and upstream conditions,
an analytic solution can be found.  The flow can be
subcritical or supercritical, depending on the depth
ratio (ht/hr).  The value of the depth ratio is largely
responsible for the problems encountered in simulating
the dam-break flow.  The severity of the problem
increases as the depth ratio decreases.  Fennema and
Chaudhry (1987) showed that if the depth ratio is less
than 0.05, then most numerical schemes do not give
accurate results at the bore.  In this study, the com-
putational domain was comprised of a 1000 m long
channel with a horizontal channel bottom.  The dam
was located at a downstream distance of x=500 m.  The
initial water depth in the reservoir was hr=10 m.  Time
evolution of the water depth could be used to examine
the shock-capturing capability of the numerical scheme.

Figure 3(a) shows the variation of the water depth
along the channel for a dam-break flow with a depth
ratio ht/hr=0.001 at time t=30 sec.  The flow domain
was discretized into 100 uniform grids, and the ROE1,
TVD2, ENO2, and ENO3 schemes with Cr=l were
adopted.  The analytical solutions were obtained using

Stoker’s solution (Stoker, 1957).  The simulated water
surface profiles follow closely the analytical solution
for both the positive and negative waves except for the
ROE1 scheme, which is only a first-order scheme and
has significant numerical damping, leading to stronger
smearing of the discontinuities and slower shock
movement.  A comparison of the computed and ana-
lytical discharge profiles is shown in Fig. 3(b).  The
excellent match reveals the mass conservation charac-
teristic of the TVD2, ENO2 and ENO3 schemes.  Since
the ROE1 scheme has only first-order accuracy, sig-
nificant differences from the other three schemes are
exhibited.

The study of a flood wave due to sudden failure
of a hydraulic structure over an initially dry bed may
be important.  In this test, the water surface and dis-
charge profiles with a dry bed downstream (ht/hr=0.0),

Fig. 2. Schematic diagram of a dam-break flow.

Fig. 3. Comparison of idealized dam-break solutions for ht/hr=0.001
(t=30 s).
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after sudden removal of the dam at the midsection, were
computed using the ROE1, TVD2, ENO2 and ENO3
schemes with ∆x=5 m and Cr=1.  The simulated results
and the analytical solutions, at t=20 seconds after dam
removal, are shown in Fig. 4(a) and (b).  The analytical
solutions are obtained by using Ritter’s method
(Henderson, 1966). The TVD2, ENO2 and ENO3
schemes give nearly the same results as the analytical
solutions.  Since the ROE1 scheme has only first-order
accuracy, it again exhibits significant differences, such
as those in the front parts of positive and negative
waves, between the ROE1 and the other three schemes.

A quantitative comparison of the relative error in
the L2 norm between the computed results and analyti-
cal solutions is shown in Table 1, where the L2 norm
is defined as

in which np is the grid number.  These results indicate
that the ENO2 and ENO3 schemes have better accuracy
than the other two schemes.  The CPU time required
is 1 second for the ENO2 scheme, and the computer
time is almost equal among the ROE1, TVD2, ENO2
and ENO3 schemes.  The second-order ENO scheme
is, therefore, proposed for simulation of the transcritical
flow when overall accuracy and applicability are
considered.

2. Dam-Break Experiment

The above test cases only compared simulation
results with analytic solutions of idealized dam-break
flows.  In order to demonstrate that the proposed model
is capable of describing a real dam-break scenario,
laboratory dam-break experiments carried out at the
Waterway Experiment Station (WES), U.S.  Corps of
Engineers (1960), were also simulated in this study.
The experiments were conducted in a rectangular
channel with a channel length of 122 m, a width of
1.22 m, a bottom slope of 0.005, and a Manning’s
roughness coefficient of 0.009.  The water depth
upstream of the dam was 0.305 m, and the downstream
water depth was zero (dry bed).  The flow domain was
discretized into 122 grids with uniform distribution.
Figure 5(a) shows a comparison between the computed
and measured water depth variations along the centerline
of the flume at time t=10 sec.  Figure 5(b) and (c)
compare the simulated and experimental data at down-
stream distances of x=70.1 m and x=85.4 m, respectively.
The good agreement between the computed and mea-
sured water depth demonstrates that the proposed model
is capable of dam-break flow simulation.

3. Pressurization in a Single Pipe

An unsteady free-surface pressurized flow de-
scribed by Wiggert and Sundquist (1978) was simulated.
The length of the horizontal rough pipe was 10 m, the
width was 0.51 m, the height was 0.148 m and the
Preissmann’s slot width above that was Bs=0.01 m.  A
computational grid with ∆x=0.125 m and a Manning’s

Table 1.  L2 Norm for Computed Water Depth

ht/hr Scheme ROE1 TVD2 ENO2 ENO3

0.001 0.0375 0.0262 0.0252 0.0253
0.0 0.0149 0.0076 0.0068 0.0068

Fig. 4. Comparison of idealized dam-break solutions for ht/hr=0.0
(t=20 s).

   
L2 = (Y simulated , i – Y analytical, i)

2Σ
i = 1

np

/ (Y analytical, i)
2Σ

i = 1

np

, (28)
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roughness coefficient of n=0.012 were used.
Initially free surface flow conditions with zero

discharge and initial water depth=0.128 m were
presented.  Then a wave coming from the upstream side
caused the closed channel to pressurize, starting
upstream, and caused an interface separating the pres-
surized flow from the free surface flow to move
downstream.  The upstream boundary condition was a
given hydrograph, and the downstream boundary con-
dition was a fixed water level equal to 0.128 m.  Figure
6(a) and (b) show the results of the variation in time
of the water level at x=3.5 m and x=5.5 m, respectively.
The horizontal lines in both figures represent the channel
ceiling, and the agreement between the numerical results
and the experimental data (Wiggert and Sundquist,
1978) are satisfactory.

4. Idealized Hydraulic Jump

Garcia-Navarro et al. (1992) first presented a
steady frictionless bell-shaped hump flow, where an
analytic solution existed for the analysis of the perfor-
mance of the algorithm.  At the upstream end, a water
depth of 9.775 m was imposed while the downstream
water depth was held fixed at a value of 7 m.  These
conditions led to a subcritical accelerating flow before
the hump, which reached a critical condition at its top
and then became supercritical downhill.  A hydraulic
jump developed at some location and connected the
supercritical profile with the subcritical one imposed
by the downstream condition.  The steady-state solu-
tion obtained from a subcritical initial condition of  the
linear water surface profile by means of a time-march-
ing procedure using the proposed scheme is presented
in Fig. 7(a) along with the analytical solution.  The
analytical solutions were derived from the conservation
of mass and energy combined with the specific force
relation (Henderson, 1966).  Forty-one uniformly dis-
tributed grids with Cr=1 were used in this computation.
As can be seen, the agreement between the analytical
solution and the numerical solution is very good.

Another interesting test case considered by Garcia-
Navarro et al. (1992) was that of the steady flow across
a converging-diverging section in a rectangular, hori-
zontal and frictionless channel.  The width variation
modified the steady-state profiles as well as those of
the propagating fronts.  In a 500 m long channel, a
sinusoidal width variation was assumed to exist be-
tween x=100 m and x=400 m from a maximum width
value of b=5 m.  A constant discharge at the upstream
end was 20 cms, and the downstream water depth was
held fixed at a value of 1.8 m.  The Subcritical initial
condition was started at a linear water surface profile,
and the steady-state solution obtained by means of aFig. 5. Comparison of dam-break solutions for a WES experiment.
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time-marching procedure using 51 uniform grids is
shown in Fig. 7(b) along with the analytical solution.
The result produced the water accelerated as it ap-
proached the point of maximum contraction (bc=
3.587 m in this example), the flow became critical
there, then the flow changed to supercritical and a
hydraulic jump formed and connected with the subcriti-
cal downstream condition.  It is evident that the pro-
posed scheme causes the numerical solution to closely
fol low the analyt ical  solut ion whi le avoiding
oscillations.

5. Hydraulic Jump Experiments

Considering the many applications of the hydrau-
lic jump, it is desirable that a general-purpose numeri-
cal model be found that is capable of solving this

Fig. 6. Pressurization wave in a single pipe.

Fig. 7. Comparison of solutions for an idealized hydraulic jump.

problem.  To demonstrate the shock-capturing capabil-
ity of the proposed model, the computed results were
compared with laboratory measurements obtained by
Gharangik and Chaudhry (1991) for a 13.9 m long,
straight, horizontal, rectangular channel with a up-
stream Froude number of Fr=4.23 and 6.65.  The
Manning’s roughness coefficient n was reported to
range from 0.008 to 0.011 for the six tests conducted.
When  the numerical model was applied the grid size
was 0.3 m, Cr  was 1, and a Manning’s roughness
coefficient n of 0.009 was adopted.  For the case of
Fr=4.23, the upstream flow discharge and depth were
set at 0.053 cms and 0.043 m, respectively, while the
downstream depth was set at 0.222 m.  The upstream
flow discharge and depth were 0.035 cms and 0.024
m for the Fr=6.65 case, respectively, while the down-
stream depth was 0.195 m.  Figure 8(a) and (b) dem-
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onstrate that the proposed model reproduced the ex-
perimental data accurately.

6. Discontinuous Steady Flow over a Ladder of
Weirs

This test example involved computation of the
discontinuous stationary flow in a 500 m long rectan-
gular channel 6 m wide that contained three identical
weirs of 0.25 m in height.  The bottom slope was S0=
0.008, and the Manning’s roughness coefficient was
n=0.015.  The discharge was 20 cms, and the initial
water depth was 2 m.  For the flow over the internal
weirs, the characteristic equations together with mass
continuity and a rating curve for weir flow were used.
The proposed model located the sharp discontinuities
of the corresponding stationary solution, thus prevent-

ing the appearance of oscillations around them.  The
results of calculation carried out using the proposed
scheme on a ∆x=10 m grid with Cr=1 are shown in Fig.
9.  The proposed model showed good performance in
the presence of sharp jumps in the steady-state solution
while avoiding oscillations.  This model also could
efficiently deal with multiple hydraulic jumps for steady
flow over a ladder of weirs.  The computed result
compares favorably with the numerical solution ob-
tained by Garcia-Navarro el al. (1992).

V. Conclusions

In this study, a general-purpose mathematical
model was developed to solve one-dimensional shallow
water flow equations.  The model is based on high-
resolution non-oscillatory shock-capturing explicit
schemes, including a first-order Roe scheme, second-
order TVD and ENO schemes, and a third-order ENO
scheme.

The model has been applied to a wide variety of
hydraulics problems, including dam-break flows under
both wet and dry bed conditions, pressurization in a
single pipe, a hydraulic jump application and discon-
tinuous steady flow over a ladder of weirs.  For each
of these cases, the computed results have been com-
pared with analytical solutions, experimental data or
other numerical solutions.  The agreement between the
computed results and experimental measurements or
analytical solutions has been found to be satisfactory.

It is evident that the proposed transcritical flow
model can be successfully applied to a wide variety of
hydraulics problems, especially flows with steep gra-
dient and strong shock features.  The proposed model
is a significant improvement over most of the existing
models that have been developed to solve only the

Fig. 9. Computed discontinuous steady flow over a ladder of weirs.

Fig. 8. Comparison of solutions for hydraulic jump experiments.
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gradually varied flow problem.

Acknowledgment

The computer facilities and office provided for this study by
the National Center for High-Performance Computing (NCHC) were
greatly appreciated.  Thanks are also extended to Dr. C. A. Hsu for
many helpful discussions.

References

Alcrudo, F., P. Garcia-Navarro, and J. M. Saviron (1992) Flux
difference splitting for 1-D open channel flow equations. Int.
J. Numer. Methods in Fluids, 14,1009-1018.

Baines, M. J., A. Maffio, and A. Di Filippo (1992) Unsteady 1-D
flows with steep waves in plant channels: the use of Roe’s upwind
TVD difference scheme. Advances in Water Resources, 15, 89-
94.

Cunge, J. A., F. M. Holly, and A. Verwey (1980) Practical Aspects
of Computational River Hydraulics. Pitman Publishing Limited,
London, London, U.K.

Fennema, R. J. and M. H. Chaudhry (1987) Simulation of one-
dimensional dam-break flows. J. Hydr. Res., 25(1), 25-51.

Fennema, R. J. and M. H. Chaudhry (1990) Explicit methods for 2-
D transient free-surface flows. J. Hydr. Engrg., ASCE, 116(8),
1013-1034.

Garcia-Navarro, P. and J. M. Saviron (1992) McCormack’s method
for the numerical simulation of one-dimensional discontinuous
unsteady open channel flow. J. Hydr. Res., 30(1),95-105.

Garcia-Navarro, P., F. Alcrudo, and J. M. Saviron (1992) 1-D open-
channel flow simulation using TVD-McCormack scheme. J. of
Hydr. Engrg., ASCE, 118(10), 1359-1372.

Gharangik, A. M. and M. H. Chaudhry (1991) Numerical simulation
of hydraulic jump.  J. Hydr. Engrg., ASCE, 117(9),1195-1211.

Glaister, P. (1988) Approximate Riemann solutions of the shallow
water equations. J. Hydr. Res., 26(3), 293-306.

Harten, A. (1983) High resolution schemes for hyperbolic conser-
vation laws. J. Comput. Physics, 49, 357-393.

Harten, A. and J. M. Hyman (1983) Self adjusting grid method for
one-dimensional hyperbolic conservation laws. J. Comput.

Physics, 50, 235-296.
Harten, A. and S. Osher (1987) Uniformly high-order accurate non-

oscillatory schemes I. SIAM J. Numer. Analysis, 24(2), 279-309.
Henderson, F. M. (1966) Open Channel Flows. Macmillan, New

York, NY, U.S.A.
Hsu, C. A. (1995) Unsteady open-channel flow simulation using ENO

schemes. 3rd Nat. Conf. Compu. Fluid Dynamics, pp. 111-120.
Nanton, Taiwan, R.O.C.

Jha, A. K., J. Akiyama, and M. Ura (1995) First and second-order
flux difference spilling schemes for dam-break problem. J. Hydr.
Engrg., ASCE, 121(12), 877-884.

Jin, M. and D. L. Fread (1997) Dynamic flood routing with explicit
and implicit numerical solution schemes. J. Hydr. Engrg., ASCE,
123(3),166-173.

Liggett, J. A. and J. A. Cunge (1975) Numerical methods of solutions
of the unsteady flow equations. In: Unsteady Flow in Open
Channels, Chap. 4. Mahmood and Yevjevich Eds. Water Re-
source Pub., Fort Collins, CO, U.S.A.

Meselhe, E. A., F. Sotiropoulos, and F. M. Holly, Jr (1997)  Nu-
merical simulation of transcritical flow in open channels. J. of
Hydr. Engrg., ASCE, 123(9), 774-783.

Nujic, M. (1995) Efficient implementation of non-oscillatory schemes
for the computation of free-surface flows. J. Hydr. Res., 33(1),
101-111.

Roe, P. L. (1981) Approximate Riemann solvers, parameter vectors,
and difference schemes. J. Comput. Physics, 43, 357-372.

Stoker, J. J. (1957) Water Waves. Interscience Publishers Inc., Wiley
and Sons, New York, NY, U.S.A.

Strang, G. (1968) On the construction and comparison of difference
schemes. SIAM J. Numer. Analysis, 5, 506-517.

Tseng, M. H. (1999) Explicit finite-volume non-oscillatory schemes
for 2D transient free surface flows. Int’l J. Numer. Methods in
Fluids, (in press).

U.S. Corps of Engineers (1960) Flood Resulting from Suddenly
Breached Dams. Miscellaneous paper 2(374), Report 1, U.S.
Army Engineer Waterways Experiment Station, Corps of
Engineers, Vicksburg, MS, U.S.A.

Wiggert, D. C. and M. J. Sundquist (1978) Fixed-grid characteristics
for pipeline transients. J. Hydr. Engrg., ASCE, 103,1403-1415.

Yang, J. Y., C. A. Hsu, and C. H. Chang (1993) Computation of
free surface flows. J. Hydr. Res., 31(1), 19-34.



M.H. Tseng

− 664 −

�� !"#$%&'()*+

�� 

�� !"#$%&'()*+,-.

�� 

�� !"#$%&'()*+,(-./0123456789�:;<=>?@!"/ABCDEFGHI
�� !"#$%&'(�)*+,-*+'./012#34�56789:;<=>? @ABCDEFGHI
�� !"#$"%&'()*oçÉLqsaLbkl�� !"#$%&'()*+,-./�0123$4567"8!1
�� !"#$%&'()*�� +,-.#/01234,5 6789:;<=>?@ABCD'1EFGH
�� �!"#$%&'(")*+,-./0123"456(57%89%8:;<=,>?@AB(23C2
�� !"#$%&'()*+,-./01#2 !34 !5� !6789&:$%(;<=>?"@AB*
�� !"#$%&'()*+,-./012)3


