
I. Introduction

Statistical methods have been widely applied in
industrial process control.  One of the key methods is the
control chart technique, which may be considered as a
graphical expression of statistical hypothesis testing.
Since 1924 when Dr. W.A. Shewhart presented the first
control chart, various control chart techniques have been
developed and applied in process control.  The major
function of control charting is to detect the occurrence of
assignable causes so that the necessary corrective action
may be taken before a large number of nonconforming
products are manufactured.  A survey by Saniga and
Shirland (1977) indicated that the averages control chart
(also called the –x chart) is used more often than any other
control chart techniques when quality is measured on a
continuous scale.  When an –x control chart is used to mon-
itor a process, three parameters should be determined: the
sample size, the sampling interval between successive
samples, and the control limits or critical region for the
chart.  Shewhart (1939) suggested 3-sigma control limits

as action limits and sample sizes of four or five, leaving
the interval between successive samples to be determined
by the practitioner.

Duncan (1956) proposed the first model for deter-
mining the sample size (n), the interval between succes-
sive samples (h), and the control limits of an –x control
chart (i.e., µ ± kσ/
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n, where µ and σ are, respectively, the
mean and standard deviation of the process characteristic)
which minimizes the average cost when a single out-of-
control state (assignable cause) exists.  Duncan’s cost
model includes the cost of sampling and inspection, the
cost of defective products, the cost of false alarms, the
cost of searching for assignable causes, and the cost of
process correction.  Since then, considerable attention has
been devoted to the optimal economic determination of
these three parameters (Duncan, 1971; Gibra, 1971; Goel
et al., 1968; Knappenberger and Grandage, 1969).  Re-
views of the literature in economic designs of control
charts have been published by Montgomery (1980), Vance
(1983) and Ho and Case (1994).  Alexander et al. (1995)
combined Duncan’s cost model with the Taguchi loss

Proc. Natl. Sci. Counc. ROC(A)
Vol. 24, No. 6, 2000. pp. 472-479

–472–

Statistically Minimum-loss Design of Averages Control

Charts for Non-normal Data

CHAO-YU CHOU*, CHUNG-HO CHEN**, HUI-RONG LIU***, AND PIN-HAO WANG*

*Department of Industrial Engineering and Management
National Yunlin University of Science and Technology

Touliu, Taiwan, R.O.C.
**Department of Industrial Management

Southern Taiwan University of Technology
Yung-Kang, Taiwan, R.O.C.

***Department of Food and Nutrition
Hung-Kuang Institute of Technology

Sha-Lu, Taiwan, R.O.C.

(Received September 27, 1999; Accepted April 19, 2000)

ABSTRACT

When an –x control chart is used to monitor a process, three parameters should be determined: the sample
size, the sampling interval between successive samples, and the control limits of the chart. Duncan presented a
cost model to determine the three parameters for an –x chart. In their 1995’s paper, S.M. Alexander and coworkers
combined Duncan’s cost model with the Taguchi loss function to present a loss model for determining the three
parameters. In this paper, the Burr distribution is employed to obtain a statistical minimum-loss design of –x charts
for non-normal data. The Alexander’s loss model is used as the objective function, and the cumulative function of
the Burr distribution is applied to derive the statistical constraints of the design. An example is presented to illus-
trate the solution procedure. From the results of the sensitivity analyses, we find that small values of the skewness
coefficient (say, α3 < 0.4) have no significant effect on the optimal design; however, when α3 > 0.4, an increase in
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function to obtain a loss model for determining the three
parameters.  This loss model explicitly considers the qual-
ity loss due to process variability, which is not included in
Duncan’s cost model.

In addition to focusing on economic design, another
approach to designing a control chart is called statistical
design.  Statistically designed control charts are those in
which control limits (which determine the Type I error
probability, α) and power are preselected.  These then
determine the sample size and, if the average time to sig-
nal is specified, the sampling interval (Woodall, 1985).
McWilliams (1994) incorporated the concept of statistical
considerations into the economic design of control charts
and then presented the “economic statistical design” of –x
control charts for normal data.  An economic statistical
design for joint –x and R charts has also been proposed by
Saniga (1989).

Traditionally, when designing control charts, one
usually assumes that the measurements in the sample are
normally distributed.  However, this assumption may not
be tenable.  If the measurements really are normally dis-
tributed, then the statistic –x is also normally distributed.  If
the measurements are asymmetrically distributed, then the
statistic –x will be approximately normally distributed only
when the sample size n is sufficiently large (based on the
central limit theorem).  Unfortunately, when a control
chart is applied to monitor the process, the sample size
n is never sufficiently large due to the sampling cost.
Therefore, if the measurements are not normally distribut-
ed, the traditional way of designing a control chart may
reduce the ability of the control chart to detect the as-
signable causes.  Yourstone and Zimmer (1992) used the
Burr distribution to represent various non-normal distribu-
tions and, consequently, to statistically design the control
limits of an –x control chart.  However, they did not consid-
er cost in the design of the chart.

In this paper, the statistical minimum-loss design of
an –x control chart for non-normal measurements will be
developed using the Burr distribution.  In the next section,
Duncan’s cost model (Duncan, 1956) and the loss model
given by Alexander et al. (1995) will be briefly reviewed.
Alexander’s loss model will be employed as the objective
function, which is to be minimized.  Then, the Burr distri-
bution will be applied to represent various non-normal
distributions.  Based on the cumulative function of the
Burr distribution, the calculations of the α risk and the
power of the chart will be derived, and the upper bound of
the α risk and the lower bound of the power will be speci-
fied as statistical constraints of the design.  An example
will be presented to illustrate the solution procedure for
the statistical minimum-loss design of an –x control chart
under non-normality.  Some sensitivity analyses will be
conducted to evaluate the effects of model parameters,
non-normality, and statistical constraints on the statistical

minimum-loss design of an –x control chart.

II. Literature Reviews

In this section, we shall briefly review the cost and
loss models given by Duncan (1956) and Alexander et al.
(1995) and the cumulative function of the Burr distribu-
tion, which is employed to represent various non-normal
distributions in this paper.

1. Review of the Cost and Loss Models

According to Alexander et al. (1995), Duncan’s cost
model for –x control charts is more realistic than other
models.  The components of Duncan’s cost model include:

(1) the cost of an out-of-control condition,
(2) the cost of false alarms,
(3) the cost of finding an assignable cause, and 
(4) the cost of sampling, inspection, evaluation, and

plotting.
Duncan (1956) assumed that the process starts un-

der an in-control condition and is subject to random
shifts in the process mean.  Once a shift occurs, the pro-
cess remains there until it is corrected.  The cycle length
is defined as the total period from when the process
starts in-control, to when it shifts to an out-of-control
condition, to when the out-of-control condition is detect-
ed, which results in the assignable cause being identified.
These four time intervals are, respectively, the interval
during which the process is in-control, the interval dur-
ing which the process is out-of-control before the final
sample of the detecting subgroup is taken, the interval
used to sample, inspect, evaluate and plot the subgroup
results, and the interval used to search for the assignable
cause.  When the average cycle length is determined, the
cost components can be converted to a “per hour of oper-
ation” basis.  Given associated cost and time parameters,
the optimal values of the three decision parameters for
the model can then be determined by using optimization
techniques.

In Duncan’s model (Duncan, 1956), the four average
cycle length components are as follows:

(1) Assuming that the process begins in the in-control
state, the time interval during which the process
remains in control is an exponential random vari-
able with mean 1/λ, which is the average process
in-control time.

(2) When an assignable cause occurs, the probability
that this out-of-control condition will be detected
on any subsequent sample is 1 – β, which is the
power of the chart.  Thus, the expected number of
subgroups taken before a shift in the process mean
is detected is 1/(1 – β).  The average time of occur-
rence within an interval between the jth and (j +
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1)st subgroups, given an occurrence of a shift in
the interval between these subgroups, is

Therefore, the expected length of the out-of-control
period is h/(1 – β)–τ.

(3) The average sampling, inspecting, evaluating, and
plotting time for each sample is a constant g pro-
portional to the sample size n, so that the delay in
plotting a subgroup point on the –x chart is gn.

(4) The time needed to find the assignable cause fol-
lowing an action signal is a constant D.

Therefore, the expected length of a cycle, denoted by
E(T), is

(1)

and the expected cost per hour, denoted by E(C), incurred
by the process is

(2)

where a1 and a2 are, respectively, the fixed and variable
components of the sampling cost, a3 is the cost of finding
an assignable cause, a4 represents the hourly penalty cost
associated with production in the out-of-control state, and
a5 is the cost of investigating a false alarm.  The economic
design of an –x chart involves determining the appropriate
values of n, h and k such that E(C) can be minimized.

Taguchi and Wu (1985) defined product quality as
the loss a product imparts to society from the time the
product is shipped; consequently, they introduced the
quality loss function as a quality performance measure for
a product.  Consider a product with bilateral tolerances of
equal value (∆).  If the loss (or cost) to society of produc-
ing a product out of specification is A $/unit, then the
Taguchi loss function defines the expected loss to society
as

(3)

where v2 is the mean squared deviation of the process,
defined as v2 = σ2 + (µ – T)2, and T is the target of the pro-
cess characteristic.  When the process is in control, its
mean is assumed to be centered on the target (i.e., µ = T)

and v2 = v2
1 = σ2.  When the process mean shifts to µ = T +

δσ, v2 = v2
2 = σ2(1 + δ2).  Using the definition of loss

given in Eq. (3), Alexander et al. (1995) expanded Dun-
can’s cost model to consider losses due to in-control and
out-of-control variability.  By assuming that the produc-
tion rate is P units/hr and applying some approximations
on the terms of Eq. (2), the expected cost (or loss) per
hour, denoted by E(L), can be obtained as

(4)

where B = [1/(1–β) – 1/2 + λh/12]h + D + gn, and Li =
(A/∆2)v2

i, for i = 1 and 2.  The minimum-loss design of an –x
chart involves determining the optimal values of n, h and k
such that E(L) is minimized.

2. Review of the Burr Distribution

Rahim (1985) presented an economic model of an –x
control chart under non-normality but did not include sta-
tistical consideration in the design.  Meanwhile, Rahim’s
approach to transforming the standardized normal variate
to non-normal variates is more complicated than the Burr-
distribution approach presented by Yourstone and Zimmer
(1992).  In this paper, we shall use the Burr distribution to
represent various non-normal distributions.  The cumula-
tive distribution function of the Burr distribution (Burr,
1942) has the following concise form:

(5)

where c and q are greater than one.  By taking the first
derivative on Eq. (5), the density function of the Burr dis-
tribution can be obtained as

Different combinations of c and q cover a wide range of
skewness and kurtosis coefficients of various probability
density functions, including most of the known functions,
such as normal, Gamma, Beta, and so forth.  For example,
the normal density function can be approximated by the
Burr distribution with c = 4.85437 and q = 6.22665.
Application of the Burr distribution can be found in the
literature.  Burr (1967) applied the Burr distribution to
study the effect of non-normality on the constants of –x and
range control charts.  Zimmer and Burr (1963) used the
Burr distribution to develop variable sampling plans for
non-normal populations.  Yourstone and Zimmer (1992)
used the Burr distribution to design the control limits of an
–x control charts for non-normal data.  Chou and Cheng
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(1997) extended Yourstone and Zimmer’s model to de-
sign the control limits of a range control chart under
non-normality.  Also, Tsai (1990) employed the Burr dis-
tribution to design the probabilistic tolerance for a sub-
system.

Burr (1942) tabulated the expected value, standard
deviation, skewness coefficient and kurtosis coefficient of
the Burr distribution for various combinations of c and q.
These tables allow users to make a standardized transfor-
mation between a Burr variate (say, Y) and another ran-
dom variate (X).  For a given set of data, once the sample
skewness and kurtosis coefficients are estimated, the
tables given by Burr (1942) can be used to obtain the
mean and standard deviation of the corresponding Burr
distribution.  For example, if a set of data is collected and
the corresponding sample statistics are computed to obtain
a sample mean (–x) of 50.42, a sample standard deviation
(sx) of 5.68, a sample skewness coefficient (α̂3) of 0.18,
and a sample kurtosis coefficient (α̂4) of 3.05, then from
Table III in Burr (1942), this set of data can be approxi-
mately described by a Burr distribution with c = 4 and q =
6.  Let M and S be the mean and standard deviation of a
Burr random variate, respectively.  From Table II in Burr
(1942), the Burr random variate Y with c = 4 and q = 6 has
a mean M = 0.5951 and a standard deviation S = 0.1801.
Then, the standardized transformation between a Burr
variate (Y) and the random variate (X) of interest can be
expressed as follows:

III. Statistical Constraints

To derive the statistical constraints for the design of
an –x control charts, we first denote UCL and LCL as the
upper and lower control limits of the –x chart, respectively.
In mathematical expression,

(6)

Note that we assume that µ = T when the process is in the
in-control state.  The Burr random variate Y can be trans-
formed into the sample statistic –x by using the standard-
ized procedure as follows:

(7)

That is, the scale and origin of the fitted Y values can be
changed to those of the –x values, and from Eq. (7), when
the process is in-control, we have

(8)

Based on Eqs. (5), (6) and (8), the Type I error probability
of the –x chart is

(9)

When µ = T + δσ (i.e., the process mean has shifted), –x is
assumed to follow a Burr distribution with mean T + δσ
and standard deviation σ/
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n.  The power of an –x chart,
denoted by p, is equal to 1 – β, where β is the Type II
error probability and can be expressed as

(10)

In order to compute the Type II error probability, the stan-
dardized transformation procedure has to be used as follows:

or

(11)

Based on Eqs. (5), (6) and (11), the Type II error probabil-
ity of the –x chart can be computed as

(12)

Equations (9) and (12) represent computation of the Types
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I and II error probabilities of the –x chart.  When statistical
consideration is included in the design of an –x chart, the
upper bound of the Type I error probability (αu) and the
lower bound of the power (pl) are specified such that α ≤
αu and p = 1 – β ≥ pl.

IV. An Example and Its Solution

In this section, an example is presented to illustrate
the solution procedure of the economical statistical design
of an –x chart.  The model parameters used in this example
are borrowed directly from Alexander et al. (1995) so that
the solution can be compared with the solution obtained
based on the assumption normality.

Example. A plant manufactures packed orange juice that
has a “quantity of content” specification of 250 cc with a
tolerance of ±0.3 cc.  From past data, the process standard
deviation is estimated as 0.1 cc.  Process shifts occur at
random with a frequency of about one every 4 hours of
operation (λ = 0.25).  The manufacturer uses an –x chart to
monitor the process.  Based on an analysis of quality-con-
trol technicians salaries and the costs of test equipment, it
is estimated that the fixed cost of taking a sample is $1
(i.e., a1 = 1).  The estimated variable cost of sampling is
about $0.10 per quantity of content (i.e., a2 = 0.10) and it
takes approximately 0.01 hour (i.e., g = 0.01) to measure
and record the quantity of content of a bottle of orange
juice.  On average, when the process goes out of control,
the magnitude of the shift is approximately one standard
deviation (δ = 1.0).  The average time required to investi-
gate an out-of-control signal is two hours (i.e., D = 2).
The cost of investigating an action signal that results in
the elimination of an assignable cause is $50 while the
cost of investigating a false alarm is $50 (i.e., a3 = 50 and
a5 = 50).  The process is assumed to continue to produce
packed orange juices at a rate of 100/h during the period
of investigation and elimination of out-of-control signals
(i.e., P = 100).  The cost of reworking or scrapping a
package of juice that is found to be outside the specifica-
tion limits is $5 (i.e., A = 5).  Previous data indicate that
the skewness and kurtosis coefficients of the quantity of
content of the packed orange juice are approximately
0.4836 and 3.3801, respectively, which may be described
by a Burr distribution with c = 3 and q = 6.  The manufac-
turer wishes to design the minimum-loss –x chart statistical-
ly such that the statistical properties of the chart can be
maintained and the costs (or losses) can be reduced.  To
satisfy the statistical requirements, the –x chart would be
designed with a Type I error probability (α) of less than
0.005 and a power (p) greater than 0.9.

A SIMSCRIPT computer program was coded for
minimization of the loss model in Eq. (4) subject to the

statistical constraints αu = 0.005 and pl = 0.9.  The pro-
gram uses the grid-search approach to find the optimal
values of n, h and k by evaluating a wide range of possible
solutions.  For a certain combination of n, h and k, the pro-
gram calculates the corresponding α risk and power so as
to examine whether or not this combination is a feasible
solution (i.e., whether the combination satisfies the statis-
tical requirements).  The output from this program, using
the values of the model parameters given in the example,
is shown in Table 1.  The program calculates the optimal
control limit width k and sampling frequency h for various
values of n, and the resulting value of the cost function in
Eq. (4).  The optimal control chart design can be found by
inspecting the values of the cost function so as to find the
minimum.  From Table 1, no feasible solution can be ob-
tained for n = 1, 2, …, 18.  We also note that the minimum
cost is $88.78 per hour, that the optimal –x chart uses sam-
ples of size n = 19, that the control limits are located at
±kσ, with k = 3.03, and that the samples are taken at inter-
vals of h = 1.15 hour (approximately once every 69 min-
utes).  The Type I error probability of this design is α =
0.005, and the power of the chart is p = 0.91886.

V. Sensitivity Analysis

In this section, we shall study the effects of model
parameters, non-normality and statistical constraints on
the solution of the above-mentioned example.

Table 2 shows the effects of model parameters on
the statistical minimum-loss design of the –x chart.  In-
creasing the fixed cost of sampling (a1) increases the in-
terval between samples (h) and the average cost.  Large
values of the variable cost of sampling (a2) and the cost of
finding an assignable cause (a3) imply relatively infre-
quent sampling and average cost.  The cost of investigat-
ing a false alarm (a5) is relatively robust to the optimal
design.  Large values of the cost of reworking an out-of-
specification product (A) lead to more frequent sampling.
Increasing the average process in-control time (i.e., de-
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Table 1. Output Solutions for the Presented Example

n H k α risk Power Cost

19 1.15 3.03 0.00500 0.918860 88.78
20 1.19 3.03 0.00500 0.939008 88.80
21 1.23 3.03 0.00500 0.955365 88.84
22 1.26 3.03 0.00500 0.968362 88.89
23 1.30 3.03 0.00500 0.978435 88.96
24 1.33 3.03 0.00500 0.986008 89.03
25 1.35 3.03 0.00500 0.991489 89.12
26 1.37 3.08 0.00455 0.993538 89.21
27 1.39 3.14 0.00406 0.994851 89.30
28 1.41 3.20 0.00362 0.995924 89.39
29 1.43 3.26 0.00322 0.996797 89.48
30 1.45 3.33 0.00282 0.997296 89.57



creasing the value of λ) produces a lower cost.  The mag-
nitude of the process mean shift (δ) has a significant
effect on the design.  A larger value of δ leads to a smaller
sample size and a short sampling interval.  The average
sampling, inspecting, evaluating and plotting time for each
sample (g) has no significant effect on the design.  The
time required to find the assignable cause (D) affects the
sampling interval (h).  Large values of D correspond to
infrequent sampling.  A larger value of the production rate
(P) leads to a short sampling interval.  Looser tolerances
result in infrequent sampling, which is consistent with our
intuitive reasoning.

Table 3 lists the optimal designs of the –x chart in the
example presented above for various combinations of the
skewness coefficient (α3) and kurtosis coefficient (α4) of
the population.  To study the effect of non-normality on
the optimal design of the –x chart, the possible populations
are divided into six groups in Table 3.  In Groups I and III,
when the value of α4 is approximately fixed and α3

increases from a negative to a positive value, no specific
tendency of n, h and k can be observed.  In Group II, when
α3 is close to zero and α4 increases, the sample size
increases slightly, and the control limits become wider.  In
Group IV, when α4 > 4 and the value of α3 increases from
0.4 to 1.0, both the sample size and sampling interval
increase slightly, and the control limits become wider.  In
Group V, when α3 is close to one and α4 increases from
4.4 to 7.2, the control limits become wider.  In Group VI,
when α3 increases from 1.06 to 3.18 and α4 increases
from 7.2 to 38, both the sample size and the sampling
interval generally increase, and the control limits become
wider.  Based on the observations from Table 3, we may
draw the following conclusions:

(1) Small values of the skewness coefficient (say, α3 <
0.4) have no significant effect on the optimal de-
sign.

(2) When α3 > 0.4, an increase in α3 leads to slight
increases in both the sample size and the sampling
interval, and to a wider control limit.

(3) An increase in α4 results in an increase in the sam-
ple size and a wider control limit.

(4) The optimal sampling interval can be robust to the
value of α4.

Table 4 shows the effect of statistical constraints on
the statistical minimum-loss design of the –x chart.  As αu

decreases, the sample size increases, and the control limits
become wider.  The sampling interval is also affected by
the value of αu, but no specific tendency can be seen.  If
the lower bound of the power (denoted by pl) is less than
0.89, then the optimal design remains unchanged.  As pl

increases from 0.89, both the sample size and the sam-
pling interval increase.

VI. Conclusions

In this paper, the Burr distribution has been em-
ployed to study the statistical minimum-loss design of –x
charts for non-normal data.  The Alexander’s loss model
has been used as the objective function, and the cumula-
tive function of the Burr distribution has been applied to
derive the statistical constraints of the problem.  An exam-
ple has been presented to illustrate the solution procedure.
From the results of the sensitivity analyses of this exam-
ple, some important conclusions can be drawn as follows:

(1) Increasing the fixed cost of sampling increases the
sampling interval.

(2) Large values of the variable cost of sampling and
the cost of finding an assignable cause imply rela-
tively infrequent sampling.

(3) The cost of investigating a false alarm is relatively
robust to the optimal design.

(4) Large values of the cost of reworking an out-of-
specification part (A) lead to more frequent sam-
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Table 2. Effects of Model Parameters on the Optimal Design of the –x
Chart

n h k α risk Power Cost

0.1 19 0.96 3.03 0.004999 0.918860 87.92409
a1 1.0 19 1.15 3.03 0.004999 0.918860 88.77787

10 23 2.62 3.03 0.004999 0.978435 93.60630

0.01 21 0.78 3.03 0.004999 0.955365 86.95367
a2 0.1 19 1.15 3.03 0.004999 0.918860 88.77787

10 19 29.991 3.03 0.004999 0.918860 113.43511

25 19 1.07 3.03 0.004999 0.918860 85.13835
a3 50.0 19 1.15 3.03 0.004999 0.918860 88.77787

100 19 1.39 3.03 0.004999 0.918860 95.95809

25 19 1.14 3.03 0.004999 0.918860 88.71448
a5 50 19 1.15 3.03 0.004999 0.918860 88.77787

100 19 1.18 3.03 0.004999 0.918860 88.90183

0.5 19 29.991 3.12 0.004212 0.900335 11.85082
A 5 19 1.15 3.03 0.004999 0.918860 88.77787

50 19 0.31 3.03 0.004999 0.918860 780.19787

0.025 20 2.21 3.03 0.004999 0.939008 62.58911
λ 0.25 19 1.15 3.03 0.004999 0.918860 88.77787

2.5 19 29.991 3.12 0.004212 0.900335 111.34118

0.7 38 1.53 3.03 0.004999 0.910123 90.88935
δ 1.0 19 1.15 3.03 0.004999 0.918860 88.77787

10.0 2 0.73 9.99 0.000000 1.000000 85.82883

0.001 20 1.16 3.03 0.004999 0.939008 88.13406
g 0.01 19 1.15 3.03 0.004999 0.918860 88.77787

0.1 19 1.45 3.03 0.004999 0.918860 93.61177

0.2 19 0.84 3.03 0.004999 0.918860 79.65102
D 2.0 19 1.15 3.03 0.004999 0.918860 88.77787

20.0 19 4.04 3.03 0.004999 0.918860 105.43743

25.0 19 10.86 3.03 0.004999 0.918860 27.68145
P 100.0 19 1.15 3.03 0.004999 0.918860 88.77787

200.0 19 0.74 3.03 0.004999 0.918860 166.91139

0.0003 19 0.1 3.03 0.004999 0.918860 7593.60923
∆ 0.003 19 1.15 3.03 0.004999 0.918860 88.77787

0.3 19 29.991 3.12 0.004212 0.900335 1.26419



pling.
(5) A larger mean shift leads to a smaller sample size

and a short sampling interval.
(6) Large values of the time required to find an as-

signable cause correspond to a short sampling in-
terval.

(7) A larger value of the production rate leads to a

short sampling interval.
(8) Looser tolerances result in infrequent sampling.
(9) Small values of the skewness coefficient (say, α3 <

0.4) have no significant effect on the optimal de-
sign.

(10) When α3 > 0.4, an increase in α3 leads to slight
increases in both the sample size and the sampling
interval, and to a wider control limit.

(11) An increase in α4 results in an increase in the sam-
ple size and a wider control limit.

(12) The optimal sampling interval can be robust to the
value of α4.

(13) As the upper bound of the α risk decreases, the
sample size may increase, and the control limits
may become wider.

(14) As the lower bound of the power increases, both
the sample size and the sampling interval may
increase.
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Table 3. Effects of Non-normality on the Optimal Design of the –x Chart

c q α3 α4 n h k α risk Power Cost Note

6 11 -0.254 3.027 18 1.12 2.84 0.00499 0.91208 88.68704
6 6 -0.147 3.065 18 1.13 2.85 0.00498 0.91328 88.68079 Group I
5 6 -0.013 3.010 17 1.1 2.8 0.00499 0.90443 88.59777 α3 : from – to +
5 5 0.040 3.070 17 1.09 2.83 0.00490 0.90086 88.61281 α4 : close to normal
4 7 0.136 2.979 17 1.1 2.77 0.00487 0.91186 88.55845
3 11 0.329 3.006 17 1.09 2.84 0.00497 0.90361 88.60141

4 11 0.050 2.866 17 1.11 2.71 0.00490 0.91873 88.52643
5 6 -0.013 3.010 17 1.1 2.8 0.00499 0.90443 88.59777 Group II
5 5 0.040 3.070 17 1.09 2.83 0.00490 0.90086 88.61281 α3 : close to normal
6 4 -0.019 3.169 18 1.12 2.89 0.00494 0.91060 88.69274 α4 : increasing
7 3 0.005 3.329 18 1.11 2.96 0.00499 0.90136 88.73965
10 2 0.044 3.646 19 1.14 3.09 0.00498 0.90267 88.85777

10 10 -0.519 3.462 20 1.16 3.09 0.00499 0.90810 88.95333
10 7 -0.465 3.430 20 1.17 3.07 0.00491 0.91166 88.93355 Group III
10 3 -0.208 3.418 19 1.14 3.03 0.00497 0.90659 88.83784 α3 : from – to +
5 3 0.277 3.485 18 1.12 2.98 0.00496 0.90209 88.73532 α4 : near a constant
3 6 0.484 3.380 19 1.15 3.03 0.00500 0.918860 88.77787

6 2 0.434 4.106 20 1.17 3.17 0.00493 0.91469 88.91892 Group IV
5 2 0.635 4.630 21 1.19 3.31 0.00495 0.91439 89.04111 α3 : increasing
2 10 0.884 4.122 22 1.24 3.37 0.00494 0.94192 89.02078 α4 : near a constant,
2 7 1.014 4.707 23 1.26 3.5 0.00500 0.94315 89.13140 and > 4.0 

2 8 0.958 4.443 23 1.27 3.45 0.00494 0.95177 89.08715
2 7 1.014 4.707 23 1.26 3.5 0.00500 0.94315 89.13140 Group V
2 6 1.094 5.118 24 1.29 3.58 0.00498 0.95280 89.19624 α3 : close to one
4 2 0.956 5.937 23 1.24 3.55 0.00495 0.91862 89.25489 α4 : increasing
9 1 1.060 7.215 24 1.26 3.7 0.00500 0.91519 89.38888

9 1 1.060 7.215 24 1.26 3.7 0.00500 0.91519 89.38888
2 4 1.432 7.356 27 1.38 3.86 0.00496 0.97176 89.43012 Group VI
2 3 1.909 12.460 29 1.42 4.13 0.00497 0.97170 89.64276 α3 : increasing, >>0
5 1 2.485 29.560 30 1.41 4.3 0.00497 0.94258 89.90000 α4 : increasing, >>0
1 9 2.940 19.760 32 1.5 4.78 0.00498 0.99357 89.83807
1 6 3.810 38.670 34 1.55 5.01 0.00489 1.00000 90.00147

Table 4. Effects of Statistical Constraints on the Optimal Design of the –x
Chart

n h k α risk Power Cost

0.0005 30 1.34 4.23 0.00050 0.90214 90.02889
0.001 27 1.3 3.87 0.00100 0.91833 89.62222

αu 0.005 19 1.15 3.03 0.00500 0.91886 88.77787
0.01 16 1.12 2.67 0.00984 0.91907 88.52813
0.2 14 1.13 2.38 0.01693 0.92505 88.43328

0.99 25 1.35 3.03 0.00500 0.99149 89.11697
0.95 21 1.23 3.03 0.00500 0.95537 88.83976

pl 0.90 19 1.15 3.03 0.00500 0.91886 88.77787
0.85 18 1.11 3.03 0.00500 0.89451 88.77409
0.80 18 1.11 3.03 0.00500 0.89451 88.77409
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