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ABSTRACT

Attribute grammars are a formalism for specifying computations on context-free languages. Due
to the nonstrictness of the if constructs in attribution equations, it is possible to avoid evaluating certain
attribute instances in a syntax tree. A dynamic evaluator can easily avoid such useless computations with
a demand-driven approach. However, dynamic evaluators are not efficient because they need to keep
the attribute dependence graph during evaluation, and they need to decide an evaluation order for each
syntax tree. In contrast, a visit-oriented (static) evaluator can carefully re-arrange the evaluation order
and still avoid unnecessary computations. We propose such a technique in this paper.
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attribute grammars

|l. Introduction

Since their introduction in 1968 (Knuth, 1968),
attribute grammars have attracted much research inter-
est. Attribute grammars are a very convenient and
powerful framework for specifying computations on
context-free languages (Deransart et al., 1988). At-
tribute evaluation has been extensively studied since
then. In this paper, we propose a new conditional
evaluation technique for static evaluators that may
potentially save evaluation time and space.

Consider the attribution equation A.a := if g (B.b)
then C.c else D.d in an attribute grammar. If the
predicate g (B.b) evaluates to true, it may be possible
to avoid evaluating the attribute D.d (and other at-
tributes on which D.d depends directly or indirectly).
Similarly, if g (B.b) evaluates to false, it may be possible
to avoid evaluating C.c (and other. attributes on which
C.c depends directly or indirectly).

A demand-driven dynamic evaluator can easily
avoid such useless computations. However, a dynamic
evaluator needs to maintain the attribute dependence
graph of a syntax tree and to decide an evaluation order
for every syntax tree. This incurs significant overhead
both in time and in storage space. By contrast, a static
evaluator may decide an evaluation scheme from an
attribute grammar that is applicable to all syntax trees.
During evaluation, the static evaluator simply follows
the pre-determined scheme. Thus, static evaluators are

usually more efficient than dynamic ones. Although
static evaluators exist only for certain subclasses of
attribute grammars, such as ordered attribute grammars
(Kastens, 1980; Engelfriet and File, 1982), it is com-
monly agreed that these subclasses of grammars are
sufficiently large for practical use.

We propose in this paper a conditional evaluation
scheme for static evaluators that may avoid useless
computations. Avoiding useless computations not only
speeds up the evaluator, but makes possible savings in
storage space. This is because much storage is allo-
cated dynamically during evaluation of attribute in-
stances. If an attribute instance is not evaluated at all,
then there is no need to allocate storage for it. On the
other hand, the storage overhead in our conditional
evaluator is a one-bit guard for each attribute instance.
(This space overhead may be further reduced. See
Section II1.3.) An attribute instance is evaluated
only if its guard is true. Furthermore, whenever a
downward visit to a child is about to be performed, the
evaluator checks whether the guards of the attribute
instances that are computed during that downward visit
are true. If none is true, the evaluator may simply skip
that visit. The time overhead in the worst case is linear
in the number of attribute instances in the syntax tree.

For a static evaluator to evaluate attribute in-
stances in a syntax tree, it is usually necessary to
perform the evaluation in an order that is consistent
with the dependencies among the attribute instances.
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For the above example A.a := if g (B.b) then C.c else
D.d, the three attributes B.b, C.c, and D.d are evaluated
before the if expression in a traditional static evaluator
because A.a depends on the other three attributes. In
a traditional static evaluator, the relative evaluation
order of B.b, C.c, and D.d is left unspecified. Observe
that it is possible to evaluate the predicate g (B.b)
before the attributes C.c and D.d . Furthermore, it is
also possible to selectively evaluate only one of C.c
and D.d based on the outcome of evaluating g (B.b).
Note that when g (B.b) evaluates to true (or false), D.d
(or C.c, respectively) may still need to be evaluated
if it is used in computation of other attributes. Our
technique of conditional evaluation establishes a suf-
ficient condition for avoiding attribute evaluation.

Our conditional evaluation scheme can be applied
to handle exceptions. Though attribute evaluation
usually terminates on serious errors, for minor errors
or exceptions, such as undeclared variables or mis-
matched data types, evaluation should skip unneces-
sary or unevaluable attributes rather than terminates.
These exceptions can be specified in terms of the
nonstrict conditional equations and be handled by our
conditional evaluation scheme. Such an example ap-
pears in Kastens’s paper (Kastens, 1980). Boyland and
Graham (1994) also pointed out that nonstrict condi-
tional equations are useful for subexpression ordering
(a code generation task in a compiler) and in computing
“offsets” in a compiler for a series of declarations
(Boyland, 1996).

Our technique of conditional evaluation is based
on the visit-oriented evaluation scheme (Engelfriet
and Filé, 1982). There is one evaluation plan for
each production rule in the grammar. A plan consists
of instructions of the following four kinds: an if-then-
else instruction, evaluation of an attribute instance, a
visit to a child node, and a return to the parent node.
Our technique generates plans for the production
rules.

The conditional evaluation technique not only
speeds up the evaluation process, but also saves dy-
namically allocated storage. Herndon (1986) proposed
a method for generating dynamic, lazy evaluators for
functional attribute grammars. Naini (1988) proposed
a demand-driven approach, which does not incorporate
conditional evaluation into the computation of visit
sequences. Both of these methods have the same aim
as does this paper: to avoid unnecessary attribute
evaluation. However, their methods are for dynamic

evaluation. In contrast, the method proposed in this
paper is a static, one. It works by carefully analyzing
attribute dependencies during the generation of evalu-
ation sequences. Though there have been many other
research papers on attribute evaluation methods (Alblas,
1991; Jourdan, 1991) and on storage optimization (Akker
and Sluiman, 1991; Engelfriet and Jong, 1990), these
works did not address the issue of conditional evalu-
ation.

Our conditional evaluation scheme is somewhat
similar to Boyland’s conditional attribute grammars
(Boyland, 1996). Due to the undecidability of the
predicate equivalence problem, Boyland proposed a
new syntax with which a user can group together
identical predicates manually. In addition to this minor
syntactic difference, Boyland’s technique splits a pro-
duction with k conditional attribution equations into 2*
new rules (assuming that all these k equations are not
nested within one another and, hence, are independent).
Each of the 2* new rules corresponds to a combination
of the values (true or false) of the k predicates in the
equations. Boyland proceeded to analyze the node-
split grammar far various properties, such as circular-
ity, complexity classes, evaluation methods etc. In
contrast, the unique feature of our conditional evalu-

:ation scheme lies in delaying the evaluation of the

attribute occurrences used in the two branches of a
conditional equation until after the evaluation of the
attribute occurrences used in the predicate as well as
the evaluation of the predicate itself.! Boyland’s tech-
nique did not attempt to achieve this delayed evalu-
ation. In this respect, our scheme is closer to the
(optimal) demand-driven dynamic evaluators. On the
other hand, Boyland’s node-splitting technique focuses
on detecting the false circularity in an attribute gram-
mar that is caused by distinct, mutually exclusive
evaluation orders of attributes in  the two branches of
conditional equations.

The rest of this paper is organized as follows. The
notations are introduced in Section II. The technique
for generating conditional evaluation plans is presented
in Section III. In Section IV, we describe the condi-
tional evaluator. In the last section, we discuss the
efficiency of the conditional evaluation scheme and
summarize our work.

Il. Notations

In this section, we will define the notations used

"Note that the expressions in the two branches of a conditional equation are, of course, evaluated after the predicate in all evaluators.
However, the attribute occurrences used in the two expressions might be evaluated before the attribute occurrences used in the predicate
in some evaluators. Our conditional evaluation scheme attempts to delay the evaluation of the attribute occurrences used in the two

expressions.
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in this paper. Basically, we adopt Kastens’s notations
(Kastens, 1980). An attribute grammar is built from
a context-free grammar (N, 7, P, S), where N is a finite
set of nonterminals, T is a finite set of terminals, S is
a distinguished nonterminal, called the start symbol,
and P is a set of production rules of the form X—¢,
where X is a nonterminal, and « is a string of terminals
and nonterminals. For each nonterminal X, there is at
least one production rule whose left-hand-side symbol
is X. As usual, we require that the sets of terminals
and nonterminals be disjoint. In this paper, a symbol
refers to a terminal or a nonterminal. A symbol may
appear more than once in a production rule. We give
each occurrence of a symbol in a production rule a
unique index in order to differentiate occurrences. The
symbol occurrences will be denoted as X®, X® etc. The
indexes may be omitted if no confusion arises. Further-
more, a production rule may be applied more than once
in a syntax tree. In this case, we say that there are
many instances of a symbol occurrence in the syntax
tree.

Attached to each symbol X of the context-free
grammar is a set of attributes. Intuitively, instances
of attributes describe the properties of specific in-
stances of symbols in a syntax tree. In order to simplify
our presentation, we assume that attributes of different
symbols have different names. The attributes of a
symbol X are partitioned into two disjoint subsets,
called the inherited attributes and the synthesized attri-
butes. There are attribution equations defining these
attributes. In a production rule, there are an attribution
equation defining each synthesized attribute occur-
rence of the left-hand-side symbol and an attribution
equation defining each inherited attribute occurrence
of the right-hand-side symbol. We assume that the start
symbol has no inherited attributes.

An attribute a of a symbol X is denoted by X.a.
Since there may be many occurrences of a symbol, there
are many occurrences of an attribute in a production
rule. These attribute occurrences will be denoted as
XY.a, X?.qa etc., where 1, 2 etc. are the unique indexes
of the different occurrences of the symbol X. Similarly,
since a production rule may be applied more than once
in a syntax tree, there may be many instances of an
attribute occurrence in a syntax tree.

There is still some freedom in specifying the
attribution equations. Therefore, we require that, for
each production rule, the attribution equations be defined
in terms of the inherited attribute occurrences of the
left-hand-side symbol and the synthesized attribute
occurrences of the right-hand-side symbols of the pro-

duction rule. This is called the normal form in the
literature (Bochmann, 1976; Paakki, 1995). The ad-
vantage of the normal form is that it specifies the
smallest number of dependencies among attributes.
Since dependencies among attributes enforce an evalu-
ation order, an attribute grammar in the normal form
allows the most freedom in the evaluator.

Ill. Conditional Evaluation Plans

Since a conditional evaluator may avoid evalu-
ating certain attribute instances in a syntax tree, it is
important to designate the attribute instances that must
be evaluated. For simplicity of presentation, we as-
sume that all and only the attribute instances of the start
symbol in a syntax tree must be evaluated. Other
attribute instances may be discarded if they are not
needed. We further assume that the start symbol ap-
pears exactly once in a syntax tree, and that there is
a path from every attribute instance to an attribute
instance of the start symbol in the attribute dependence
graph corresponding to the syntax tree (for otherwise,
that attribute instance would not be used, directly or
indirectly, in the computation of the attribute instances
of the start symbol).

-1. Adding Augmented Dependence Edges

We assume that the attribution equations are of
two forms: A®.a := f (BY.b, C%.c, ..) or Aa := if g
(BO.b, ...) then h (C%.c, ...) else f (D®.d, ...).2 We also
assume that the functions f, g, and & etc. are strict
functions. However, the if construct is not strict: If
the predicate g (B”.b, ...) evaluates to true, it may be
possible to avoid evaluating f (D®.d, ...) (and other
attributes on which D”.d depends directly or indi-
rectly). Similarly, if g (B?9.b, ...) evaluates to false,
it may be possible to avoid evaluating # (C®.c, ...) (and
other attributes on which C%®.c depends directly or
indirectly). We show that, by carefully arranging the
evaluation order and by making use of a guard in each
attribute instance in the syntax tree, a static evaluator
can indeed avoid certain useless computations.

First consider an example. Assume that there is
a production rule A—B C D and an attribution equation

A.a := if B.b=0 then C.c+1 else D.d+2. A traditional

visit sequence for this equation might be (1) a down-
ward visit to B, evaluating the attribute occurrence B.b,
(2) a downward visit to C, evaluating C.c, (3) a down-
ward visit to D, evaluating D.d, and (4) evaluation of
the if expression, assigning the result to the attribute

% Nested if expressions can be handled by a straightforward extension of the technique presented in this paper. For the sake of simplicity,

we will exclude nested if expressions in our discussion.
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occurrence A.a . As we pointed out before, either step
(2) or step (3) might be redundant. The visit sequence
produced by the conditional evaluation technique (ap-
proximately) consists of the following steps: (1) visit
symbol B, evaluating B.b, (2) evaluate the predicate
B.b=0, (3) if the result in step (2) is true, reset the guard
of the attribuite instance D.d (that is, its value becomes
false); otherwise reset the guard of C.c, (4) if the guard
of C.c is true, visit C, evaluating C.c, (5) if the guard
of D.d is true, visit D, evaluating D.d, and (6) evaluate
either A.a=C.c+1 or A.a=D.d+2, based on the outcome
of step (2). In essence, evaluation of the if expression
is distributed into three instructions: steps 2 and 6 and
an instruction that resets the guards of other attribute
occurrences.

We adopt an evaluator generator similar to the one
discussed in Kastens (1980) to generate a correct
evaluation plan. For an if expression in an attribution
equation in a production rule P, such as A%.a = if g
(BV.b, ...) then h (C®.c, ...) else f (DP.d, ..), it is
important to delay the evaluation of C*®.c and D".d
until after the evaluation of g (BY.b, ...) (hence, after
BY.b). Thus, we add augmented dependence edges
BY.b—C®.c and BY b—D".d (and possibly a few other
augmented dependence edges), when appropriate, to
the dependence graph of production P. (See below for
the definition of dependence graphs.)

We need to investigate a sufficient condition under
which the augmented dependence edge BY.b—C%.c
may be added to the dependence graph of production
P. 1t is obvious that the evaluation of the attribute
occurrence C®.c can be avoided if (1) C®.c is used
only for the computation of A”.a and (2) C®.c is used
only in one branch of the if expression. Furthermore,
the evaluation of any attribute occurrence X .x in
production P can also be avoided if X" .x is used only
for the computation of C®.c in production P.

In terms of attribute dependencies in a syntax tree,
an attribute occurrence X™.x is used only for the
computation of another attribute occurrence Y™.y in
production P if and only if Y™.y occurs in every path
from X x to an attribute instance of the start symbol
in the dependence graph corresponding to a syntax tree.
We will define the notion of “used only for” in what
follows.

Definition II1.1. Given a production P of an attribute
grammar, the dependence graph of P, denoted by DP,,

is defined as follows:

DP,={X".a—Y".b [X".a is used in the attribution
equation defining Y¥.b in production P}.

In DPP, nodes denote attribute occurrences in produc-

tion P and edges dependencies between attribute oc-
currences. The dependencies between attribute occur-
rence are derived from the attribution equations in
production P. An edge X”.a—Y".b means that the
attribute occurrence X".a is a parameter of the function
defining the attribute occurrence Y%.b in production P.

Definition II1.2. Given a production P, the downward
closed dependence graph of production P, denoted by
DCDP,, is defined-as follows:

DCDP,=DP,U{X".a—X".b|X? appears on the
right-hand side of production P, and there
is a production Q of which the symbol
X appears on the left-hand side and
X.a—>X.b is an edge in the transitive
closure of the graph DCDP}.

DCDPp is called IDPp-ANCAG in Kastens (1980). The
second part of the definition of DCDPp.implies that
X.a may be used, directly or indirectly, in computing
X.b in a syntax tree rooted at symbol X. Intuitively,
DCDPp includes the transitive dependencies among
attribute occurrences of symbols on the right-hand side
of production P.

Let S denote a set of attributes of a symbol X. X®.§
is a shorthand notation for the set of attribute occur-
rences {X%.a| acS}.

Definition II1.3. Given a production P and a set o of
attribute occurrences in P, UOF(P, «) is a set of at-
tribute occurrences in production P that is defined as
follows: Let Y™ be a symbol occurrence in production
P and a be an attribute of Y. Y".ae UOF(P, ) if (1)
Y™.ae o, or (2) for every attribute occurrence Z™.b in
production P such that there is an edge Y™.a—Z™.b
in DCDPp, we have Z".be UOF(P, ). If the symbol
occurrence Y™ is on the left-hand side of production
P, we further require that, for every production Q of
which the symbol Y appears on the right-hand side (let
the occurrence of Y in Q be denoted by Y¥), either Y¥.a
has no outgoing edges in DP, or there is a set of
attributes B of symbol Y such that ag B, Y?.ae UOF(Q,
Y¥.B), and Y™ .BCUOF(P, o).

Intuitively, Y™.ae UOF(P, o) means that, in any
syntax tree T that contains an instance of production
P, every path from the attribute instance Y™.a to an
attribute instance of the root of T in the dependence
graph corresponding to T must pass through an attribute
instance of « in the same instance of production P. In
the above definition, the first condition means that
acUOF(P, o). The second condifion may be explained
for two cases: First consider the case where Y™ appears
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on the right-hand side of production P. Since DCDPp
includes all downward transitive dependencies of Y™,
Y™.ae UOF(P, o) if all successors of Y™.qa in DCDPp
are members of UOF(P, ) (because every path from
Y'™.a to an attribute instance of the root in every syntax
tree must pass through one of the successors). On the
other hand, when Y™ appears on the left-hand side of
production P, we need to consider the upward transitive
dependencies of Y™ .q, that is, all possible dependen-
cies via the ancestor productions of P in all syntax trees.
Note that this piece of information is not included in
DCDPp. However, it suffices to prevent Y™.q to reach
an attribute instance of the root symbol without passing
through an element of UOF(P, ) in all syntax trees.
There are two ways to satisfy this requirement: in any
production Q that includes the symbol Y on the right-
hand side (let Y? denote an occurrence of Y on the right-
hand side of Q), either Y¥.q has no outgoing edges in
DP, or there is a set of attributes B of symbol Y such
that, in production Q, Y¥.ae UOF(Q, Y?.B) and, in
production P, Y. BCUOF(P, o). Because acUOF(P,
o), we further require that a¢ B in order to prevent a
loophole.

We can easily verify the following four properties
of the UOF sets: (1) UOF(P, ¢)=¢; (2) acUOF(P, o);
(3) UOF(P, d)oUOF(P, B)CUOF(P, onof); and (4) if
oacUOF(P, B) and BCUOF(P, 9), then acUOF(P, 7).
The ComputeUOF algorithm in Fig. 1 computes the
UOF for each production P and each set o of attribute
occurrences. The ComputeUOF algorithm is a straight-
forward translation of the definition, leaving many
possibilities for improvement. In particular, Compu-
teUOF may make use of the four properties. For the
sake of simplicity, we present the most straightfor-
ward algorithm in Fig. 1.

Having defined the UOF sets, we will describe
exactly the augmented dependence edges that are added
to DPp. Consider an if expression in an attribution
equation in a production P, say A®.a = if g (BV.b, ...)
then h (C%.c, ...) else f (DP.d, ...). Let o be a subset
of attribute occurrences that appear in the then
branch of the if expression but not in the predicate
and the else branch satisfying acUOF(P, {A®.a}). We
add an augmented dependence edge X" .x—Y™.y
to DPp, for each attribute occurrence X" .x that
appears in the predicate and for each attribute occur-
rence Y".ye UOF(P, o). Similarly, let 8 be a subset
of attribute occurrences that appear in the else branch
of the if expression but not in the predicate and the then
branch satisfying ScUOF(P, {A®.a}). We add an
augmented dependence edgé X™.x—Y™.y to DPp, for
each attribute occurrence X™.x that appears in the
predicate and for each attribute occurrence
Y"W.ye UOF(P, B). After adding these augmented

dependence edges, we may apply Kastens’s algorithm
(Kastens, 1980) or other similar algorithms (Yang and
Cheng, 1996) to compute an evaluation order for each
production rule.

2. Generating Evaluation Plans

After a feasible evaluation order is determined,
we need to generate an evaluation plan for each
production rule. A plan consists of a sequence of
instructions. There are four kinds of instructions: an
if-then-else instruction, (guarded or unguarded) evalu-
ation of an attribute occurrence, an n'* visit to a child
node, and a visit to the parent node. We modify
Kastens’s method (Kastens, 1980) for generating evalu-
ation plans as follows: The instruction for evaluating
an if predicate is inserted immediately after those for
evaluating all the attribute occurrences used in the
predicate. The evaluation of an attribute occurrence
is also controlled by the guard of the attribute occur-
rence. Finally, the instruction to evaluate one of the
two branches of an if expression is selected according
to the outcome of evaluating the predicate and is placed
where the attribute occurrence on the left-hand side of
the attribution equation is in the evaluation order.

Example II1.4. An example attribute grammar is shown
in Fig. 2 (a). There are six production rules and 12
attributes. Figure 2 (b) is DPp,, which will be used
in our discussion. Note that there is an if expression
defining the attribute occurrence Y.e in production P3.
We will examine the production P3, the downward
closed dependence graph of which is shown in Fig. 2
(c). The bold edge k—j represents a downward tran-
sitive dependence. Note that the upward transitive
dependence, represented by the edge g—f, is not in-
cluded in DCDPps. Consider the else branch of the if
expression. Z.j is the only attribute occurrence used
in that branch. Z.je UOF(P3, {Y.e}) because the only
outgoing edge from Z.j in DCDPpy is directed toward
Y.e and Y.ee UOF(P3, {Y.e}). Since Z.je UOF(P3,
{Y.e}), we will add an augmented edge from Z.A to each
attribute occurrence in UOF(P3, {Z.j}). We will show
how to compute UOF(P3, {Z.j}). (Computation for the
then branch is similar.)

According to the definition of “UOF sets,
Z.je UOF(P3, {Zj}). Furthermore, Z.ke UOF(P3, {Zj})
because Z.k has only one outgoing edge in DCDPps,
and that edge is directed toward an attribute occurrence
(namely, Z.j) already in UOF(P3, {Z.j}), and because
the symbol occurrence Z appears on the right-hand side
of P3. Next consider whether Y.fe UOF(P3, {Z.j}).
Similarly, Y.f has only one outgoing edge and that edge
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is directed toward an attribute occurrence (namely, Z.k)
already in UOF(P3, {Z.j}). Note that Y occurs on the
left-hand side of production P3. Thus, we need to
examine all productions of which Y appears on the
right-hand side, that is, we need to examine production
P2. Because Y.f has no outgoing edges in DPp,,
Y.fe UOF(P3, {Z.j}). Finally, we consider whether
Y.ge UOF(P3, {Z.j}). Note that Y.g has no outgoing

edges in DCDPps, but that Y.g has an outgoing edge
in DPp,. In this case, we need to find a set B of Y’s
attributes such that g¢ B, Y.g e UOF(P2, Y.B), and
Y.BCUOF(P3, {Z.j}). We may let B={f} and verify
that Y.ge UOF(P2, {Y.f}). Thus, we conclude that
UOF(P3, {Z.j})={Zj, Z.k, Y.f, Y.g}. (Similarly, we
may compute UOF(P3, {Y.e}), which is {Z.h, Z.i, Z ],
Z.k, Y.f, Y.g}.) An augmented edge from Z.h to each

Algorithm: ComputeUOF

/* UOF is a 2-dimensional global array, indexed by P and a, */

/* where P is a production and a is a set of attribute occurrences of P. */
UOF[P, a] := a for all P and all sets o of attribute occurrences of P initially.
/* Note that if o is not a set of attribute occurrences of P, UOF [P, o] := @ */

repeat
changed = false

for each production P do

for each set o of attribute occurrences of P do

new := ComputeTentativeUOF (P, )

if new # UOF [P, o] then
changed .= true
UOF [P, a} := new

end if

end for
end for
until changed = false

function ComputeTentativeUOF (P, c) return a set of attribute occurrences of production P
/* P is a production, and « is a set of attribute occurrences of P . */

new = UQF [P, a]
repeat -
result = pew
for each attribute occurrence Y™ .q in P do

if for all attribute occurrences Z™.b in P such that there is an edge
Y™ g —Z™.b in DCDPp, we have Z™.b € result then

if Y™ is on the right-hand side of P then

new :=newu { Y™ g }

else /* Y™ is on the left-hand side of P */

addflag = true

for each production Q of which the symbol ¥ occurs on the right-hand side do
for each occurrence Y9’ of the symbol Y on the right-hand side of @ do
if not (Y¥).a has no outgoing edge in DP,, or there is a set B of
attributes of symbol Y such that a € B, Y¥).a € UOFI[Q, YY).B]

and Y*).B CUOF [P, a))

then addflag := false end if
end for
end for

if addflag = true then new = new u {Y™)a }

end if
end if
end for
until result = new
return result

Fig. 1. The ComputeUOF algorithm.
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————

(2) An attribute grammar
P1: S —X Sa:=Xb
Xc:=Xd
P2 XY Xb =Ye
Xd:=Yg
Yf=Xc
P3: Y—>z Yg:=3
; Ye:= ifZh =0thenZ.i else Z.j
) Zk:=Yf
P4: ZHW Zj:=2Zk
' Zi:=2
Zh =Wm
P5: W—0 Wm =0
P6: W—1 Wm =1
() DPp,
X b
P2 i T
e
(C) DCDPpg

P3:

N ¢
I -—

J

g

e —3> O

W=a-q

Fig. 2. An attribute grammar, DPp,, and DCDPp;.

attribute occurrence in UOF (P3, {Z.j}) is added to

DPps.

A feasible evaluation order for production P3 is

Z.h, Z.i, Y.g, Y.f, Zk, Zj, and Y.e.

Based on this

evaluation order, there are two visits to ¥ in production
P3 from the parent production instance in a syntax

tree:
(1) The first visit consists of the following seven
steps:
(i) Reset the guards of all attribute occurrences

(i1)

in UOF(P3, F), where F is the set of at-
tribute occurrences of ¥ whose guards are
false.

If the guard of Z.h is true, visit the child
Z for the first time, evaluating Z.A. Upon
returning from the visit, reset the guards of
all attribute occurrences in UOF(P3, F),
where F is the set of attribute occurrences
of Y whose guards are false.

(iii) If the guard of Y.e is trué, evaluate the

(iv)

(v)

(vi)

predicate Z.h=0.

If the guard of Y.e is true and the result in
step (l.iii) is true, reset the guards of Z.j,
Z.k, Y.f, and Y.g; otherwise, if the guard of
Y.e is true (and the result in step (1.iii) is
false), reset the guard of Z.i.

If the guard of Z.i is true, visit the child Z
for the second time, evaluating Z.i. Upon
returning from the visit, reset the guards of
all attribute occurrences in UOF(P3, F),
where F is the set of attribute occurrences
of Y whose guards are false.

If the guard of Y.g is true, evaluate Y.g.

(vii)Return to the parent production.
(2) The second visit consists of the following five
steps:

@
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(ii) If the guard of Z.k is true, evaluate Z.k.

(iii) If the guard of Z.j is true, visit the child Z
for the third time, evaluating Z.j. Upon
returning from the visit, reset the guards of
all attribute occurrences in UOF(P3, F),
where F is the set of attribute occurrences
of Y whose guards are false.

(iv) If the guard of Y.e is true and the result in
step (1.iii) is true, evaluate the then branch
of the if expression and assign the result to
Y.e; otherwise, if the guard of Y.e is true
(and the result in step (1.iii) is false), evalu-
ate the else branch of the if expression and
assign the result to Y.e.

(v) Return to the parent production.

Steps (1.i) and (2.i) are intended to propagate the
false guards of the attribute occurrences of the left-
hand-side symbol of a production to the guards of other
attribute occurrences when a symbol instance is visited
from its parent. Since the set of false guards of a symbol
instance is not known until evaluation time, the two
steps are implemented with a function that maps each
subset of attribute occurrences of the left-hand-side
symbol of a production to a set of attribute occurrences
in the production. This function is computed during
evaluator generation and is represented as a table for
each production. (The function may be simplified. See
Section II1.3.)

3. Discussion

Note that we have assumed that each attribute
instance comes with a guard. The guard is tested
before evaluating the attribute instance. It should be
obvious that the evaluator generator can compute
the exact set of attribute occurrences that need the
guards. Hence, there is no overhead for the attributes
that are not involved in conditional evaluation. For
instance, in the example in Fig. 2, the attributes S.a,
X.b, Y.e, Z.h, and W.m are always evaluated. They do
not need guards at all. Based on this observation, the
functions used to propagate the false guards may also
be simplified.

Adding augmented dependencies to DP may ren-
der the attribute grammar unevaluatable by a simple
multi-visit evaluator. In this case, we may apply the
conditional evaluation method to only a subset of the
if expressions in the grammar. This naturally leads to
the problem of selecting a “maximal” subset of if
expressions for conditional evaluation. This problem
seems very complex since it is remotely related to a
problem raised by Kastens (1980): selecting a proper
set of augmented dependencies to make an /-ordered
attribute grammar ordered.

IV. The Lazy Evaluator

An evaluator generator generates plans for pro-
duction rules; an evaluator needs to implement the four
kinds of instructions in the plans. An if-then-else
instruction has the form if v then reset(A) else reset(B),
where v is a temporary boolean variable and A and B
are two sets of attribute occurrences. When v is true,
the guards of the attribute occurrences in the set B are
reset (that is, their values become false). Similarly,
when v is false, the ‘guards of the attribute occurrences
in the set A are reset. Initially, the guards of all the
attribute instances in a syntax tree are set to true.

Before evaluating a guarded assignment to an
attribute occurrence, say X® g, the evaluator first checks
the associated guard. The assignment is evaluated only
if its guard is true. -

For visit-parent or visit-child instructions, we will
refer to the fragment of a syntax tree in Fig. 3. Let
X be the symbol instance on the left-hand side of
production instance P. Let Q be the production instance
of which X appears on the right-hand side. Let F be
the set of attributes of X whose guards are false when
the evaluator executes instructions in the production
instance P. When the evaluator executes a visit-parent
instruction in the production instance P, the evaluator
resets the guards of the attribute occurrences in UOF(Q,
X.F) in production Q. On the other hand, when the
evaluator executes a visit-child-X (for the nth time)
instruction in the production instance Q, the evaluator
knows the set of attribute instances of symbol X that
are computed during the nth visit to X. (This piece
of information may be computed by the evaluator
generator (Engelfriet and Filé, 1982).) The evaluator
skips the visit-child instruction if the guards of all
the attribute instances in this set are false. Only if at
least one of these guards is true will the evaluator pay
a visit to child X. However, it will reset the guards

Fig. 3. Symbol X as a child and as a root.
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Fig. 4. The syntax tree for the sentence 0.

of the attribute instances in UOF(P, X.F), where F is
the set of attribute instances of X whose guards are
false.

Example IV.1. The syntax tree for the sentence “0”
is shown in Fig. 4 according to the grammar in Fig.
2. Since Z.h=0 and Z.je UOF(P3, {Y.e}), it is not
necessary to evaluate Z.j and all attribute instances in
UOF(P3, {Z.j}). We have shown that UOF(P3,
{Z.jV)={2j, Z.k, Y.f, Y.g}. Furthermore, UOF(P2,
{Y.fH={Yf Y.g Xc,X.d} and UOF(P1, {X.c})={X.c,
X.d}. Hence, the attribute instances X.c, X.d, Y.f, Y.g,
Z.j, and Z.k are not evaluated by the conditional evalu-
ator. (Actually, the second visits to production in-
stances P1, P2, and P3 are all skipped.) By contrast,
a traditional evaluator will evaluate all attribute in-
stances in the syntax tree.

V. Conclusion

We have proposed a new conditional evaluation
technique for simple, multi-visit attribute-grammar
evaluators. This technique makes use of the non-
strictness of the conditional equations in an attribute
grammar. Unnecessary or infeasible evaluation is
omitted; hence, both evaluation time and storage for
attribute instances are reduced. This technique may
be used to handle exceptions in an attribute grammar,
subexpression ordering, and declarations.

It would be interesting to combine our technique
with Boyland’s conditional attribute grammars. Boyland
focuses on the false circularity due to the strict treat-
ment of the nonstrict conditional constructs in tradi-
tional attribute-grammar systems. Our technique in-
stead attempts to re-arrange the evaluation order so that

unnecessary evaluation is avoided. Combining the two
techniques may yield more powerful and efficient at-
tribute evaluators.
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