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ABSTRACT

The reliability of structures in the presence of uncertainty has been a crucial factor in their analysis
and design. A typical example of system stochasticity problems is the spatial variation of the material
property. Indeed, the primary focus of this study was to derive the stochastic stiffness matrices for a
truss and a beam element, so that the conventional finite element method could be utilized to evaluate
the response variability of a structure whose material property exhibited spatial random varnation.

A structural element is divided into several sub-elements whose number depends on the scale of
fluctuation in a random field. In each sub-element, the elastic characteristics are represented by the local
“spatial average” of the field. Upon application of static condensation, we eliminate the additional degrees-
of-freedom stemming from the division of sub-elements to produce a new element stiffness matrix whose
size is equal to the conventional one. The global stiffness matrix and system equation are then established.
With the aid of the first-order perturbation method, we obtain the nodal displacements, which consist not
only of the deterministic component, but also of the random component. Numerical examples show that
this study provides a more tractable procedure for determining the response variability of a complex

structure, with good accuracy and computational efficiency.
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. Introduction

Modern structural systems require stringent reli-
ability standards. The reliability of structures in the
presence of uncertainty has been a crucial factor in their
analysis and design. A typical example of system
stochasticity problems is the spatial variation of the
mechanical properties of materials, such as the Young’s
modulus and failure strength. In recent years, this has
been an issue of great interest to many researchers. A
small number of analytic solutions to such problems
are available, mainly for simple structures (Shinozuka,
1987). Although the same concept can be extended
even further to deal with more complicated structures,
the associated analytical formulas become rather cum-
bersome (Kardaraet al., 1989). Therefore, the majority
of research work in this area has focused on developing
various stochastic finite element methods (SFEM) to
obtain solutions numerically.

In an earlier work on SFEM (Handa and Ander-
son, 1981), material properties were deemed as random
variables, and structures could be dissected in such a
manner that the essential variation of material param-
eters could be considered. In a more practical repre-

sentation, the elastic modulus was regarded as a sto-
chastic process (Hisada and Nakagiri, 1980, 1985;
Deodatis, 1990a, 1990b). The stochastic stiffness matrix
was obtained by (1) using the form of the conventional
stiffness matrix with the elastic modulus being replaced
by a sum of a deterministic term and a random one,
or (2) adding the random parts of the stiffness matrix
to the conventional stiffness matrix. These measures
may not be exact since, due to the material variation
within an element, the conventional shape function
cannot be employed to derive the stochastic stiffness
matrix (Dasgupta and Yip, 1989).

Other works on the same subject are also found
in the literature. One study found that the continuous
random field could be taken care of by means of local
or weighted integrations to construct the element stiff-
ness matrix (Takada, 1990). In consequence, the ran-
dom field is transformed into a problem involving only
a few random variables. This leads to an improvement
in computational efficiency. An alternate method for
computing the component of the stochastic element
stiffness was proposed by Spanos and Ghanem (1989).
Their work was based on the orthogonal expansion of
a stochastic process. The expansion consists of the
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projection of the process onto a space of orthogonal
random variables. To apply the method, however, it
is necessary to determine, analytically or even numeri-
cally, the eigenvalues and eigenvectors of the associ-
ated convariance function.

In view of the lastest developments in SFEM, this
study intends to provide a more systematic method for
evaluating the response variability of a structure whose
Young’s modulus is assumed to constitute a homoge-
neous one-dimensional and univariate stochastic pro-
cess. In this connection, the stochastic element stiff-
ness matrices of a truss and a beam are derived. An
element is divided into several sub-clements whose
number depends on the scale of fluctuation of the
process. In any sub-element, the elastic characteristics
are represented by the local “spatial average” of the
process (Vanmarcke and Grigoriu, 1983; Zhu et al.,
1992). Consequently, the stiffness matrix of the sub-
element is obtained. Using the technique of static
condensation, we eliminate the additional degrees-of-
freedom stemming from the division of sub-elements
to produce a new element stiffness matrix whose size
is equal to the conventional one. The global stiffness
matrix is then established by the well-known direct
stiffness method. The stiffness and the displacement

matrices in the system equation are expanded with -

respect to the probabilistic variables which reflect the
material spatial variations, i.e., local averages of all
sub-elements. Upon application of the first-order per-
turbation method (Baecher and Ingra, 1981; Hisada and
Nakagiri, 1981), the nodal displacements are deter-
mined. The covariance of responses is a function of
the covariance of the local spatial averages. When an
appropriate variation function, which depicts the de-
pendence of covariance of the spatial averages on the
average interval size, is selected, all the random terms
involved in the response variability are obtained.

Il. Truss Element

Consider the truss element in Fig. 1 with a de-
terministic axial load and having a modulus of elas-
ticity varying randomly along its length, which is given
by

Ex)="E(1+gx), @

where E(x) and g(x) are one-dimensional homogeneous
stochastic processes, and E is €[E(x)]. Note that g[*]
is the expectation. E g(x) represents the deviation of
the modulus of elasticity around its mean value. The
function g(x) is a zero-mean stochastic field with
autocorrelation fanction R,,(&).

The conventional derivation of the stiffness matrix

u E(x u
N () etl
| ] —_— X
X X
e A, L e+l
Fig. 1. A truss element.

starts with the assumption of a displacement function,
ie.,
w(x)=N ug+NoyUess (2)

in which the shape functions N, and N,,; are given by

N=(x.1—x)/L Ne+1=(x'_xe)/L' 3
However, in the present case, Eqs. (2) and (3) are not
appropriate because of the variation of the elasticity

modulus. ‘
To tackle this problem, we introduce the concept

- of a local average. The i-th local average of g(x) is
" defined as

xi+—l—
Zw=t [ star, @
"3

where I=length of the local average, and x;=centroid
of the length. It is shown that

E[Bx)1=0 Var[ Bx)1=02+7(D), (5)

where 02 is the variance of g(x), and (/) is the variance
function of g(x), which measures the reduction of the
point variance, 0z , under local averaging. The variance
function is related to the autocorrelation function as
follows:

!
Y0=2 [ (1-%) R, &/ o3de. ©)

Depending upon the scale of fluctuation of the process,
this element is further divided into N sub-elements.
The elasticity modulus in each sub-element may be
represented by a local average of E(x), E;, which is
a specific value of a random variable. By this measure,
the shape functions similar to Eq. (3) can be used. Note
that L in Eq. (3) is replaced by [ (I=L/N) under this
condition.

The stiffness matrix of the i-th sub-element in the
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e-th element is

) t
o (=1 [~ 1
[Kel]‘u 11 ] Ei[ 11 ]Adx
fm

EA[_1—1]+FAE[_1—1]

I 1-1 1] 1 1 15

(7

The first and the second terms in Eq. (7) are the
deterministic (conventional) and random components,
respectively.

When N=2, the assembled element.stiffness matrix
is

ol a -G 0
T_Cl CG+(1+g) —(1+3) |,
0 -(1+73) (1+7%)

in which C;=1+7%g;. Using the technique of static
condensation, we eliminate the internal degrees-of-
freedom to yield a new element stiffness matrix, which
has the same size as does the conventional one. The
outcome is

G (1+73)

21 FA o[ 1-1] oo
Ra=Fr ol [ 7] a=chiaiey ®

It is not difficult to show that the general form of the
above equation can be written as

Cy-1(1+gw
Cy_1+(1+7gn"

)

21— EA 1-1] .o
Ka=EA cy|_1 1] o=

lll. Perturbation Method

When all the element stiffness matrices are de-
termined, we combine them to find the global stiffness
matrix. After the boundary condition is imposed, the
equilibrium equation is

[K1{U]=[P]o, (10)
in which [K] is the stiffness matrix, [U] is the free or
unknown displacement vector, and [P] is the external
force vector. It should be noted that [K] involves a
set of random components, i.e., all the local averages
in each element.

Equation (10) can be solved by using the first-
order perturbation method. The stiffness matrix is
expanded in a Taylor series about the mean value of
local average g,;. The symbol g, is used in place of
g, in order to indicate that this local average is asso-

ciated with the e-th element. When the first-order
approximation is adopted, we have

Ne N
K]:[K]|E+;Zl) JK]

E*g,;. an

8.,

The displacement vector is expanded in the same way
Substituting two expansions into Eq. (10) and simpli-
fying them, we have (Lu, 1991)
Ne N

W= 10k~ XKL K Whega/N,  (12)
in which [U]y=mean displacement vector, i.e., without
consideration of the random property; [K]o= conven-
tional stiffness matrix; and [Kjff) is a sub-mafrix of [K],
and consists of the components contributed by the e-
th element.

The covariance of Eq. (12) is obviously a function
of the covariance of the local averages, which is ex-
pressed as (Vanmarcke and Grigoriu, 1983)

Cov(g.i> 85)

[

O;

|«

[ B3Y(By) — B2Y(B)) + B3Y(B,) — B3Y(B3) 1,

_1
2y (13)

=

where B, are the local distances defined in Fig. 2.
Therefore, with a specific autocorrelation function,
Rgg(é), of the stochastic field, we can calculate the
covariance of displacements upon application of Egs.
(6) and (13).

Similarly, on the basis of first-order approxima-
tion, the stress vector of the f-th element is

N -
[SA=[57,+ % (K, Za/N) T U)o

X 4
element f

o 1
_ﬁ £ -sfb-—elementj

element e
sub-element i

L Yl i
~ e ={ _._l 1

for—

e

i

o

-..—BO
1

BZ
._.BB_——a

Fig. 2. Definition of local distance.
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Ne N
— LXK LK, ' KL (Ul B /N ),
(14)

where [ff]0 =mean (conventional) stress vector,
[ K], =deterministic component of [ K 71, and [T{]=trans-
formation matrix of displacement. It is not difficult
to calculate the statistical properties of the stress vector
in Eq. (14).

IV. Beam Element

A beam element is divided into N sub-elements.
The stiffness matrix of the i-th sub-element in the e-
th element is

12 6 —-12 6l
1 El 4. —-| 6 4?-61 2P
= 0 1 ; y
(Kl=S5-(1+3)|_ 15 o g | 05
6l 2% -6l 4P

in which 7 is the moment of inertia. On the basis of
the condensation technique, the stochastic stiffness
matrix for a beam element can be derived.

Because of its algebraic complexity, the deriva-
tion is accomplished by applying MACSYMA
TM(1988). The element stiffness matrix turns out to
have the following form:

N
[Kl= X ®...R R R .. ROIK (/D + D),

(16)
in which
12
_ 6(2p— 1)l 4+12 DI
o1 NYEI 2p- 1) [4+ 12p(p- 1)
[ Kp1=25
£ -12 —62p— 1)
12N — ]l [ (6N —4) +
62p-1f 120V -p)(p-1)
Rp=1+§p (18)
11 R
D1=i=1]=1]¢1Rj N=2, 3, ... 19)
s 2 2 2 2 2
D= k§1 = AR+ 2) Ry - - Ry iR Rgw1 - - Ry 1Ry

Equations (16)-(20) can be further illustrated. For
instance, if N=3, we have

Dy =R3R; + RiR; + RiR3 . (21)
InEq. (20), kis aninteger which indicates the seperation
distance between two linear terms, i.e., R, and R .
When k=1, we have
N=k
El (126 +2) (R} ... R}) = 14R\RyR; + 14RIR,R,; .
g=
When k=2, we have
N=k
El (12k>+2) (R} ... R%)=50R,R?R; .
d=
As a result,
D, = 14R,RyR? + S0R,R3R; + 14RR)R; . (22)

If the element in Eq. (16) is denoted as s(i, j), then

sLy=EL, 12R, R3R] + 12RIRRS + 12RIRR,
T 3 D, +D, .
1 (23)
Similarly,
so.n=NEL, 6R,RIR; + 18RIR,R; + 30RIRZR,
T L2 Dl + D2 .

(24)

When all R, are equal to 1, i.e., the deterministic case,
Eq. (16) is nothing but the conventional stiffness of
a beam element.

sym
a7
12
2 _[ 12N ~ ]l [4+12(N—p) 2
6(2p-1) WN-p+1

V. Nodal Displacement

The system stiffness matrix is associated with all
the pertinent local averages in the elements. Expansion
of this matrix leads to

WRyskrr- RY). (20)
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[K]= [I<]|E+ZZ ] L‘E 8ei
2
d
—mp+ E i AR emeg @)
d 4 ]
(K], _2N*-2N+2-FG) , ;%1 _ 1 1% =
2. le= N [k N4[Kg(l)], A = 2400 mm2 M1 W Vi
(26) 1=2%10"8 mm~4 P1
where [ K.(?)] is from Eq. (17), and F(i) is a function
of N (Lu, 1991). s
The perturbation technique also produces the first- < ,
order approximations of nodal displacements and X 7
stresses: f3 f4
2
o &K L
U= W~ X KI5 eUb2s  (27)
fl
L,Ex),A
[5,1=[5,],+ }:—— e 25 [T U,
Fig. 3. Frame and truss structures.
_ -1 3[K]
ZZ[Kf LT (Kol UL 220) 6= lim 1y(). (29)
(28) IS
VL. Numerical Examples It can also be obtained from
Two structures, a frame and a truss, shown in 9=j’ Ry (v/02dT. (30)
Fig. 3, are analyzed. Table 1 lists five types of

= oo

autocorrelation functions (AFs) and the corres  ponding

variance functions. The degree of fluctuation of a
process is usually measured by the correlation distance,
or the scale of fluctuation, which is defined as

The respective correlation distance is also shown
in Table 1. Under a specific correlation distance,

e.g. 6=5, various AFs can be delineated as shown

Table 1. Types of Autocorrelation Functions

TYPE Rgo(7) Variance Function Y(L) ]
o |ti<br 1 |L|<br2
A b b b
0 | 7|z b2 m(l_‘q_Ll) |L|2b/2
T L
op1-1) (-1, ILisb
B ITle b
0 ﬁ(l—ﬁ) |L|>b
[7]2b
)2
(1 3(b)) 2 3% +2(b6+b4L2) b
¢ (1+( 7)2 3 L* L +L%) 2L +?) /6
o2 1 2% |L| P ®d  b¥n(b*+1%)
D ¢ 1+(‘_t)2 |L!tan T+ 2 72 brw
2 b 'y, L 1Z] T
E ozexp(— ( ) ) L2( 1+Exp( (b) )+b/7_rErf(b ) 1283

Erf(x)= fExp( 2)dt

0
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in Fig. 4. In the following calculation, the coef-
ficient of variation (c.o.v) of E(x) is equal to
0.1.

1. Number of Sub-Elements

The frame is analyzed first. Figure 5 shows,
with different numbers of sub-elements, N, the c.o.v.
of nodal displacement U; under autocorrelation
function C. Rapid convergence is observed. To ex-
amine the effect of different random fields on the
selection of N, Fig. 6 presents the N required to
reach a fairly convergent solution under different
types of AF. With an increase of 6, the system be-
comes less random. Therefore, N is smaller. In ad-
dition, it is seen that the type of function has some
influence, but that this influence is not as great as
that due to the non-dimensional correlation distance,
O/L.

The number of sub-elements needed to calculate
the variability of the internal force, M, is illustrated
in Fig. 7. It shows a similar tendency to that in Fig.
6 although the number required is generally larger.
Both figures reveal that the number of sub-elements
used in the analysis is acceptable.

%

R@®

0.10
-
-
< o008t Type C
-
'% vvv\‘uu'ulnu:u-u:
< 006 o %E
~
3
S 004 + +/ ——n=1
3 Y x-n=2
A f —a—n=4
s 002 rp —o— proposed
)

0.00 L . :

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Non-dimensional correlation distance (THETA/L)

Fig. 5. c.o.v. of nodal displacement (frame).

8 r -o—TYPE A
—+—TYPE B
6 & —-x—TYPE C
—-=-TYPE D

Sub-element Number N

0 1 L 1 1 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Non-dimensional correlation distance (THETA/L)

Fig. 6. Number of sub-elements required in calculating displace-
ment variability.

10
—o—TYPE A
= § I ~ —TYPE B
E ~x~TYPE C
S ¢t —=—TYPE D
5]
IS
Q
g 4
e
)
N
“ 2 \x—— 3]
0 . . . . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Non-dimensional correlation distance (THETA/L)

Fig. 7. Number of sub-elements required in calculating moment
variability.

It is noted herein that N is always equal to one
in analyzing a truss.

2. Response Variability

Figure 8 presents the c.0.v. of nodal displacement
U, of the frame under a different AF. The displacement
variability increases with 8. For a particular value of
6/L, the variability resulting from function C is slightly
larger than that resulting from function D. This may
be explained by Fig. 4, in which the absolute value of
function C is greater than that of function D. This
implies that the material variation represented by
function C is more significant. As a result, the higher
the correlation of material variation is, the greater the
response variability is. However, it should be pointed
out that the discrepancy of the various response vari-
abilities is not more than 0.01. Thus, the effect of 6,
compared to that of the type of AF, is certainly more
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Fig. 8. Displacement variability under a different AF (frame).

decisive.

The c.0.v. of member force M; of the frame under
a different AF is shown in Fig. 9. The similarity
between this figure and Fig. 8 is obvious.

When it comes to analysis of the truss, Fig. 10
depicts the c.o0.v. of nodal displacement U, under various
AFs. The outcome is consistent with the previous
discussion for the frame.

3. Accuracy

The results on the basis of the proposed sto-
chastic stiffness matrices have been compared with
those from a Monte Carlo simulation. Figures 11 and
12 show the variabilities of the nodal displacements
(U;, Uy) and the member forces (M, Vi, P;) of the
frame, respectively. In each figure, two methods,
namely the present SFEM and the simulation method
are employed. The comparison indeed shows the
accuracy of the present method. It should be noted
that 1000 samples were used in the simulation an-

0.10
I
=
& o008 |
S
o
<
0.06
g
5] .
9 &
S 004 ¢ .
S / —+ Type A
a0 —o—Type B
Q: 002 + —o—Type C
= ——Type D
0.00 . . . . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Non-dimensional correlation distance (THETA/L)

Fig. 9. Moment variability under a different AF (frame).

010 ---—— - ,,l
!
~ H
N i
S 008 |
~
4 4
< 0.06 | o«k@&##t‘f&
— s 000 b= &ooooooooood -
3 /o/o" dﬁﬁj’_‘}T i
S 004 | Pl :; +- Type A ’
E : /; - Type B |
R -©-- Type C |
< 002 ¢t ~—Type D
o
0.00 . A . P
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Non-dimensional correlation distance (THETA/L)

Fig. 10. Displacement variability under a different AF (truss).
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~
&
= 0.08 -
~
3
S 006
Sy
Q
k: 0.04 Type C
S
< 0.02 Line : S.F.E.M.
Symbols : M.C. Simul.
000 .} i 1 A, " 1
0 0.5 1 1.5 2 25 3
Non-dimensional correlation distance (THETA/L)
Fig. 11. Comparison of the SFEM and the simulation method (nodal
displacements of the frame).
0.08 -
% Line : S.F.E.M.
o . . .
E 0.06 | Symbols : M.C. Simul. Type C al
[
Q
-
S o004
ey
Q -
I
S 0.02
<
0.00 o 1 = . t
0 0.5 1 15 2 25 3
Non—dimensional correlation distance (THETA/L)
Fig. 12. Comparison of the SFEM and the simulation method (mem-
ber forces of the frame).
alysis.

Figures 13 and 14 shows the c.o.v. of the nodal
displacements (U;, U,, Us, U,) and the member forces
(f1, f5) of the truss, respectively. Without the need of
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Symbols : ¥ C Simul. Type E
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010 ¥ yipe : SF.EX
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002 H
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Non-dimensional correlation distance (THETA/L)

Fig. 13. Comparison of the SFEM and the simulation method (nodal
displacements of the truss).

Symbols : ¥ C Simul Type E

Line : S.F.E.M.(N-1,2...)

C.0 V. of member forces

000 4 L L ' . L 1
0 05 1 15 2 25 3

Non-dimensional correlation distance (THETA/L)

Fig. 14. Comparison of the SFEM and the simulation method (mem-
ber forces of the truss).

any sub-element, i.e. N=1, the accuracy of the SFEM
is revealed. In fact, the proposed SFEM is even more
promising in analyzing a truss.

4. Computational Cost

The calculation was carried out on a DX2-66 PC.
The computing time using different methods is sum-
marized in Table 2. The time under column FEM refers
to that required in analyzing the structures without
consideration of material variation. The comparison
strongly demonstrates the efficiency of the proposed
SFEM in evaluating response variability.

Table 2. Computational Time of Various Methods

FEM SFEM (N) Simulation
(sec) (sec) Hr:Min:Sec
1 2 3 4 5 6
Frame 0.025 0.073 0.187 0.370 0.610 0.916 1.260 1:42:43
Truss 0.020 0.041 - - — — - 1:03:10

VIl. Conclusions

In this paper, a stochastic FEM has been proposed
to evaluate the response variability of structures whose
material property exhibits spatial random variation.
The main contribution has been in deriving an analyti-
cal or closed form stochastic element stiffness matrix.
In consequence, the system equation of any complex
truss and frame can be established in a systematic
manner. With the aid of the first-order perturbation
method, the variability of responses has been deter-
mined.

Several remarks are made as follows:

(1) The construction of the stochastic stiffness matrix
of a beam element requires division of the el-
ement. The division number mainly depends on
the correlation distance. The greater the distance
is, the smaller the required division number is.
The type of AF has some effect, but only when
the correlation distance is small.

(2) Although the accuracy of the proposed SFEM
has been demonstrated, this accuracy may de-
teriorate when the random field has higher
variance. However, this is primarily due to the
first-order approximation rather than to the
derived stochastic stiffness matrix.

(3) A numerical study has revealed that response
variability can be evaluated by the present method
with only minimal computational effort beyond
that required for the analysis of a deterministic
structure of the same size. Meanwhile, the com-
putational cost is drastically reduced if it is com-
pared with that required in the simulation method.
In the past, an ordinary structure could only be
solved by using the simulation method.

In conclusion, this paper has provided a highly
tractable analysis methodology for determining the
response variability of truss and frame structures. Its
solution accuracy and computational efficiency has
confirmed the feasibility of the present method in dealing
with this kind of stochasticity problem.
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