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SUMMARY

This project deals, on theoretical basis, with the buckling of a thin plate of or-
thotrbpic material under edge compression in two perpendicular directions. It is
solved here for three different sets of boundary conditions, The equation of buck-
ling of the plate is obtained by solving the general differential equation pertaining
1o the plate. From the condition that the constants of integration in this equation
must not all vanish simultaneously a functional relation free from any constants of
integration can always be found, which contains only the wvalue of the critical load,
the dimension of the plate and the elastic constants of the material. However, an
explicit solution of the critical load from the functional relaiion is generally not able
to re deduced and numerical solution has to be used.

The results are illustrated by calculating the coefficient of critical stress for a
plate of spruce. The values are plotted and discussed.

I. INTRODUCTION

The buckling of isotropic plates under edge thrust has been treated exhaustively
for various loading cases and boundary conditions. However, the anisotropic plates
have not been dealt with thoroughly in spite of their frequent occurence in practice
as stiffened or corrugated metal or as plywood. The values of buckling stress for
an orthotropic plate, loaded by compressive stresses in one direction, have been com-
puted by C.B. Ling and H.S. Tan [1] and R.C.T. Smith [2]; and E. Seydel [3] has
investigated of a simply supported orthotropic plate under shear.

In this project we consider a rectangular thin orthotropic plate of thickness h
subjected to an edge compression along its two principal directions as shown in Fig.
1. The four edges are assumed to be in three different sets of boundary conditions,
i.e:

1. All edges are simply supported,

2. Three edges simply supported and one edge clamped,

3. Two edges simply supported and two clamped.

When any one or both of the loads P; and P; are gradually increasing, it will
finally arrive at the critical condition that the flat form of equilibrium of the plate
becomes unstable and the elastic instability occurs. The loads corresponding to this
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condition are called as critical loads or buckling loads of the plate.

By assuming the plate buckles or deflects slightly under the action of critical
loads, an equation of the plate in this condition can be found from the differential
equation of the plate and its boundary conditions. This equation niust contain cer-
tain cocfficients or constants of integration so as to conform to the buckled shape.
Then from the condition that these coefficients must not all vanish the maguitude of
the required critical loads can be determined, for otherwise the equation would give

a flat form of equilibrium.

II. GENERALIZED HOOKE'S LAW

The generalized Hooke's law states that each of the six comporents of stress at
any point of a medium is a linear function of the six comrponents of strain at the
point, and conversely [4]. Expressed mathematically, we have the six strain-stress
equations of the type

Ex':Cll”x+€124y+c1f;ffz+C14Txy+6'151'yz'{'Clnfzx o
where e,...., Tzy,.... denote six components of strain, o,,...., Tzy,.... denole six
components of stress and ci,.... denote 36 elastic constants of the material. If we
denote I' as the strain column vector, T the stress column vector, and C the coef.

ficient, matrix, then Edq. (1) can be written in a matrix equation as
I'=CT

in which

Do
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The relations which ensure the existence of the strain energy function are:

Crs=csy (7 s=1,2, ....,6) (4)
and the number of elastic constants is then reduced from 36 to 21.

For an orthotropic material which possesses at each point three planes of elastic
symmetry at right angles to each orther, in taking these planes parallel to the co-
ordinate planes, the following 12 coefficients must vanish.

Ci1= €15 €16 ™= €20 €35 Cag == C3a == Cy5 = C36 = €45 = C46 = 35 =0 (6)
Thus the number of elastic constants for an orthotropic material reduces to nine
only and the Hooke’s law reduces to

B2 C e i ¢ 00 0 7 o 7
Sy o Ca Gz O 0 0 dy
€z Cii €z €3 0 0 O g2 i
fos | ] 0 0 0 cu 0 0 Tas (6)
Tyz 0 0 0 0 ¢ O Tyz
Toy A L0 0 0 0 0 ¢ J Lo,

in which
Crs=c¢Csr (¥, s=1,2, 3) (7)

The moduli along principal directions, i.e. direction perpendicular to planes of
symmei:ry, can be obtained as follows:

If we suppose that all the stress components vanish except ¢, we have

Ex=C110% (8}
$0 that the modulus of elasticity corresponding to this direction is

P 1 (
"zx—' i or (= Ex ( .))
Similarly
EJ’: (/‘1} ’ Cia = E
{10)
-1 =1
E.= s3 C33= E,

In the same case the Poisson’s ratio of the contraction in the direction of ¥y to

the extension in the direction of x is

Ci3 Vxy (11
Vey=— or Cu=—- (11)
¥ C11 Ex

Similary
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and using the relations involved in Eq. (7,, we obtain the following identites

Yy _ Vyx

E. E, ’

Vy Ve .
Rr=% (13)
Vax _ Yaz

E. E.

If on the other hand we suppose that all the stress components vanish except

¢y, We have
(14)

Tey = CyTyy
so that the modulus of rigidity corresponding to the pair of directions x, ¥ is

. 1 1
Gry - i or = G.y (15)
Similarly
1 L
Gyz= Css y €357 G“
- (16)
L4 L
Gor™ G v 076

From the results shown in Egs. (9}, (10), (11), (12), (15) and (16) the Hooke’s

law for orthotropic material Eq. (6) can be rewritten as follows:
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II. MODULI ALONG ANY DIRECTION

Let x, ¥, 2 and &', ¥', 2’ be the coordinates of a point referred to two different
. [ systems of rectangular axes, of which the direction

. ‘R:LA yv; f cosines are connected to one another by the left
x’ L iy | " table.
o Lo om o It can be shown that the woduli of an anisotro-
—- '7——}_-;*‘#»——» ——--——  pic material in general corresponding to the second
A | 3 g 3

| ; ‘ systein of axes can be expressed in terms of those

corresponding to the first system of axes in the following forms [4].
For modulus of rigidity G,’.’, corresponding to directions ¥/, 2.
*l‘T:[Cm Cagye o vy Cinevoo] (2030, 2mgms, 2ngmy, lomis-F lsma, many=-mmn,, nals
¥y 2z

Lyly)t (18)
The right hand side of the equation represents a complete quadratic function of the
six arguments 20/0;,.... with coefficients ¢y, ¢a2,.... consisting of altogether twenty
one terms.
For modulus of elasticity E,' corresponding to direction x'.

L =low ¢ 1 (i md, L)’ (19)

B, Tl Gameen Cigye v vt 1, My, Ny, My, Ay, Bl J
Similarly, the right hand side of the equation represents a complete quadratic func-
tion of the six arguments /3,.... with coefficients cy,....

For Poisson’s ratio corresponding to contraction in direction ¢ (/, m, »n) at right
angle to x':

ir, 0¢ 0¢ , 09 09 0%
rr— 2. 09 _ ot . _ 09 oo
velil=— g [ o) T atmyy T o0 My tmyy T G Gmns)
00
where ¢ is the quadratic function in Eq. (19) of arguments /3,...., and the differ-

ential coefficients are formed as if these arguments were independent.

In the case of orthotropic material, if we take the first systein of axes (x, ¥, 2)
lie in the principal directions of the material it readily follows that the expressions
for the moduli reduce to as follows:

1 B 2 g 2,2 . . .
fenpy =4[—£— +*mﬁ:?i+ﬁéf“—zlglanl2m;; yE: —Zm;gm;]ng?’lg‘u'Eyj‘_Zilgil3lx{3 BEV:
bmatlima)® | (manstmama)® | (malstmla)®
+ G., + G,. + G, (21)
1 _h mi , m 2 Vay 2 Ve ap Vax | lmi
B/ ~E, T E, T E, THm g, m2mim g, —20h g 4G,
ming + mili (22)

6. Yo
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IV. DIFFERENTIAL EQUATION OF THE PLATE

Referring to Fig. 2, let T,S,N denote the components of stress-resultant, and
H, K the components of stress-conples, acting on unit length of the plate edge. To
neglect the body forces and for no surface traction, it can be readily shown {rom
statics that the following sets of equations of equilibrium exist by equating to zero
the sum of forces and moment components along three axes respectively. For force

components, we have

oT, 08, , 0w N Pw
ox oy N Dx? N“ay@x"o
2 2
0S, | Ty 0w -N —Q"l-”*--:-() (24)

oz oy Niogay ~ N5

ON,, 0N, Pw o Cw | o 0w 0w
ox oy " Tt o HS"@y&x {islax(’)y FT oy* =0

And for moment components,

OI“IL aK} —

or oy +N.;=0

0K, , oH,

(a:vl_*_ (a};-__Nl;:O (25)
2 2 2 “
Vw o Fw g Fw g P e

Kooy ™ Keoyort g T Hagye +
It is noted that corresponding to the deflection w at any point (x, ¥) on the
plane, the quantities

0w 0w
Py dx , oy’ d

denote the change of slope along dx, dy; and

0w 0w
ayor Y 0 gaoy IX
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denote the angle of rotation of dx, dy about the axes of ¥ and x respectively.

The differential equation satisfied by the deflection w of the plate may- be obtained
from Egs. (24) and (25) by putting the siress-resultants T, S, N and the stresscouples
H,K in terms of the deflection w.

As shown in Fig. 3, we have the displacement:

ow
==z o (26)
In the same manner
pes —g OW (27)
dy
The components of strain are:
e Ou 0w
*7 dx ox?
Z
z ‘-Jr« n )
M
X -
0
Fig. 3
ov __ 0w
€y == (’E/ r—“cay: ’ (28)
0w | Ov _ 0w
Tey ™= oy ' oz #ﬂzzaxﬁy
But from the generalized Hooke's law
e = Tz Iy
“x - Ex Vyx Ey
gy = gj; —VYxy E’; ’ (29)
— Txy
Txy' ny
By substituting Eqgs. (28} into Egs. (29) we thus obtain
. . (Pw 0w
e 1—'ny Yyx (6x2 +yyx0:l]2) ’
_ ZE, 0w 0w n
7y = "]»:‘—l;x." Vysx ( (’)'y" +ny 01:2 ) ’ (DO)
Tay ™ --22 Gpv 0210

Dxrdy
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from which

,h -

- o2 PE
K1=f__ , “osdz==Di( G Hvacys ) (31)
where
D= 12(1"‘ny V}':c) <32>
Similarly
oCw 0" .
K:: —D2<"a@2‘+1’xy azlg) (35)
where
I 77
Da= gy ) (34)
And
Hy=—H,~D, 0% (35)
1 2 36.%'(")1/ \OJ)
where
Do= PG j
= q., (36)

By neglecting the higher order terms and by making use of Egs. (24) and (25),
we obtain the deflection w of a thin orthotropic plate over the region R satisfics the
folloing equation

0w 4w 0w _ . 0w 0w 0%w. )
Dx'ax'4 +2K6.’I)26.{/_2+ D. 67‘/'(—’1‘1 Py +28161‘61}+T26y2 (37)
in which
K= ; (vayDi4v,yDs)-+Ds - (38)
In the case to be considered, we have
SLZSzZO
T1= _“Pl (39) ,
Tzz —Pg

where P; and P, represent the compressive loads per unit length. The differential
equation (37) then becomes

otw 0*w otw 0w 0w ,
Dl—(,;—x—; +2Kaxzay2+Dg oy +P1E+P2’5?F =0 {40)

V. BOUNDARY CONDITIONS

The boundary conditions of £=0 and x=a are assumed to be simply supported.
Whereas y=0 and y=>b are considered as simply supporied or clamped. The threa
cases to be considered in this project are:

1. All edges simply supported;

2. One edge clamrwed, three edges sirrply supported;
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3. Two opposite edges clamped, two opposite edges simply suprorted.

Along simply supported edges both the deflection and flexural couple are zero, i. e.

w=0 (41)
and

K1:K2=0 (42)
or by Egs. (31) and (33), we have

Pw | 0w _
Bz T oy =0,

(43)
0w 0w
oy® RELER T =0
For clamped edges it is obvious,
w=0 (44)
and
Qe -
(’)11/ =0 (l))
V1. GENERAL SOLUTION
The general solution of-Eq. (40) may he assumed in the form:
w=F(y) sinm;“’ (46)

in which F(y) is a function of y only and m is an positive integer. This clearly
satisfies the boundary conditions for x=0 and x=a, it gives

w=0,

g;ui -4 Vyz%g%
Then by substituting the assumed deflection (46) into Eq (40), we can readily obtain
a fourth order ordinary differential equation for tne function of F(y) such as

=0

¥ 2 /P m*rKy d?F | omPr? mn®D, _ ,

dyt +7D?<*27*" a® ) dy? +a2Dg< at ”P‘>"O (47;
From which, the general solution can easily be {found by the moest familiar method.
Thus

F(y)=ce " +ce®” --c; cosfy-tc, sinfy (48)
with
_ 1 {mwwK _ Py [Py m'wK \20 mDy o mwDy P2
e [(5 = ) P (D ) P
K P K b o (49)
1 [P mr’K g men Vo mPtD; p mPatDy B 0
Bﬂ'l;bs { 2 a +[< 2 u* ) a? < pr Pl)]}

The constants of integration ¢, ¢, ¢3, and ¢, must be determined in each particular
case from the boundary conditions along the edges y=0 and y=25.

From ezch set of boundary conditions, a functional relation called as the charac-
teristic equation always exists between « and (3, such that
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Sflab, Bb)=0 {50}

Since both a and B contain P, and P,, these characteristic equations can be used
to calculate the critical values of P’s provided the dimension of the plate and the
elastic constants of the material are known.

VII. DETERMINATION OF CHARACTERISTIC EQUATIONS

1. All edges simply supported

When the edges along ¥=0 and y=» are simply supported, the boundary condi-

tions are

0w 0w
w=0, aygT xyaxdﬁo

The boundary conditions along ¥=0 are satisfied if we take in the general solu-
tion (48)

=y 0 {51)
By replacing

2e:=A, ¢,=B (52)
the function F{y) given in (48) can then be written in the form

F(y)=A sinh ay+B sinfy (53)
i.e.

w= (A sinh ay-+B sin By) sin m;rx (54)

For y=b it follows that
A sinh ab+B sin b=0, (55)

A(az-—v,,ym:g )smh ab— B(62+ny )sm Bb=0

The condition that A and B not 51multaneously equal to zero should the determinant

of these equations becomes zero, thus

sinh ab sin b
9.3 =0 (56
(az—u”r%f )sinh ab (82+ ny )sm Bb (56)
On reducing we find
(a?+-P3?) sinh ab sin $b=0 (57)
Since neither the factor a?--#? nor sinh ab vanishes, we must have
sin fb=0 (58)
or
p=" (59)

in which = is an integer.

By substituting back Eq. (59) into Eq. (55), we have

A=0 (60)
So that



Ty)= =B sin’7Y (61)

and

nX . ATY o)
b (62)

Yor the determination of critical loads we svbstiiutirg the value of # ir Eq. (59)

into the second equation of Egs. (49) and obtain

wia®_ 4 (Ps., mPr’K P:ry  m’n’Ky\  mi*n®Dy s m’z*D A .
B Dg{ 2 @ [( 22 a’ ) a® 2( a“’xl_P”')J j (€3)
Hence
2 Dy [ ymb 2 2K | Dy ¢ na\2
Pucs+( g )2Poer =" [ (0 )2+ 5+ 5 () (64)

which is the simplified equation of critical loads. It may be ireated in the following
two methods: ’

(a) With a giver a/b ratio, we can investigate the relation between Py, and
P...» due to the various values of m and #, and for the case of a square plate {a/b
—=1) then Eq. (64) reduces to

Pucsot (V2= "L (2 B D (0 )] | (65)
Since

Por=Dpcr h (66)
where p., denotes the critical load per unit length anrd % the thickness of the plate,
or

prert (0 )2pm=”27)’%2hp—‘[(»—h S L )2] (67)

b)Y If Pacy/Picr,=7 is definite, then Eq. (64) may be deduced in the form

__~ nﬂnle mb 2. 2K D na na \21—1 s eon
Prer= bgh [ na ) + Dl + ])1 (mb) ] [1+T( mb> J \68/

in which the integers m and » should be so adjusted that it gives the critical load
as a minimum.

Eq. (68) shows that for a given plate the magnitude of critical loads depends
upon the number of half waves in the load directions and the ratio a/b.

It is obvicus that the smallest value of pi., will be obtained by taking m=n=1.
The physical meaning of this is that a plate buckles in such a form that there can
be only one half wave in both perpendicular direction. ‘Fhus the expression for the

critical stress becomes
Pier= ’Z?zl[( Z’)2+ L. Dl (4 )2] [1+r(-fg——-)2]“1 (69)

2. One edge clamped and three edges simply supported.

Since the boundary conditions for simply supported edges x=0 and x=a are
satisfied. For the edges ¥y=0 and y—=b we assume that y=0 is simply suprcrted and



y=>b clamped. To satisfy the boundary conditions along =0, we have the same

deflection pattern as in Eq. (54}, i. e

mnx

w={A sinh ay+-B sin fy) sin™”

And along y=45, the boundary conditions are:

ow

oy =0

w20,

it shows that

A sinh ab--B sin fb=0,

Awa cosh ab--Bf cos 3b=0 (70)

By following the same reasoning the buckled form of equilibrium of the plate is
possible only when the determinant of these equations becomes zero. Thus

B sinh ab cos Bb—a cosh ab sin 8b=0 (71)
or the required characteristic equation is

24

tanh ab—=- g tan f3b (72}

It appears in this and the subsequent case that the critical load can not be sol-
ved explicitly from the characteristic equation and therefore numerical solution has
to be obtained by cut and try method. Rewrite Eq. (72) in the form

tanh ab _ tan b

then plot curves by taking respectively hoth the sides of above equation as ordinates -
and ab and Bb as abscissas, we therefors obtain a series of intersecting points. A

pair of smallest possible values we chosen for use is

ab=gb= "% (74)

3. Two oprosite edges clamped and two opposite edges simply supported.

Let both the edges x=0 and x=a are simply supported, then the deflection curve,
w, is as shown in Eq. (46) in which the function F(y) is given in Eq. (48). If both
the edges y=0 and y=»> are clamped, the boundary conditions of that portion of the

plate are

From the conditions alongtthe edge y=0, it readily shows us that

0= — ﬂﬁg{;ﬁﬁx
= _\@(5'32‘2@4‘ (75)
By replacing ¢; and ¢, by A and B respectively, we have from Eqgs. (46) and (48).

8

F(y)=Alccs By—cosh ay)-+B(sin fy— a sinh ay),
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. 1. mra
o sinh ay)]sm

r . )
IU:T{A(COS Bfy—cosh ay)+B(sin fy— 4 (76)

From the boundary conditions for y=25,

Alcos Bh—cosh ab)-B(sin fh—-sinh ab)=0,

o
—Ap(sin gh4-sinh «l)--Bf (cos gb—cosh ab) =0

3
3

Similarly, the determinant of Eqgs. (77) must vanish in order io conform with
the huckled form of equilibrium and thus we obtain the characteristic equation in
this case as

cosh ab cos b+ 3 (-53-— ‘47 )sinh ab sin gb=1 (78)
We éee that is

fb=2n7 (79)
then '

ab=0 (80)

in Eq. {79) we choose n=1 to determine the minimum buckling stress.

.

VIII. THE CRITICAL STRESS

Using the forgoing results, we will be able to calculate the critical values of p,
and p..

Except the first case the characteristic equations may be solved by the method
of sucessive approximation in which we first assign a value to pb, then the corre-
sponding value of ab can be found by solving the characteristic equation numeric-
ally. Hence from the equations of Eq. (49) and the value of the buckling coefficient,
k, of the critical stress

72D

pcr:k'bzhl (81)
corresponding to each value of a/b can thus be calculated.

It is noted here that in cases 2 and 3 the solutions of p;., and p:., can be sol-
ved independently. And only the expression of pi., in case 2 can thus be calculated
according to a successive values of m, of which the buckling coefficient, 2, may be
expressed in the form

m2b? a?

k="t O e
where C is a combined constant of elastic constants and the solutions of @ and 8.
The transition point for number of waves increasing form m to m-+1 will be obta-
ined by equation

m2b? at _ (m+1)%* . a

a + n,'lzbz—‘ B d’z o (m+1)2b2 <83)

from which we get the ratio
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1 1

1 - " 3
Z =C [m(m»%l)J (84)
and
_ 625 D,
C=5s " 1, (85)

While in other cases the plate buckles in single wave form.

In plotting the curves it is only necessary to plot the curve corresponding to m
=1, for the curves corresponding to m=2, 3, etc. can he obtained from the curve
m=1 by keeping the ordinates unchanged and doubling, tripling, etc. the abscissas.
This statement can easily be verified by Eq. (82).

IX. NUMERICAL EXAMPLE

Refer to C. F. Jenkin’s Report on the Material of Construction Used in Aircraft
and Aircraft Engines, 192¢, we have the following elastic data for spruce:

E,=1.55x10° 1bs/sq. in.

E,=045x10°  1bs/sq. in.

Gy =0104x10° 1bs/sq. in.

Vey =045

vy, —=0.03

The values of the buckling ccefficient, %, {or varicus sets of boundary conditions.
will be calculaied and plotted. They are tabulated in Table I, of which we assume
m or m, n="1 and r=1.

For case 1,

"’“_’k’”"'[“( b )2]_1{( f], y“%f“ Dl () )2] (36)
For case 2,
b 2,6 625 D a \2
kn=( o P+ 56 (5 )%
(87
2K s b \2
Fps= D, ( a ,)

And for case 3,

Table 1

! z
1. All edges simply | 2. One clamped, three | 3. Two clamped, two

supported ‘ simply supported | simply supported
_a kpipe ’ k1 ‘ kps kp b2
b (r==n=n=1) | (m=1) | (m=1) {m=:1) (m=n=1)
0.2 24.378 { 25.023 ’ 8.608 25.000 I 9.551
0.4 5716 '
i

6.340 ,‘ 2152 6.250 l 3.095
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S - el g e
1. All edges simply | 2. One clamped, three | 3. Two clamped, two
supported simply supported simply supported
a_ kpiope j kpt kpa kp : kpe
b (m=n=y:=1) } (m=1) (m=1) (m=1) ! (m=n=1)
0.6 2,357 2.979 0.956 i 2.778 1.890
0.8 1.253 i 1.923 0.538 1.563 1.481
1.0 0.788 ’ 1.564 l 0.344 1.000 1.287
1.154* - | 1501 - - -
1.2 0.562 g 1.506 \‘ 0.239 ‘ 0.694 1.182
1.4 0.442 | 1.615 ‘ 0.176 0.510 ! 1.119
1.6 0.372 \; 1.833 3 0.134 0.391 1.077
1.8 0.330 ! 2,134 1 0.106 0.309 1.049
2.0 0.304 5 2.504 ; 0.086 0.250 1.029
2.5 0.269 ‘ ‘A 0.055 0.160 0.998
3.0 0.255 ‘ i 0.038 0111 0.981
1.0 0.241 1 0.022 1.0683 0.965
8.0 0,233 l ; 0.005 0.016 . 0.948
16,0 0.282 ! - ‘ 0.001 ‘ 0.004 0.944

In which the star notation denotes the minimum point of k.

e P
(88)
o B 3 ()

All those values of the buckling coeflicients are ploited as shown in Figs. 4, 5
and 6 respectively.

With the aid of Eq. (67), the relation between p, and p; of a square plate varied
as m and n is alsc plotted as shown in Fig. 7 for the case of all edges which are

simply supported.

X. CONCLUSIONS

A. With references to Figs. 4, 5 and 6 the following conclusions may be drawn
for the buckling stress p against the value of a/b.

(1) Almost all the curves show that the plate buckles only in a single wave in
order that both the perpendicular directions of the plate are compressed.

(2) Except for the case of all edges are simply supported, pi., and Pg., may
be solved independently, so that the curves of buckling coefficients %2 of pi.» and
pic» for the other two cases are plotted respectively in Figs. 5 and 6.

(3) For the ratio of a/b is smaller than 2, we see that the buckling coetficients
& drop very rapidly from infinity. If it is greater than 2 then the curve is decrea-
sing slowly toward to the infiity of a/b.

(4) As the case of two opposite edges clamped and two opposite edges simply
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supported, it is shown in Fig. 6, we have kp r=1.437 at a/b=0.834.

ler :kpzc

(5) The foregoing results are generally valid for any kind of orthotropic ma-
terials, including also the particular case of isotropic material. Moreover, that these
results will also be useful in the investigation of elastic stability of plied plates, such
as plywood, ply-bamboo, etc. if properly modified elastic constants are used instead.

B. The relation between pi., and ps., for various values of m and #n in the
case of a square plate are shown in Fig. 7. The values of m and # are indicated on
these lines and positive values of pic, and p;., indicate compressive stresses. Hence
some conclusions are obtained as follows:

(1) Since we seek the smallest values of pic, and pic, at which buckling may
occur, we need to consider only the portions of the straight lines shown in the fig-
ure by full lines and forming the polygon ABCDEF.

(2) By preparing a figure analogous to Fig. 7 for any given ratio a/b, the cor-
responding critical values of picr and ps:c» can be cbtained from that figuce.

(3) When p,=p;=p, we draw through the origin 0 a line which makes an
angle of 45° with the horizontal axis. Then the intersection of this line with the
line CD determines the critical value of p in this case.

(4) For any value of p; the critical value of p; is obtained by drawing a ver-
tical line through the corresponding point on the axis of abscissas. The ordinate of
the point of intersection of this line with the polygon ABCDEF gives the value of
Dscr. If, in the presenting case, p; is larger than 1.575 (#*D./b%:), DPicr becomes
negative. This shows that the plate can stand a compressive stress larger than the
critical value for the case of simple compression, provided an adequate tensile stress
acts in the perpendicular direction.
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