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ABSTRACT

The mechanical behaviour of interfacial cracks and dislocations in composite materials is inves-
ticated. The stress intensity factor at a crack tip along a perfect bonded interface arising from screw
dislocation is found to have the same expression as that of single phase media if the shear modulus of
the single phase medium is replaced by the harmonic mean of the shear moduli of both media in the
composite. The mode | stress intensity factor at a crack tip along the sliding interface arising from edge
dislocation is the same as that of a single phase medium if the elastic constant EI(i-V?) of the single

phase media is replaced by the harmonic mean of E/(1-v?) of both media in the composite, where E and
v are the Young’s modulus and Poisson’s ratio, respectively. However, mode 11 and mode 111 stress intensity
factors at a sliding interfacial crack arising from edge and screw dislocations are zero. The mode I1I
siress intensity factor at a crack tip along a perfect bonded interface and mode 1 stress intensity factor
at a crack tip along a sliding interface arising from an applied load have the same expression as their
single phase media counterparts because their expressions do not contain an elastic constant. Under high
temperature creep growth, the expression of stress in composite materials has the same form as that in
a single phase material if E/(1~V*) of the single phase medium is replaced by the harmonic mean of
E/(1-v*) of both media in the composite. The stress intensity factors at a crack tip along 2 perfect bonded
interface arising from edge dislocation and a mode I applied load are mixed and cannot be obtained from
the solution of single phase media with suitable arrangement.

Key Words: perfect bonded interface, sliding interface. interfacial crack, screw dislocation, edge dis-
jocation, stress intensity factor. image force

l. Introduction

Composite materials have been widely applied in
the design of machine and structure parts because of
their combination of low weight and high strength. The
difference between monolithics (or single phase) and
composite is the interface. Most microcracks are found
at interfaces. Thus, interfacial cracks have received
much attention in recent years. The elastic stress near
a crack along a perfect bonded interface under the
:C.Ilon of a remote mode 1 load has been investigated
D-‘un";“m authors (Williams, 1959; England, 1965:
lhree“”g‘%& Rice, 1988; Suo, 1989). They found
o l‘:gi‘" c;hurac&eristics of composites different
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ing distance from the tip. Thirdly, the elastic crack
opening displacement shows interpenetration behind
the crack tip. This unrealistic behavior is attributed
to the perfect bonding between these two dissimilar
materials.

The above elastic behavior is 2 representation of
the short-term response of a remote mode 1 load.
However, when a composite of a perfect bonded in-
terface is subject to a mode III load, the fracture phe-
nomenon which occurs is similar to short-term crack
crowth in single phase media {Lee, 1994). Further,
when a composite is subject to the long term creep
condition, where mass transport is operative along the
interface, the mechanical behavior is also different
from that of a composite under subject to a remote
short-term mode I load (Chuang et al., 1996). The
mechanism of long term creep is the atomic movement
from the crack surface to the interface based on the
random walk theory; the result is that the crack tip
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cannot resist shear stress, which leads to decoupling
of the mode I and II stresses.

The elastic interaction between a dislocation and
a crack plays an important role in a fracture. Based
on this interaction, we can obtain the image force on
the dislocation and stress intensity factor at the crack
tip. The image force explains the stability of dislo-
cation in the vicinity of the crack tip and dislocation
pile-ups in the neighborhood of the crack tip.
Lakshmanan and Li (1988) and Wang and Lee (1990)
used dislocation modeling to obtain the stress field of
an edge dislocation near a semi-infinite and a finite
crack tip in single-phase media, respectively. The
elastic interaction of a screw dislocation and a crack
of various geometries in single-phase media has been
analyzed by many authors (Lee, 1985; Juang and Lee,
1986; Chu, 1982; Majumdar and Burns, 1981; Shiue
and Lee, 1988). Bibly er al. (1963) proposed a con-
tinuous distribution of screw dislocations near a crack
tip in single-phase media without a dislocation-free
zone. However, Ohr (1985) found a dislocation-free
zone in the vicinity of crack tips in some metals using
an in situ transmission electron microscope. Based on
the Ohr’s observation, the discrete and continuous
distributions of piled-up screw dislocations in the
neighbourhood of crack tips of various shapes have
been investigated (Majumdar and Burns, 1983; Chang
and Ohr, 1981, 1982, 1983; Li and Li, 1989; Dai and
Li, 1982; Zhao et al., 1985; Zhao and Li, 1985; Shiue
and Lee, 1990, 1994; Huang et al., 1994, 1995).
They found that the dislocation-free zone is deter-
mined by the dislocation emission. If the dislocation
emitted by a crack tip is not required to overcome an
energy barrier (or critical stress intensity factor for
dislocation emission), the crack is completely shielded
by the emitted dislocations. That is, the dislocation-
free zone arises from a crack tip and overcomes an
energy barrier for dislocation emission. Therefore, the
stress intensity factor for dislocation emission has been
considered to be a material constant (Ohr, 1985; Zhao
et al., 1985; Zhao and Li, 1985; Rice and Thomson,
1974) and a function of the dislocation distribution near
the crack tip (Shiue and Lee, 1990, 1994; Huang et al.,
1994, 1995; Zhang, 1990) according to the concept of
spontaneous emission. Based on the Peierls-Nabarro
concept, Rice and coworkers (Rice, 1992; Beltz and
Rice, 1992; Rice and Beltz, 1994) and Schéck (1991)
proposed dislocation nucleation at the crack tip. Wang
(1997) applied this concept to explain the ductile versus
brittle response of L1, intermetallic bicrystals. Wang
(1998) investigated ductle versus brittle behavior using
the dislocation emission criterion based on the Peierls
concept and cleavage.

Based on the above statements, the dislocation
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Fig. 1. g screw dislocations of the Burgers vector b, located at
7k(1<k<q) near interfacial cracks in a two-layer composite
subjected to an external applied stress o.

behavior near an interfacial crack tip in a composite
material is very important and worth readdressing. The
next two sections will deal with screw and edge dis-
locations interacting with an interfacial crack, respec-
tively, in perfect bonded composite media. The fourth
and fifth sections are analyzed edge dislocation near
an interfacial crack under a remote mode I load, where
the interface cannot resist the shear stress. Finally, we
draw conclusions.

Il.Screw Dislocation Near a Crack
Along a Perfect Bonded Interface

The problem is shown in Fig. 1. Subject to remote
mode III stress o, consider ¢ screw dislocations of a
Burgers vector b, located at z; near n finite cracks in
the region (a;,b;) and two semi-infinite cracks in the
region (—oo,b,;) and (a,,e°) along the perfect bonded
interface y=0, where 1<j<n and 1<k<q. The shear
moduli of the upper and lower media are u, and i,
respectively. The complex stress function S.(z) has
been obtained as (Lee, 1994)

s3] rrtematt & S
+X({ P(x,U=LLepr) 5
=Sco(2)+Sco(2), 1)
where
Sco(2)={Sco(2, = thep) }si (2a)
S.;a(z)={Sca(z) bsi (2b)
(2¢)

x<z>=j1:10 {(z—a))(z=b))}'?
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Re{ } denotes the real part of the function in

{ }. x*is the function y approaching the crack surface -

from the upper medium, I is the integral path taken
over the union of the cracks, and P(z) is a polynomial
to make the function S.(z) bounded at infinity. S, and
S.o are the complex stress functions arising from the
screw dislocation and applied stress, respectively. The
subscript si represents the single phase medium.
According to Eq. (1), if we know the complex stress
function of a single-phase medium, then we can obtain
the counterpart of composite media with suitable re-
placement.

After obtaining the complex stress function, we
can calculate the stress intensity factor at a crack tip.
If a crack tip is located at x=a, the stress intensity factor
is

K= lim, [ (27(x-a)} " Tyc] 0
- lim, [{27(x-a)) ""Re {Seo(o,ti=Aer)
+Sco’(x’#=.u'eff) } si]y:O
={ K (1=pep)+K s} sis (3)

where K, and K are the stress intensity factors arising
from the screw dislocation and applied stress, respec-
tively (Lee, 1994). The subscript z and symbol z denote
the cartesian coordinate and complex variable, respec-
tively. According to Eq. (3), the stress intensity factor
at an interfacial crack tip can be obtained from that at
a single-phase crack tip if we replace the shear modulus
of single phase medium with the effective shear modu-
lus. Since the stress intensity factor due to applied
stress does not contain the shear modulus, both single
phase and composite media have the same stress in-

tensity factor expression.

According to the Peach-Koehler formula (Peach
and Koehler, 1950), the image force on the kth dislo-
cation is

F=F~iF = (TyHiTr)bs=S by
={ Sco(#zﬂeff)+sca} sibs
={ FCO(ILI'=#6ff)+FCO'} sis O]

where F,, and F., represent the image forces arising
from the other screw dislocations and applied stress,
respectively. The force component along the x-direc-
tion is equal to the negative of the crack extension force
(=K,%/2u) in single phase media. This implies that the
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Fig. 2. A screw dislocation of the Burgers vector bs near an inter-
facial cross crack.

x-component force is equal to the negative of the crack
extension force in composite materials. That is,
Newton’s third law is valid in composite materials.
Several cases will be discussed in the following.

1. Case I: Screw Dislocation Near a Cross Crack
Along a Perfect Bonded Interface

Consider a screw dislocation near a corss crack
along a perfect bonded interface subject to a remote
mode III stress o as shown in Fig. 2. 4, and pg are
the shear moduli of the upper and lower media, respec-
tively. The screw dislocation of a Burgers vector b
is situated at z,[=(x,,y,)] perpendicular to the xy plane.
A cross crack with right crack length ¢, left crack
length ¢,, and equal upper and lower crack lengths ¢,
is located at the center (0,0). The complex stress’
function S(z) can be obtained from the solution of a
single-phase medium (Wang et al., 1992) as (Wang et
al., 1994)

S(2y =Ty, +iTy,
_ Aueﬂ’bsplz
am/ (0,2 + 6D - LD +850)

w+w,

x {
VWZ—le—\/Wg“le
w+w,
- 2 +2(m+ 1)}
\[WZ—L12+\/7W02—L12
owz Sj’ (5)

+
L@+ )
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where

S :ud luu'ueffb Z

1
2ud 27 22 +€32 22+P32 __\/Tzoz +p32
(6a)
J7- + p3 \/;0 + €3
for the upper medium and
$,=0 for the lower medium (6b)

2\[z +l’2+\/[’ 20,7 %‘(721)

\/?1 +{’3

1 2 5 *
Vi +45

The subscript z and symbol z denote the z-com-
ponent of the cartesian coordinate and the complex
variable, respectively, and m is the net number of
Burgers vectors of screw dislocation inside the crack.
j can be u and d representing the upper and lower media,
respectively. The bar over the symbol means the
complex conjugate.

The stress intensity factors at the east-side K,
west-side Ky, north-side Ky and south side K tips of
a cross crack are

.Ueffb ¢y _ PoLOS(9,— 8,) + Lycosb,
ENCARTA To
+m+1}+0/7L, (8a)

Ky= lim 27n(x+71) ryzj
x—o-{y y=0

_Hggbny [0,4, { p,cos(p, — 8,) - L cosb,
-2 zL, r,

zL,¢5
)

—m-1}+% (8h)
Ky

nm \/27t(y 7y, [x 0

:u'eﬁfbsnl p
Sastiaryil

Dr,cos8,~ € n,p,sing,

[ Polocos(@,~ 6,)+ %‘—(nf—
r,2 =20 n,r,sinb, + (?lnz)2

-m—-1} +%\/7[€3(,—115—n2)

Me?
=t

1 1
v <) (8c)

K

= lim 22y +83) 7| _,
y— -€3 *

:ue bsnl ?
=____ff2 v 2

P cos(@,—0 )+~(n2 2_Dr,cos6,~¢ n,p,sinQ,

2 4+ 20 nyr,sinb, + (‘)|n7)

+m+1}—%J7rZ(zl;—n2>, (84)
where
Wo=poe'% _ (9a)
(wo=Ly?)P=r et (9b)
= {0+ 050 + 050 ¥¢)
1/4
Ny = (%—%ﬁ—j—z) . 9d)

As shown in Eq. (8), the stress intensity factors

. at the right-hand, left-hand, and lower tips are obtained

from those of the single-phase medium if the shear
modulus of the single-phase medium is replaced with
the effective shear modulus. The stress intensity factor
at the upper tip has an additional term which cannot
be obtained from the single-phase medium.

The force on the dislocation per unit length can
be calculated using an energy gradient or the Peach-
Koehler formula (Peach and Koehler, 1950):

Hegb s o
F.= ﬁ [p cos((pv—(pa)

_beby

0

e cos(p, + ¢, —26,)

_ PoPo cos(9,” ~ 6 )coscvg]

r,? cos 8,

2
#L’/fb.\‘ (m+ 1)Po,COS((Po' — 90)
. - - (10a)
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Fig. 3. A screw dislocation of the Burgers vector b, near an inter-
facial crack inside an infinite two-layer thin film of equal
thickness ¢.

:ueff s po
Fy [

sm(qo,, 0, )

popo

()

popo Sln((pa -6 )COS(DO]

2
T, cos@,

=20 sin(g, + ¢, - 286,)

Hogb Hm+ 1) p 'sin(e,’ - 6,)
- 27 7o

_ob w o0 XN

sin(g, + (po e,

- b2 5
_ éuu)tueff s (PoC08Q, p,” sin(p,”-
HaTt PoSING, o
(10b)
“where
¢i% = (11a)
fl +?32 \/Zo +€3
2
2, ” upo_ ﬂlpS (11b)

VO 2407 (2,2 +z)3 23

The first three terms in Eq. (10) are obtained
from those of the single-phase medium if the shear
modulus of the single phase medium is replaced
with the effective modulus. However, the last term in
Eq. (10) is due to the upper and lower tips of the
crack.

An alternative method for solving screw disloca-

?,)1

tions near an interfacial crack in perfect bonded com-
posite materials is conformal mapping. In the follow-
ing we will show the effect of sample size on the elastic
interaction of screw dislocation and an interfacial
crack.

2. Case II: Screw Dislocation Near a Semi-
infinite Crack Along a Perfect Bonded In-
terface in a Thin Plate (Thickness Direction
is Perpendicular to Crack Line)

Consider a thin plate with two layers of equal
thickness ¢ that has infinite extent in both the x and
z directions as shown in Fig. 3. A semi-infinite
crack is located at the perfect bonded interface y=0
and x<0. A screw dislocation of a Burgers vector
b, is situated in the upper layer z,(x=xgo+iyp). A
pair of anti-plane shear stresses o is applied on
the plane x=—co. These stresses can be obtained from
the solution of two semi-infinite layers consisting
of a surface composite subject to a pair of concen-
trated remote mode III line forces acting at points
P.(0, i) with conformal mapping (Lee and Chang,
1990):

I ﬂub:racosBO{B+C—A+D B C A D]
yeu 2tr A2+B? "*A%+B?
+Zcosh (12a)
_ M,bgr,cos8, A,C+B.D AC-B D]
sz,u_ 2[7’ L A+2+B+2 2 A 2 B 2
- Ysing (12b)
B ,ueffbsrocoseo B,C-AD ¢
Tyed = 2 A+2 + B+2 + TCOSQ (12¢)
_ Uegb,r,c0s6,A,C + B.D oo
Trzd = 3 A*_z N B+2 - rSll’l9 , (12d)
where
A4=r,>~r’cos20+2rr,sinf,sinf (13a)
B=%2rr,sin@,cos6-r’sin26 (13b)
D+ic=e(7r//)x+i[9-(lr/l)y} (130)
r“=[e""')"cos(%y)—1]2+[e“‘“’"sir‘n(%y)]2 (13d)
(rl)xin( T
L1 € sin( ty)
6= 7tan _—————e(””)"cos(—?y) o +k, (13e)
K2=(,ud_.uu)/(,u'd+.uu)- (13f)
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Table 1. The Value of k; and its Condition

ky Condition

0 e“"”"cos(’Tty)Zl

n2 e™cos(Ey)<l and e"""’sin(—t’fy)ZO
-2 e“‘/”"cos(%ykl and e"”’“sin(’TTy)<0

The value of k; and its condition are shown in
Table 1. r, and 8, are the positions of dislocation. u
and d represent the upper and lower media, respec-
tively. The stress intensity factor at the crack tip can
be obtained from the stress component 7,, as (Wang
et al., 1994)

beosb, , g (14)

Bu==teg= 77—

The first and second terms in Eq. (14) correspond
to the screw dislocation and applied stress, respec-
tively. Their signs are always different. This implies
that the screw dislocation protects the crack. For a
given distance between the screw dislocation and crack
tip, the magnitude of the first term increases with
increasing thickness. It is also found that the second
term increases with increasing thickness. The force
on the screw dislocation per unit length is (Lee and
Chang, 1990)

_ /leffbsz
2

pvm cos?8, + %Goseo (15a)

sin(28, - Zy,)
{~ (2K, + 1)~——r—y—’l—

o

F = luub.rze(,m)x”
y 8t

sin(6, - £,)
r,2cosé,

sind,sin(26, — Fy,) + cos(8, ~ Fy,) }

+K, 2 % ()
r,siné, +q7e X,

+ O;I:’sineo : (15b)
where a, is the core radius of dislocation. The
terms containing b,* arise from the dislocations. F,
arising from the dislocation is equal to the negative
of the crack extension force, (=Kj;/*/21.y), regard-
less of the thickness. The negative sign of the first
term in Eq. (11a) of Lee and Chang (1990) is miss-
ing. For a given distance between the screw dis-
location and tip, F, increases with increasing thick-
ness and is proportional to the effective shear mod-
ulus: :

3. Case III: Screw Dislocation Near a Surface
Crack Along a Perfect Bonded Interface in
a Thin Plate (Thickness Direction is Parallel
to Crack Line)

The problem is shown in Fig. 4. Consider a thin
plate made of a composite material that has infinite
extent in the yz plane and finite size t along the x
direction. A surface crack is located on the interface
y=0 between x=0 and x=¢. Note that ¢ is smaller than
t. A screw dislocation is situated at z,(=x,+iv,) in the
upper single phase medium. A pair of anti-plane shear
stresses o is applied on the planes y=feo. The stresses
can be obtained from two-semi-infinite layers consist-
ing of a surface composite subject to a pair of concen-
trated remote III line forces acting at the points P.(0,£i¢/
sin(zf/21)) with conformal mapping (Shiue et al.,
1989a):

«ryzu_-:lul;z_bsroc?‘seoiiB—C;—A_l?) +KZB+C;—‘A+7D]
’ A +B” A +B?
pcos(p—6) y
O cos(ml/20) (16a)
— Auubs racosaa rA-C +B.D A+C + B+D
Togu = T 7 L A__2 N B_2 + K9 A+2 " B+2 ]
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Fig. 4. A screw dislocation of the Burgers vector b, near an inter-
facial surface crack of length ¢ in.a composite thin film of
thickness ¢ under a remote applied stress o.
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Table 2. The Value of k; and its Condition

Table 3. The Value of k3 and its Condition

ky Condition k3 Condition
0 R*-T*-120 0 R’20 ~
72 R*-T*-1<0, T20 R’<0, T'20
—m/2 R*-T%-1<0, T<0 - R’<0, T'<0
psin(¢— 6) _ (m/x){1 + cos(zx/t)cosh(my/t)} 171
T cos(al2t) (16b) tan(0/21)  cos(7uxir) + cosh(my/t)] 47
;- Megbsr,cos8,B.C~A D _pcos(¢p—6) _ (m/t)sin(zwx/t)sinh(y/t) (17m)
ved = T T AZiB? o r cos(70/2t) tan(7c0/2¢){cos(7x/t) + cosh(my/r)}
16¢
(16¢) The values of k, and k3 and their conditions
Hegby r cos8, A C+B D psin(¢— 6) are shqwn in Tables 2 and 3, respectiyely. -Kz is
Td="T% T AZ+B2 rcos(rili21) ’ shown in Eq. (13f). r and r, are normalized with ¢ .
- - (16d) sin(zy/t) in Eq. (8m) of Shiue er al. (1989a) should be
corrected as sinh(my/t) due to a misprint.
where The stress intensity factor at the crack tip is (Shiue
et al., 1989a)
As=r,’~r*cos26+2rr,sinBsing, (17a) LL,7b 086, n
) o= ———“—f-f—e——ﬁ o{2t tan(nl2n}'? . (18)
B.=~2rcos6(rsinBr,sin6,) (17b) rolt sin(ze/n)}
The first term arises from the dislocation which
D+iC=pp’exp{i(6-¢-¢")} (17¢)  decreases with increasing thickness for a given distance
between the dislocation and crack tip. The second term
r*=(R*-T*-1)*+4R*T* (17d)  is due to the applied stress, which also decreases with
] R increasing thickness. This is because the free surface
6= 7tan"i-2—§§—1 +ky (17e)  far away from the surface crack increases to prevent
B crack propagation.
P’=R*+T* (176) The force components F, and F), on the dislocation

per unit length are (Shiue et al., 1989a)

For iFy= 2o B ok 1)”0 PoPo expli(26,- ¢, 4, )] - -2 g‘; ;’9 expli(8, — ¢, — 9,1 +

2papo [sind,exp {i(28,~ ¢,— 9,)} + i expli(6, - ¢, - ¢,)}] +a, P
" 2r,%sind, + p,p,'a

P.expli(6, - ¢,)}
)+ b, r,cos(mél2r) (19)

¢=tan"'(T/R) (17g)  where
o *=R"*+T"* (17h) P=p,%exp{i(¢,~9,))} +P.p, expli(d,/~d,")} (20a)
¢ =tan” lT ;+ ks 17i) P, *=R,"*+T,"* (20b)
sin(7rx/t) . ”
tan(ﬂ?/2t){cos(rcx/t) + cosh(my/t)} 7)) : ¢0”=tan"';" —+ky (20¢)
sinh(7zy/t) (17K)
tan(nf/2t){cos(7rx/t) + cosh(my/t) } R, =(n/t)(R,R,’-T,T, Ytan(nl /2t) (204)
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Table 4. The Value of k4 and its Condition

ky Condition
0 R,"20
R,’<0, T,’20
- R,”<0, T,”<0
T,”=(alt)(R,T,'+R, T )tan(ml 21). (20e)

The values of k4 and its condition are listed in
Table 4. When ¢ approaches infinity, the stress field,
stress intensity factor at the crack tip and image force
on the screw dislocation are the same as the counter-
parts of a screw dislocation near a surface crack along
a perfect bonded interface in composite media consist-
ing of two semi-infinite layers (Shiue et al., 1939Db).

It should be noted that the image force on the
distocation can be obtained either using the energy
gradient or the Peach-Koehler Formula (Peach and
Koehler, 1950). The energy is usually obtained using
the imaginary cutting method (Juang and Lee, 1986),
in which the dislocation is removed from the elastic
media to create a vacuum so that the energy is a function
of the core radius of dislocation. Therefore, the image
force on the dislocation derived from the energy gra-
dient is also a function of the core radius of dislocation,
but that derived from the Peach-Koehler formula is not.
The effect of the core radius of dislocation on the force
is pronounced when the dislocation is close to the
interface. The magnitude of the image force may
approach infinity at the interface derived from the
Peach-Koehler formula but will be finite if it is derived
from the energy gradient.

Ill. Edge Dislocation Near a Crack
f\long a Perfect Bonded Inter-
ace

Suo (1989) proposed a method to solve the prob-
lem of singularities interacting with cracks along a
perfect bonded interface as shown in Fig. 5. His
method is outlined here. Consider a singularity lo-
ated at z=z,. There are n finite cracks situated in
the intervals (a;,b;) and two semi-infinite cracks
situated in the intervals (—ee,b,) and (a,,e°) along the
perfect bonded interface, y=0. Note that g, is not
the core radius of dislocation in this section. K,, v,
and py, v, are the shear modulus and Poisson’s ratio
of the upper and lower single phase media, respec-
tively. Two modified complex Muskhelishvili po-
tentials related to the stress and displacement are
expressed as

Ot 0, =2[D(2)+D(2)) (21a)
Oy +iCy=PD)+QU)+(T -DD(2) (21b)
i (4 i) =K BD-Q~(T-0P (D), (21¢)

where x;=3—4v; for the plane strain and (3~v)/(1+v))
for the plane stress, j can be u and 4, indicating the
upper and lower media, respectively. The two modified
Muskhelishvili complex potentials for a singularity at
=7, are

00= £ Ade=z)" (22a)
Q)= mg B /(z-z,)", (22b)

where the coefficients A,, and B,, depend on the nature
of singularity and z,. If we consider no crack along
the perfect bonded interface, then the two complex
potentials in each medium are

D/(2)=¢/(2)+Po(2) (23a)

Q/(@)=0(2)+Q,(2), (23b)
where the superscript j can be u and d, indicating the
upper and lower media, respectively. The subscript i
indicates the complex potentials arising from the per-
fect bonded interface.

The stress and displacement must satisfy the
continuity on the interface:

F (x)+ @ (x)=97(x)+0(x) (242)

(=P (x)—(a+ B3, (x)

=(1+B) ()~ o= P)Qo(x). (24b)

Based on the analytic argument, we find that

P ()=ar(2) (252)
P ()=w2) (25b)
Xz
Wy, Vu
XZQ
4 S ¢ S X
. b, a; b a1 by ag b Ay breray by 3 4w
Ud,Vd

Fig. 5. A singularity located at z, near interfacial cracks in an infinite
two-layer composite.
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a'(2)=AD, (2) (25¢)

@'(@)=TI, (), (25d)
where

A=T24 (262)

=7 4 (26b)

T 26

_ (0= D) = pr (05, = 1) 260)

- luu(K(1+ 1) +lud(Ku + 1) '

Substituting Eq. (25) into Eq. (23), we obtain

D/ (2)=(1+A)D,(2) (27a)
© Di(2)=0,(2)+1Q, (z) (27b)
Q' (2)=(1+ID)Q,(z) (27¢)
Q(2)=Q,(2)+AT, (2). 27d)

Then substituting Eq. (27) into Eq. (21b) and
letting z=x, we obtain the stresses on the interface:

Oyy(X)+i 04y (X)=(1+A)D, () +(1+IDQ,(x).  (28)

If we consider cracks along the perfect bonded
interface, the interfacial crack surfaces are traction-
free. That is, the negative of those stresses expressed
in Eq. (28) are applied to the crack surface. Using the
Muskhelishvili method (Muskhelishvili, 1953), Suo
(1989) obtained the solution:

1 2@ [ (L+A)D,(x) +(1 +IDQ,(x)

IO T | T e

(29)

where
;c(z)=ijIl (z—a,-)'%"‘(z—bj)‘%*" (30a)
£=5-In[(1 - BI(1 + B)]. (30b)

I is the integral path taken over the union of the crack
lines in the xy plane. x*(x) means the function X
approaching from the upper medium to the crack line.
The parameters € and 8 which were studied extensively
in the literature on interfacial fracture mechanics, are

responsible for various pathological behaviors at an
interfacial crack tip (Rice, 1988). However, ¢ is typi-
cally very small. Indeed, since |B1<0.5, trom Eq. (30b),
Rice (1988) found that |g|]<In(3)/27=0.175. Hutchinson
et al. (1987) obtained €=0.039 for Ti/Al,0;, 0.028 for
Cu/Al,05, 0.019 for Nb/AL,O3, 0.011 for Si/Cu, 0.005
for MgO/Ni, and 0.004 for Au/MgO based on elastic
parameters.

Two special cases are considered. One is a semi-
infinite crack in which f(z) is

f@ ==+ 0T, + (1 + Q)]

B @mgl [T+ A)A—’"Fln- I(Z,?(,)

+(1+ H)Bmfm_ 1(z,2,)] 5 (31a)

and the other is a finite crack in which f(z) is

f@) = @[(1 + M)A} + (1 +IDB,]

- 10+ AT, + (1 +IDQ,)]

L 0 NAE, 6T

+ (1 + H)BmFm— l(zvzo)] ’ (31b)
where
_1.d" 1
Fnlz.2,) = m! dz,,”’[ x(z,)(z, —z)] ’ (32)

The relation between f(z) and two complex po-
tentials is

671(1)=Qf(Z)=(1—ﬁ)f(z) z is upper medium (33a)

D (2)=Q%2)=(1+P)f(z) z is lower medium,
(33b)

where the subscript ¢ indicates the complex potential
arising from the cracks.

The total complex potentials.of ® and Q for sin-
gularity near cracks along a perfect bonded interface
are the summation of Eqgs. (27) and (33). After two
complex potentials are obtained, the stress components
can be obtained with the help of Eq. (21). The stress
intensity factor at the crack tip is, then, obtained as

K=-V21 ﬁjl [(1 + NALF,_,(0,7,)

+(1 +IDB,F,_;0z)]. (34)
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where

F,(0z,) =L d" 1z - 1P (35)

m! dz

for a semi-infinite crack and
K=v27(2a) "1 + VA, (@ + (1 +TDB,)

—VI7Qa)" " ’62 (1 + NAF, _(a7Z,)

+(1 +IDB,F,,_ (@z)], (36)
where
n ,ta 172 + ig.
Fuaz)= drawl@sg) ) &

for a finite crack located in the interval (—a,a) along
the perfect bonded interface.

Zhang and Li (1992) and Zhang and Lee (1993)
have studied the elastic interaction of an edge dislo-
cation of a Burgers vector b (=b,+ib,) interacting with
a semi-infinite and finite crack along a perfect bonded
interface. They modified two standard Muskhekishvili
potentials in the following forms:

O“=[¢"(D)) =h.F(2) (38a)

D'=[9"(2))'=h4F(2) (38b)

Q'=[w"())'=hs F (2) (38¢)

Q'=[&())'=h,F (2), (38d)
where

h,= ﬁ_/i_/%(_ (39a)

hy= uﬂ”ﬁj o (39b)

F (z) denotes the complex conjugate of F(Z), and F(z)
is analytic. The potential F due to interfacial crack
is

F(Z) 1':;( - 12~ie (1 +B} u [Z 112 +i€ _ l/2+igl

u

+(1 —ﬂ)z_a'% X [(70)”2“8__Z1/2+ig] :
+(1- ﬁ)_G((__ZE__)Q[Zmﬂs (7 )1/2+,g
& fﬁﬁ;?ﬁi’(m 1} (402)

for a semi-infinite interfacial crack and

F(7)=1+Ku 1 (<+(1 IS
2u, (22— ad) 1232 a)
2 1n2,2,+a 22 12, z+ay-ie
(2~ a) " i - @ -a) D™
_ 2 o2 Tot @
+ (1 Z, —a°) (fo—ﬂ)

- (22 _ a"_’)l/z(é_é_%)‘is] +(1 _‘B) 011(70 '_Zo)

(:—fn)z
[( 2)]/7(Z ) _ TO _ )l/"( 7 )—
(z‘(j (2, ’;,’,Z"g)é ) +20,m+ 1))
¢ (40b)

for a finite interfacial crack located in the interval
(-a,a), where

Hibe
0. = in(k,+1) (41)

and m is dependent on the dislocation source. If the
edge dislocation emitted by the crack, then m=-1;
otherwise, m=0. Note that z; on the left side of Eq.
(13¢) of Zhang and Lee (1993) should be corrected to
¥, because of a misprint. After complex potentials are
obtained, the stress field becomes straightforward. The
stress intensity factor is

K=K,-iK;= lim/27mz(0,, - i0,,)7

__hythy . —1R+ie
- m [(1 +ﬁ)(by lbx)(zo)

+ (1 _ ﬁ)(b _ ibx)(—z—o)'- 112 +ige
+(1 - B)(b, +ib)(1 - 2ie) 2_Z”(z )y~ 12 +igy
(42a)

for a semi-infinite crack tip,

K" = Jim 27z - @)(0,, - i0 )G

+hd

= [(1+ BB, - b

zo-&-a

)

Z,ta B

+(1 =Py - ib )= )

Zo—a 12 +ig

+ (1= P)(by+ib Ja(l- 218)(——?% Ta
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(hy+h)(by—iby)

+(m+1) —

(42b)

for the right-hand-side tip of a finite crack of length
2a, and

h + i€
sl + B, - ib ) g +3)”2
a 2+ie
+(1=Pb, - ib )(Z )
112-ie
-(1-pe +sz)a(1+2l8)(z° Z‘;z(i iz
~m 4yt h Oy ) (420)

Jta

for the left-hand-side tip of a finite crack.

The definition of mode I and mode II stress in-
tensity factors at the crack tip along the perfect bonded
interface is disputable. Shih and Asaro (1988) pro-
posed that the stress intensity factor has a physical
dimension stress-(length)"?. However, their stress
intensity factors for a semi-infinite crack are not ad-
ditive when two sets of point loads are exerted on
different positions. Rice (1988) suggested that an
arbitrary value of length r may be used and defined
the complex stress intensity factor as

K=ATYL(r/L)*, (43)
where T is an applied traction load, L is the relevant
length describing the geometry and A is a complex
number which depends on the phase angle of the applied
loading. According to Rice (1988), Eq. (43) is a good
approximation only for small & In order to satisfy the
additivity of the stress intensity factors, Zhang and Li
(1992) defined the stress intensity factor as

K=KiKy=lim/ 27z (0yy—i0,y)2" (44a)
for a semi-infinite crack and
K=KiKy=limy2a(z - ai(cyy—zO' )(Z+a)
(44b)

for the right-hand-side tip of a finite crack. Although
Eq. (44) satisfies the additivity of the stress intensity
factor, the physical dimension is stress-(length)/2*€
for a semi-infinite crack and stress-(length)!? for a
finite crack. The stress intensity factor at the infinite
crack tip cannot be reduced from that at the finite crack
tip. Therefore, the mathematical similarity is lost.

Prrrrtrrrre ettt

s

p‘u'uu
—y

Ry Vg

R N

Fig. 6. A crack travels from left to right at a constant velocity V
under a remote mode I stress .

IV. Diffusive Crack Growth Along a
Sliding Interface

Consider a semi-infinite crack which propagates
along a sliding interface at a constant velocity V, subject
to a tensile stress o applied in a direction normal to
the interface as shown in Fig. 6. Under creep condi-
tions, the kinetics of crack growth are subject to the
combination of mass transports including surface and
interfacial self-diffusion. The chemical potentials at
the crack surface and at the interface can be expressed
as

Ms==C2;y;H; (45a)

Up=—0C;, (45b)
where j can be u and d, representing the upper and lower
single-phase media, respectively. €, ¥; and H; are the
atomic volume, surface energy, and curvature of the
Jth medium, respectively. Using the relation between
flux and chemical potential, we find the jth surface flux
and interfacial flux:

where
(D8)p=(D8)pu+(D)pa (46¢)

0 is the effective diffusion path. Using the continuity
of chemical potential and flux, and force balance at the
crack tip, Chuang et al. (1992) obtained the tip shape
at the upper and lower surfaces:

— 744 -



Micromechanics of Composite Materials

7+ 7= 1)

F,=sin(8y,),=1 7“(7;/3 +A52/3’}7}‘/3) (47a)
: 1A G+ 1= 1)
Fesin@el = arm O
where
AS=(DSd5de)/(DSu 6uQu)~ (48)

F;=sin@; is the sine of the tip angle, and the

nondimensional surface energy ¥; is normalized to the-

interface energy 7,. There are four possible cases of
the crack tip morphology as given in the following
simple geometric sketches. First, Case I is defined by
F,, F>0. Second, Case Il is defined by F, or F,=0.
Third, Case III is defined by F,>0 and F,<0 or vice
versa. Fourth, Case IV is defined by either F, and/
or F;>1, which is physically inadmissible. The equa-
tion for Case II is used to separate Case I and Case
ITI. The equations separatmg case III and Case IV are
209 - (9P - 91 + 7917 =0 and APRP-(1+7,)

7}1’3 -293=0. The equation to separate Case I and Case
111 is §,+7,—1=0, which is independent of A;.

The residual stress was also analyzed by Chuang
et al. (1996) based on dislocation modeling. Consider
an edge dislocation of the Burgers vector (b,,b,) situ-
ated at position x, in the vicinity of an interfacial semi-
infinite crack tip subject to an action of mode I stress
0. The stresses along the perfect bonded interface are

G,y +iTg=0-Alby+ib ) [y +iBAG=X,)], (49)

where

Lot [ (1 + k) + 1, (1 + K, D]
Ay ¥ Bk )y + KD (50)

B is defined in Eq. (26d), and A(x) is the Dirac delta
function. Let us consider an arbitrary distribution
[(db,,db,)=(8,'dx,8,'dy)] of edge dislocations along a
perfect bonded interface subject to an action of remote

. mode I stress o:

Oyy+i0y=0—1 7

~imABL8, (x)+i8, ()], (51)

Instead of a perfect bonded interface, we will
consider a sliding interface because of high tempera-
ture creep, so that the interface cannot resist shear
stress (i.e., a sliding interface). After suitable rear-
rangement, Eq. (51) is reduced to

TA(1=B) oy’ (x)= f “( O) dx, (52)

under the condition of a traction-free crack plane (y=0,

x<0), 0,,=0,,=0. Using an argument similar to that for

a single-phase medium (Chuang, 1982), the interfacial
diffusion equation expressed in Eq. (46b) and the steady
state condition shown as

8,(0)={ [1,(x) Q)+ [/p(x)Q1}/ V= (x)<Q>/V (53)
where <Q> is defined by the harmonic mean of Q,

and Q, with a weighting factor R, and R, respecti-
vely,

R,+R
Q) =r—%, (54a)
Q.79
(D,6,7"
Rj=—‘,},j'——j uord (54b)
we obtain
Db5b<Q> do
5. (x) = —VRTdx - (55)

Combining Eqs. (52) and (55), we obtain

L2d 0 J(X )dxo , (56)

o X—%,

where L is defined by

D,6,(Q)
-\ / E b%
L= \/4<<1 = v2> VT (57a)

E _ 2\ _ U
<2 =47AM(1 - ) = 8<% {(57b)

Equation (56) is the same expression as that of a single-
phase medium (Chuang, 1982).

If we normalize £=x/L, %,=x,/L and 8(X)=0(x)/
Oiip» Where 0;,=0(0) 1s the stress at the crack tip, then
Eq. (56) becomes

4o _ fo " o)L, (58)

The initial conditions of Eq. (58) are’

60)=1 (59a)
d—? =a, (59b)
dx |,
=0
where
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<E/(l —v>> "2
D,5,(Q)

R,+R,

()
L=
(VKT)6

-~ o(0)

(60)

o’(0) is the derivative of o with respect to x at the crack
tip.

From numerical calculation, we find the applied
stress intensity factor:

RINZ7=0.24040.30 (61a)
or
K=0.750(0)L"*+0.600’(0)L*?
=AVIZ By, (61b)
where
A= {?’suﬂg{—d?’b} {<<1_Ev2>>(Dé)b<Q>}1/4(kT)1/12
(62a)
B=0T1{(R, + R)Feu *+ Yea— )} P<<—L Ev >>34
S
| Bo0a (KT) (62b)

3
(R, + Rd)6[<<E/(l — Vs>

Viin = (B/A) =0.127 T l Db5b<Q>

=0.2620°V (62¢)
K, =2/AB = 1.69K¢
=1. 69[<<— v 55>(You + Yea— V)] 12 (62d)

K¢ is the stress intensity factor for the Griffith
crack at the interface. Kg can be obtained from that
of a single phase medium if E/(1-v?*) of the single
phase medium is replaced by the harmonic mean
<<E/(1-v¥)>>. Since Vy;, by definition must be
_smaller than or equal to V, the range of o must be
in the interval O<a<1.25. If «is above 1.25, then a
higher crack velocity is predicted with decreas-
ing applied stress. This situation is physically uns-
table, so the corresponding solution must be dis-
carded.

V.Edge Dislocation Near a Crack
Along a Sliding Interface

The problem is shown in Fig. 7. Consider an
edge dislocation of the Burgers vector (b,=bcosd,

Ky, Vy

>
(-a,0

Ud v4

Fig. 7. An edge dislocation of the Burgers vector (b,,b,) near a
sliding interfacial crack.

by,=bsind) located at (x,,y,) near a crack in the in-
terval (—a,a) along a sliding interface (y=0) subject to
a remote mode I applied stress 0. This problem can
be solved as follows. First, consider an edge dis-
location of the Burgers vector (b,b,) situated at
(0,d) near a sliding interface y=0. p,, v, and Ug, Vg
are the shear modulus and Poisson’s ratio of upper
and lower media, respectively. This problem has
been solved by Chen et al. (1998) using a Moutier
cycle:

o = Hubs (d-Bx2+ -2
STV -

(d +y)[3x%+ (d +y) %]
2+ (d +»)°

, 20 - Dyd(x’~ (d +)")
[+ (d +))

_4(1 - Dydy(d + y)[3x —(d+y) ]}
2+ (d+ )7

by Ax2-(@-p7
e

2(1 -D)x

_x[x? —(d+y)? ]+
x2+(d+y)*

2+ d+ T

4(1 -D)dxy[x?= 3(d +)*]
[x2+ (d +)2
(63a)

4(1 -Dyx(d*~y?)
+ 2.3
[x2+ (d +y)*]

by (d-y)x*-(d- y)]
=21 - V) [x2 + (d -7’

2(1 -D)d[x? - (d +y)*]

(g +y)[x2- (d +y) ] +
2+ (d +y)2)°

[+ (d +)2)
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L 40 = D)dy(d +y)[3x2 - (d + )]
2+ @+’

}

Kby xlx+3(d—y)?)

_x[x%+ 3(d +)3

2TV Ly @y

L 21 -D)ax? +3(d + 3
X2+ (d+»Y)°

_4(1 - Dydry[x* - 3(d + y)*]
[+ (d+y)’

} (63b)

vmuub.r d- y - d+ Yy

A=V 32 4 (d—y)?

x2+(d+y)°

20 =Dydlx? - (d + )]
[ +(d+)7)°

HbyV,

x x
1 =V,) x2 4 (d - y)? x2+(d+y)2

21~ D)x[x2 +2(d + y)? + (d* - y¥)]

X2+ d+»Y° b 63

wb, x[x?-(d- y)] a2 -(d+y)?

0= 2m(1- ) 2+ (d-y)?°

[x?+(d+y)?Y

L 41 - D)doyx? 3<d+y>21
2+ (d+»Y°

__Mby  (@d-pxP-(d-y)7
2n(l-v,) [x? + (d—y)2]2

L 20 - D)ylx’= (d +)*]
[+ (d +»)4°

_d+yix*-d +y) ]
[x2+ (d +))

+ X1 =Dydy(d +y)[3x*~ (d 7]

} (63d)
[x*+ (d+)?)°

== 21 = vy

~ Uiy 21 - Ddlx* - (d )]
[x* + (d -y

L 41 - Dydy(d - y)[3x? - (d—y)z]
X2+ d-»Y°

}

Hgby  _2(1-D)x

} _ 40 -D)x(d” —y?)
2701 =Vy) " x24 (d —y)?

2+ (d -4’

L X1 -Dydnyx? - 3<d y)Z]}
2+ (d-y)?’°

(64a)

[x2+ (d +y)*)

Haby 201 = D)l = (d - v)?)

ol =
Toaml=vy) [+ -0

4 M =Dydy(d - y)3x> - (d- )]
[+ @-»7’

}

Haby 201 - D)x[x? +3(d - v)?]
270-Va)" 2 d- 7

— 2—‘ - :
, 41 - D)dyylx 32(‘1; V1, (64b)
[x*+(d-y)7]
4(1 - Dydxy[x? - 3(d - y)*]

({ _ - :u(lb.\'
2+ d-pn7’°

Y 2(l - vy)

oMby 201-D)ylx? - (d-y)7]
2l - vy [x2 + (d_y)2]2

;+ 340 - Dydy(d - y)[3x? —(d »*

} (64c¢)
[+ (d -y’
od = = Valab, 2(1 = D)d[x? - (d - y)?]
TV s @-yh

| HabyVa  2(1 —D)x[x2+2(d —y) >+ (d>—y?)]

)

L —vy) [+ (d =)
(64d)
where
Uk, +1)
UK, + D+ T D) (65a)
1M 1 E
A 27zl—v 47:1_‘/}' (65b)

J indicates u and d, representing the upper and lower
media, respectively. It can be seen from Egs. (63) and
(64) that when the dislocation of the Burgers vector
b, is located at the sliding interface, i.e., d=0, the stress
components Oy,, Oy, and 0, are always zero at any
position.

This problem as shown in Fig. 7 has been solved
by Chen et al. (1998) using a dislocation modeling. Let
f,(x)dx’ represents the infinitesimal Burgers vector in
the interval (x’, x"+dx") along the crack. The force on
this infinitesimal Burgers vector due to the rest of
dislocation on the crack, the lattice dislocation and the
applied stress is zero:

g D) o, 2= )4 39,7)

<<A>>
- (= x,)2+y,%)
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b Yollx—x,)%-y,%]

— <<A>>
- x)2 + 9,

+0=0, (66)

where <<A>> is the harmonic mean of A; expressed in
Eq. (65b). The solution of Eq. (66) is

2 2
b 2,2 -a
W= R
~ yazoei5 yo 15 Z, _a2
2o~ x)\/znz - a2 (Zo - x)Z
(m+1 )bsind 1 ox

N NI (67)

where z,=x,+iy,, Re[ ] means the real part of the func-
tion in the [ ], and m is the net number of Burgers vector
in the crack, i.e.,

f_ " O = mb, . (68)

Assume that, initially, there is no net dislocation
inside the crack; then if the dislocation is emitted by
the crack, m=-1; otherwise, m=0. After f(x") is ob-
tained, we can get the stress field in the space. Fol-
lowing the stress field, we can calculate the stress
intensity factors:

zZ,+a
Kp=- <<A>>b\/— Re{ sm%

Ay

(z —an/z,% -

+(m+ 1)<<A>>b sin&/—%— + oVl (69a)

0@z,) =

—(m+ 1)<<A>>bsind/Z + oVl (69b)

at the left-hand-side crack tip.

Equation (69) has expressions which are the same
as those of a single-phase medium (Tsai ef al., 1995)
if A(=u/2r(1-v)) of the single-phase medium is re-
placed by the harmonic mean <<A>>. However, due
to the sliding interface, the mode II stress intensity
factor at the sliding interfacial crack tip is zero.

The force on the edge dislocation due to the crack
is

F=<<A>>{b.Re[Q(z,)]+by(Re[P(z,)]
=Im[Q(z,)D }+by0 (70a)
Fy==<<A>>{bIm[iP(z,)+Q(2,)]+byRe[Q(z,)]}

2
(AL AbY1-2D)

2y 7y (70b)
o o
_ —b; 2,500
P(Zo)_ 2 [ZUZ_az
(z,+7,)sino
MR o Y
yoei5a2 - yoe -ié

2(2,,2-a2)2 (2,-7,)W Z, = a%+/z, —az)

T %
(\/70 = (12 \/202_ a2 )]

+ (m+ 1)b sind

2

= (71a)
Z,°—a

—byo{ 27,2 + a? sind+ (@+z,2+22,7,Wz,2—a* +(@*+ 72,7,V Z. zo 1n5+ Yo s
2 2z, - a2 (2,2 -a) /2,7~ a? +\/7,7-a?)’ (2,2~ a?)’

L Yola’z,’ - 2a%2,7, +22,°7, a7, - 22,2, —azx/ Zo ~a ’] =) + (m + 1)b sind—e%e

(z,

at the right-hand-side crack tip and

= T pofcinsylo — 4
K, =<<A>>b WRE{SInS_,/'zZ_“Ta

@t
(zo + a)\/za2 - a2

2-a)"(z, -7, W7, T-at/2 - 7, 2,2 -a)™"

(71b)

According to Tsai et al. (1995), Newton’s third
law is valid in the edge dislocation-internal crack system
of a single phase medium. The force and crack ex-
tension force of composite media with a sliding inter-
face can be obtained from those of single phase media
if the elastic constant (/2m(1—v) of single phase media
is replaced with <<u/2n(1-v)>> of composite media.
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Thus, Newtow’s third law is also valid for composite
media of a sliding interface.

VI. Summary and Conclusions

The micromechanics of composite material-inter-
facial cracks and dislocation have been reviewed. The
stress intensity factors at the crack tip along a perfect
bonded interface arising from screw dislocation and
applied load have been formulated. The effects of crack
geometry, such as cross cracks and sample size includ-
ing the thickness parallel to and perpendicular to the
crack line, on the stress intensity factor and image force
of the screw dislocation are analyzed. The intensity
factor arising from the screw dislocation can be ob-
tained from that of single phase media if the shear
modulus of the single phase media is replaced by the
effective shear modulus. The stress intensity factors
at a crack tip along a perfect bonded interface arising
from edge dislocation and remote mode I load are
mixed mode, and cannot be obtained from the solution
of single phase media using simple substitution. Under
high temperature creep crack growth, the stress com-
ponents of composite materials can be obtained from
the counterparts of single phase materials if the elastic
constant E/(1-V?) of single phase media is replaced by
the harmonic mean of E/(1--V?) of the two media in the
composite system. The stress intensity factor at a crack
tip along a sliding interface has the same behavior of
high temperature crack growth. The algebraic summa-
tion of the crack extension force and image force for
dislocation along the x direction is zero in the above
dislocation-interfacial crack systems. This implies that
Newton’s third law is valid for dislocation-interfacial
crack systems.
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