
Proc. Natl. Sci. Counc. ROC(A)
Vol. 23, No. 5, 1999. pp. 599-608

(Scientific Note)

Fault Tolerant Training of Feedforward Neural
Networks

BUH-YUN SHER* AND WEN-SHONG HSIEH**

* Institute of Electrical Engineering
National Sun Yat-Sen University

Kaoshung, Taiwan, R.O.C.
** Institute of Information and Computer Engineering

National Sun Yat-Sen University
Kaoshung, Taiwan, R.O.C.

(Received May 27, 1998; Accepted December 19, 1998)

ABSTRACT

Fault tolerance is one of the key performance measures of artificial neural networks (ANN’s) and
is often viewed as an inherent feature of ANN’s. But without precise designing, it is not able to guarantee
the degree of fault tolerance. This paper presents an extensive study on the fault tolerant property of
feedforward neural networks. We propose a constraint backpropagation (CBP) training method, which
can guarantee a high degree of fault tolerance when one or two hidden nodes fail. In order to achieve
the goal of fault tolerance, we define an energy term, called constraint energy, that measures the performance
degradation when some hidden nodes fail. During training, both the normal energy and the constraint
energy will be minimized. We also develop a simple technique called output node saturation (ONS). By
incorporating CBP with ONS, we can find a network which maintains exactly the same performance as
a normal network when some hidden nodes fail. Experimental results show that a network trained by
CBP also possess better generalization properties than does one trained by normal backpropagation (BP).

Key Words: feedforward networks, fault tolerance, backpropagation, output nodes saturation, constraint
backpropagation

− 599 −

I. Introduction

Fully connected feedforward neural networks
trained by backpropagation (BP) or by many of its
variants have been most popular for pattern recognition,
data mining, and many other application fields (Arun
and Polycarpou, 1997; Abhijit and Macy, 1996;
Diamantaras and Kung, 1996). BP training can be
viewed as an optimization process of a criterion func-
tion with respect to linked weight values. The mean
squared error is the only criterion that backpropagation
training to be optimized, thus some other performance
measures, such as fault tolerance and the generalization
capability, are taken only as side effects. Neither the
property of fault tolerance nor generalization can be
controlled during the training phase.

Fault tolerance is one of the frequently cited
features of artificial neural networks. It has been claimed
that neural networks are inherently fault tolerant. The
reason for this is that a neural network is a distributed
computing system and is insensitive to partial internal

faults. However, without a precise design, it is difficult
to guarantee the degree of fault tolerance. Martin and
Damper (1993) showed that for mult i layered
perceptrons, an increase in the number of hidden nodes
will not ensure improvement in fault tolerance. Some
mechanism to enhance the fault tolerance should be
incorporated into the implementation.

In an attempt to enhance the fault tolerant
capability, one can create a different architecture or,
without modifying the architecture, one can impose
additional constraints in the training phase. In this
paper, we adopt the latter scheme since it is consistent
with the inherent advantage of neural networks.

An optimization problem is usually defined in
terms of the minimization of a scalar cost function of
a number of variables. If the variables are not con-
strained by an inequality or equality relationship,
optimization is said to be unconstrained. For feed-
forward networks, the global error E in the weight space
is the cost function. E is the mean squared error be-
tween the network outputs and the desired training

B.Y. Sher and W.S. Hsieh

− 600 −

outputs. In this paper, we say that E is a normal energy
term, which is also denoted as En, in contrast with
another energy term Ec, which will be defined later.
We formulate the task of finding a fault tolerant neural
network as a constrained optimization problem. The
variables (weights) are not constrained by an inequality
or equality relationship; instead, the variables are
constrained by another cost function, Ec. During
training, both En and Ec will be minimized.

II. Previous Works on Fault Tolerance

Recently, many researchers have studied the fault
tolerant capabilities of the feedforward neural network.
The typical methods for studying the feedforward neural
network are reviewed below. Chalapathy (1992) for-
mulated the problem of finding a fault tolerant network
as a nonlinear constraint optimization problem and
solved this problem using a quadratic programming
algorithm. The resulting network can guarantee some
degree of fault tolerance when any one of the hidden
nodes is removed, i.e., permanently stuck-at-0. Minnix
(1992) shows that under the condition of a large number
of hidden units, i.e., 99 hidden nodes for 5 training
patterns trained with noisy input, the network will
exhibit some degree of fault tolerance when some hidden
nodes fail. The idea is that the effect of adding noise
to the input is equivalent to introducing some fault into
the network during the training phase. Phatak and
Koren (1992) built a fault tolerant neural network by
replicating the hidden unit after training was completed.
A large amount of redundancy is required to achieve
complete fault tolerance even if only one fault is
involved. Similar work was done by Phatak and Koren
(1995) and Martin and Robert (1993), who called the
replicating technique “augmentation”.

When considering convergence, the size of the
network is usually larger than necessary. If a network
has more degrees of freedom than the number of train-
ing patterns, then there may exist more than one so-
lution to a specific task, and we may find one solution
that can satisfy the fault tolerant requirements. Ac-
cording to this concept, there are some modified train-
ing methods which can find the desired fault tolerant
solutions. Reed and Sequin (1992) obtained the desired
fault tolerance by randomly introducing some faults
during training. In their work, one, two or three hidden
nodes were selected randomly, and the output was
forced to zero or other values, such as +1, −1. When
training was completed, the network could tolerate
some hidden node stuck-at faults introduced in the
training phase. Similar works were done by Huang
(1992) and Carlo (1990). However, obtaining the fault
tolerance through random selection of faulty hidden

neurons is not efficient. This lack of efficiency is due
to the fact that with random selection of hidden neurons,
the ones which can most influence the fault tolerance
capability of the network are not chosen. Bhenam and
Amawy (1997) proposed a cyclic selection method to
improve the inefficiency. They assume that each neuron
in the hidden layer is faulty with a relatively high
probability. They think that the most efficient algo-
rithm will be the one in which each hidden layer neuron
is assumed to be faulty with probability of one.

To the best of our knowledge, there has been no
attempt to take fault tolerance as one of the training
goals. Although in the works of Reed and Sequin
(1992) and Huang (1992), the fault tolerant capability
was achieved through training, they still have no formal
definition to explain the mechanism produced by these
training methods and can not guarantee the degree of
fault tolerance. We believe that this paper is the first
work defining a second energy term to be optimized
for the purpose of enhancing the fault tolerant property.

III. Notation and Fault Model

Due to the existence of different models of net-
works and application fields, it is difficult to find a
general fault tolerant paradigm which is suitable for
all types of neural networks. There are two major
groups of networks: feedforward networks and recur-
rent networks (Nijhuis et al., 1990; Peter and Palumbo,
1992). In this paper, we focus our attention on the
feedforward neural networks. A general feedforward
network consists of an input layer, one or more hidden
layers, and an output layer. No feedback or lateral
connections are used.

There are two components, nodes and links
(weights), which may fail in a feedforward neural
network. The frequently encountered type of node
failure is the stuck-at fault. Nodes are nonlinear devices,
which are fabricated by an operational amplifier. An
amplifier may fail in the form of stuck at one of the
power supply voltages. For example, it may be stuck-
at natural voltage (stuck-at-0), stuck-at maximal volt-
age or stuck-at minimal voltage. For links, there are
two types of failure. The first type of link failure is
weight decay; with the implementation of a feedforward
network in analog VLSI, the weight values are nor-
mally stored as some form of charge storage in
capacitance. The entire capacitive storage suffers from
the charge leakage effect, and this effect leads to a
weight decay phenomenon over time. The second type
of link failure is weight disturbance, weights are dis-
turbed by random noise, which occurs with some type
of probabilistic distribution.

In this section, we define notations and describe

Fault Tolerant Training of FNNs

− 601 −

the fault model adopted throughout this paper. We
restrict our attention to the feedforward network with
one hidden layer. Such a network can perform arbitrary
functions if a sufficient number of hidden nodes is
provided.

1. Normal Network

(1) Network N(w) denotes the 3-layered feedforward
network. Let L , M and Q denote the set of
input layer nodes, the set of hidden layer nodes
and the set of output layer nodes respectively.
The cardinality of sets L , M and Q is denoted
as L, M and Q, respectively.

(2) Training set P , is a finite set of ordered pairs.
The cardinality of P is denoted by P:

 P ={(Xp,Yp)|p=1, 2 ..., P}.

Here, Xp is the input pattern vector, and Yp is
its corresponding desired output vector:

Xp={ xp(1), xp(2), ..., xp(L)},

Yp={ yp(1), yp(2), ..., yp(Q)}.

(3) Yp(k) is the kth component of the actual output
vector computed by N(w) for training pattern p.

(4) The error value set H={ ep(q)|p=1, 2, ..., P q=1,
2, ..., Q}, where

ep(q)=|yp(q)− yp(q) | (1)

so there are in total P×Q possible error values
in set H. The maximal value in set H is denoted
by Max(H), and Sum(H) denotes the total sum
of all elements in H.

(5) The normal energy En, is the sum of the squared
difference between the desired outputs and ac-
tual outputs over all of the output units of all
training patterns. The most popular training
method, BP based on the Generalized Delta Rule,
is used to minimize the value of this function:

En = 1

2
[yp(q) – yp(q)]2Σ

q = 1

Q

Σ
p = 1

P
. (2)

The goal of training is to find am exact set of
weights such that the global error En is the smallest
in the whole error space. In practice, since the value
of the global minimum is unknown, a small global error
is considered acceptable. Thus, for normal BP training,
the convergence criterion is that En is small enough.
However, as pointed out by Arun and Polycarpou (1997),

it is always possible to have a network with a small
global error En but with a high Max(H) value. In order
to ensure that the normal network and the network with
a failure node can function normally, we change the
convergent criterion from En<σ to Max(H)<α.

2. Network with Failure Nodes

(1) m f is the subset of the hidden node set M ,
where the cardinality of m f is denoted by m, and
the subscript f denotes the type of fault. Thus,
there are m nodes in set m f , and these nodes are
all stuck-at faulty f. Given cardinalities M and
m of the set M and m f , there exist

 R = (M
m) (3)

possible different subsets m f of M .
(2) N mf(w) derived from a normal network N(w) with

some hidden nodes in set m f .
(3) y

p
mf(k) denotes the kth component of the actual

output vector computed by N mf(w) for training
pattern p.

(4) The error value set

 H mf ={ ep(q, m f)|p=1, ..., P; q=1, ..., Q;

∀ m f ∈ M }, (4)

where

 ep(q, m f) = yp(q) – yp
mf(q) . (5)

The cardinality of set H mf is

 H mf = P × Q × R . (6)

(5) The constraint energy term Ec, measures the
difference between the normal network and the
network with failure nodes:

E c

mf = 1
2

[y p(q) – y p
mf(q)]2Σ

q = 1

Q

Σ
p = 1

P
. (7)

IV. Constraint Backpropagat ion
(CBP) Algorithms

In this section, we describe the CBP training
algorithm. According to different types of node func-
tions used, different numbers of hidden node failures
tolerated and different types of faults, there is a set of
CBP training algorithms CBP1 through CBP6. Table
1 lists the various features among them.

B.Y. Sher and W.S. Hsieh

− 602 −

CBP1 is our original work − the tolerance of a
single stuck-at-0 fault in a hidden layer. This type of
fault tolerance is equivalent to a network that functions
well when any one of the hidden nodes is removed. This
type of fault was also discussed by Phatak and Koren
(1992) as mentioned in Section II. Figure 1 is the CBP1
training algorithm. CBP2 and CBP5 are similar to
CBP1 except for the stuck-at-1 fault and the linear
activation functions.

A network trained with CBP3 (Fig. 2) can tolerate
one hidden node failure, which may be stuck-at-1 or
stuck-at-0. Any single hidden node stuck-at-1 or stuck-

at-0 will not degrade the performance of the network.
During training, the weights are adjusted 3 times for
one pattern passed: the first adjustment reduces the
global error, the second reduces the maximal stuck-at-
0 fault and the last reduces the maximal stuck-at-1
fault.

Figure 3 shows the CBP4 training algorithm. A
network trained with CBP4 can tolerate one or two
hidden nodes stuck-at-0. Removing one or two hidden
nodes from the network will not degrade the perfor-
mance of the network. During training, the weights
are adjusted three times for one pattern passed: the first
adjustment is to reduces the global error, the second
reduces the maximal stuck-at-0 fault for one node failure,
and the last also reduces the maximal stuck-at-0
fault with the exception of the case in which two nodes
fail.

Table 1. Various Types of Fault Tolerant Constraint Training

Number of
ALG. Node Function Type of Fault

Faulty Nodes

CBP1 Sigmoid 1 Stuck-at-0
CBP2 Sigmoid 1 Stuck-at-1
CBP3 Sigmoid 1 Stuck-at-0,1
CBP4 Sigmoid 2 Stuck-at-0
CBP5 Linear 1 Stuck-at-0
CBP6 Linear 2 Stuck-at-0

Fig. 1. Constraint training algorithm 1 (CBP 1).

Fig. 2. Constraint training algorithm 3 (CBP 3).

Fault Tolerant Training of FNNs

− 603 −

V. Experimental Results

1. Fault Tolerant Capability

CBP training has been tested on various problems,
such as speech recognition, character recognition, parity
problems, etc. For clarity, we use recognition of 26
English characters. The training samples were 26
English characters arranged in a 7×6 pixel array, and
the outputs were the corresponding ASCII code (Fig.
4). In this problem, we have 42 input nodes and 8 output
nodes. Currently, no formal method is available for
predicting the absolute minimal number of hidden nodes
needed to solve a particular problem. It is expected
that most neural networks will have some redundant
nodes in the hidden layer. These redundant nodes
might not be of any help in improving the fault tol-
erance capability, as every node must be included in
the computation, so none of them can be removed from
the network.

Huang (1992) has proved that the least upper
bound of the number of hidden nodes needed to solve
a problem equals the number of training patterns minus

one. To tolerate one or two hidden nodes stuck at fault,
the number of hidden nodes chosen must be equal to
the number of training patterns. We use symbols N1
through N44 to denote networks trained with various
constraint training methods and with various degrees
of fault tolerance. The fault tolerance performance was
evaluated using two values; Max(H) and Sum(H). The
lower the values, the better the fault tolerant capability
the networks have. In the case where Max(H) is equal
to zero, a network with node failures will perform in
exactly the same way function as a normal network.
Tables 2-7 show the results.

All training patterns passed once through the
network is called an epoch, which is often taken in most
of the literature as a measurement of convergent speed.
Since there is more than one adjustment of weights for
a pattern passed in CBP training, one epoch alone can
not represent the convergent speed precisely. Tables
2-7 also show the number of computing cycles in
training. A computing cycle here is defined as a single
adjustment of all weights.

2. Generalization Capability

One important performance measure of a
feedforward network is its generalization. Generaliza-
tion evaluates the correctness ratio for novel patterns.
The generalization error decreases in an early period
of training, reaches a minimum and then increases as
training goes on while the training error monotonically
decreases. A network that has a high correctness ratio
for training patterns but a poor ratio for novel patterns
does not function well. In this sub-section, we explore
the generalization capability of networks trained by
CBP and compare the results with those of networks
trained by normal BP. We generated four test sets from
the training sets, the Hamming distance between the
training sets and test sets are one, two, three and four,
respectively. Each test set contained 156 test patterns.
The values in column three to six of Table 8 are the
correctness ratios for recognition of the test sets. In

Fig. 3. Constraint training algorithm 4 (CBP 4).

Fig. 4. Bitmap of 26 English characters and the corresponding ASCII
code.

B.Y. Sher and W.S. Hsieh

− 604 −

Table 2. Fault Tolerant Performance of CBP1 with α=0.1

Stuck-at-0 Fault (m=1, f=0)

Max(H mf) Sum(H mf)

N1 BP X 612 612 0.81 97.15
N2 CBP1 0.40 661 1322 0.377 40.09
N3 CBP1 0.35 666 1332 0.348 39.99
N4 CBP1 0.30 675 1350 0.277 35.11
N5 CBP1 0.25 693 1386 0.227 33.83
N6 CBP1 0.20 714 1428 0.199 29.85
N7 CBP1 0.15 759 1518 0.147 25.47
N8 CBP1 0.10 957 1914 0.099 19.18
N9 CBP1 0.05 1300 2600 0.049 10.90

Table 3. Fault Tolerant Performance of CBP2 with α=0.1

Stuck-at-1 Fault (m=1, f=1)

Max(H mf) Sum(H mf)

N1 BP X 612 612 0.78 191.87
N10 CBP2 0.40 693 1386 0.384 85.84
N11 CBP2 0.35 700 1400 0.348 75.45
N12 CBP2 0.30 707 1414 0.299 77.29
N13 CBP2 0.25 756 1512 0.249 69.32
N14 CBP2 0.20 777 1554 0.189 61.23
N15 CBP2 0.15 1100 2200 0.147 52.42
N16 CBP2 0.10 1212 2424 0.099 38.90
N17 CBP2 0.05 1343 2686 0.049 21.30

Table 4. Fault Tolerant Performance of CBP3 with α=0.1

Stuck-at-0 Fault (m=1, f=0) Stuck-at-1 Fault (m=1, f=1)

Max(H mf) Sum(H mf) Max(H mf) Sum(H mf)

N1 BP X 612 612 0.81 97.15 0.78 191.87
N18 CBP3 0.40 723 2169 0.336 28.71 0.341 63.96
N19 CBP3 0.35 723 2169 0.336 28.71 0.341 63.96
N20 CBP3 0.30 730 2190 0.282 25.93 0.293 53.73
N21 CBP3 0.25 740 2220 0.243 23.59 0.248 48.29
N22 CBP3 0.20 749 2247 0.193 23.82 0.195 47.2
N23 CBP3 0.15 776 2328 0.146 20.94 0.148 39.83
N24 CBP3 0.10 855 2565 0.098 16.18 0.099 29.11
N25 CBP3 0.05 1121 3363 0.049 9.03 0.049 15.46

general, networks that possess better fault tolerant ca-
pability also possess better generalization. Similar
results can also be obtained for a network trained by
other versions of the CBP training method.

3. Mechanism of CBP Training Algorithm

In an attempt to understand why the network
trained with the CBP training method exhibited the

fault tolerant property, we performed further analysis
on networks trained with CBP, then compared these
results with those networks trained with normal BP and
tried to find the differences between them. We first
discuss networks with sigmoid function. Figure 5
shows the mean absolute net input of the output layer
node for N2 through N33. Examining Fig. 5, we see
that for networks with a greater degree of fault tolerance,
the mean of the absolute net input tends to be large.

Network Training ALG. β Epochs Computing Cycles

Network Training ALG. β Epochs Computing Cycles

Network Training ALG. β Epochs Computing Cycles

Fault Tolerant Training of FNNs

− 605 −

Nodes with large net input are said to be more saturated
when a sigmoid node function is used. Figure 6 shows
the mapping graph of the sigmoid function. The
horizontal axis corresponds to the net input values of
a node, and the vertical axis corresponds to the node’s
output values. When an output node has an absolute
net input value larger than or equal to 7, we say that
this node is in a state of saturation. In a saturated state,
a minor change in net input will not affect the node's
output. The other state is the sensitive state, as any
changes in net input will lead to output changes.
Therefore, the better fault tolerant property can be
attributed to output layer nodes which tend to be
saturated.

Table 5. Fault Tolerant Performance of CBP4 with α=0.1

Stuck-at-0 Fault (m=1, f=0) Stuck-at-0 fault (m=2, f=0)

Max(H mf) Sum(H mf) Max(H mf) Sum(H mf)

N1 BP X 612 612 0.81 97.15 0.95 2258.60
N26 CBP4 0.40 759 2277 0.16 6.02 0.384 201.84
N27 CBP4 0.35 760 2280 0.16 4.75 0.343 166.33
N28 CBP4 0.30 819 2457 0.14 3.15 0.285 118.96
N29 CBP4 0.25 839 2517 0.11 2.75 0.249 107.81
N30 CBP4 0.20 879 2637 0.08 1.89 0.195 81.71
N31 CBP4 0.15 1181 3543 0.04 1.81 0.148 80.23
N32 CBP4 0.10 2676 8028 0.04 1.79 0.095 78.24
N33 CBP4 0.05 4134 12429 0.04 1.78 0.047 74.28

Table 6. Fault Tolerant Performance of CBP5 with α=0.1

Stuck-at-1 Fault (m=1, f=1)

Max(H mf) Sum(H mf)

N34 BP X 784 784 0.562 258.37
N35 CBP5 0.40 817 1634 0.392 251.88
N36 CBP5 0.35 917 1834 0.341 252.00
N37 CBP5 0.30 980 1960 0.292 241.76
N38 CBP5 0.25 1061 2122 0.241 232.65
N39 CBP5 0.20 1306 2612 0.199 214.99
N40 CBP5 0.15 X X − −

Table 7. Fault Tolerant Performance of CBP6 with α=0.1

Stuck-at-0 Fault (m=1, f=0) Stuck-at-0 Fault (m=2, f=0)

Max(H mf) Sum(H mf) Max(H mf) Sum(H mf)

N34 BP X 784 784 0.562 258.37 0.563 4339.89
N42 CBP6 0.40 823 1646 0.294 220.96 0.399 4424.42
N43 CBP6 0.35 918 2754 0.263 216.83 0.348 4339.23
N44 CBP6 0.30 1204 3612 0.223 213.82 0.299 4237.03
N45 CBP6 0.25 X X − − − −

Since networks with linear function nodes always
stay in the sensitive region, the fault tolerant capability
is worse than that of networks with sigmoid function
nodes. Compare Table 2 with Table 6, we find that
the best Max(H mf) (m=1, f=0) is 0.049 for CBP1 but
0.199 for CBP5. Similar results can be seen in Table
4 and Table 6; the best Max(H mf) (m=2, f=0) is 0.047
for CBP4 but 0.299 for CBP6.

4. Output Node Saturation

We have also developed a technique called output
nodes saturation (ONS) for networks with sigmoid
function nodes. Combining CBP and ONS, we obtain

Network Training ALG. β Epochs Computing Cycles

Network Training ALG. β Epochs Computing Cycles

Network Training ALG. β Epochs Computing Cycles

B.Y. Sher and W.S. Hsieh

− 606 −

a complete fault tolerant network. Complete fault
tolerant networks possess an attractive feature in that
when faults occur, the networks perform in exactly the
same way as normal networks. On the other hand, in
a complete fault tolerant network, Max(H mf) is equal
to zero.

In normal applications, for a desired output of ‘1’,
the network must be trained to have an output larger
than 0.5 (positive net input) and it must have an output
value smaller than 0.5 (negative net input) for the
desired output ‘0’. In all of our experiments, the
training error was less than 0.1, and under the condition
of hidden node failure, the degradation of output was
within the range of 0.05 to 0.4. Thus, for a desired
output of ‘1’, a network with failing hidden nodes had
an output larger than 0.5 and had an output less than
0.5 for a desired output of ‘0’. We then pushed the
output nodes from the sensitive region into the satu-
ration region by multiplying a constant C by the weights
between the hidden layer and the output layer. If the
constant was large enough, both the normal network
and network with failure had an output of ‘1’ for a
desired output of ‘1’, and ‘0’ for a desired output of
‘0’. Figure 7 shows the Max(H) and the Max(H mf)
values after multiplying various values of the constant
C of network N2 trained by CBP1. From Fig. 7, we
see that when we multiplied a constant larger than 11
by the weights between the hidden layer and output
layer, network N2 became a complete fault tolerant
network. Similar results can be obtained for other
networks.

5. Convergent Property of CBP Training Algo-
rithm

In the process of CBP training, there are multiple
adjustments of weights for each training pattern passed.
For example, at the n+1 iteration of CBP3, weight
adjustment is performed three times.

∇'(w) is added to minimize the global error func-
tion En, and ∇''(w) and ∇'''(w) are added to minimize
the constraint energy functions E c

m0 and E c
m1 . A

contradiction may occurr; i.e., when ∇'(w) is added to
the weights, En decreases but the other two constraint
energies increase. Table 9 shows the worst contradic-
tion case and ideal case. From the results of our
experiments, in the first 30% of CBP training, contra-
diction situation appears, then a compromise situation
between the contradiction and the ideal situation appears,
and in the last stage, the ideal situation appears.

VI. Conclusion

We have proposed a training method in which the
task of finding a fault tolerant neural network is treated
as a constraint optimization problem. This problem is
solved by using the constraint BP training method.
During training, both the normal energy and constraint
energy are minimized by means of multiple weight

Fig. 5. The horizontal axes are the β values of the networks. The
vertical axes are the mean values of absolute net input of
output layer nodes, the left hand side axis represents the
scales for CBP1 to CBP3, and the right hand side represents
the scales for CBP4.

Fig. 6. Sigmoid function, beyond the sensitivity region is the satu-
ration region.

Table 8. A Comparison of Generalization Capability of the Net-
works Trained by BP and CBP1

Training Hamming distance
Network Average

method 1 2 3 4

N1 BP 92.95 76.28 60.90 42.95 68.27
N2 CBP1 96.78 78.85 71.79 48.08 73.88
N3 CBP1 96.78 78.21 70.51 48.08 73.40
N4 CBP1 96.15 80.13 70.51 48.08 73.72
N5 CBP1 96.15 80.27 71.79 46.79 73.75
N6 CBP1 95.51 80.13 71.79 50.64 74.51
N7 CBP1 97.87 82.69 71.79 53.21 75.64
N8 CBP1 95.51 83.33 73.08 54.49 76.67
N9 CBP1 95.51 83.33 72.44 53.85 76.28

Fault Tolerant Training of FNNs

− 607 −

adjustments. The constraint function should be well
defined; otherwise, the network may never converge.

In the traditional digital computing system, any
internal fault may cause the system to break down.
Neural networks exhibit graceful performance degra-
dation under partial internal faults. However, graceful
performance degradation does not guarantee avail-
ability, especially for critical tasks. The CBP training
algorithm proposed in this paper provides some degree
of faul t tolerance under hidden node fai lure.
Furthermore, by combining the CBP training algorithm
and the output node saturation strategy, we can con-
struct a fault free network, which has exactly the same
performance as a normal network when some hidden
nodes fail.

The output layer is the most critical part of a
feedforward network, any failure in it will impair system
performance. To overcome the problem of output node
failure, one might use the TMR design as mentioned
in the work of Khunasaraphan et al. (1994) or use the
robust neuron suggested by Chu and Benjamin (1990).

CBP requires extra computation time at each
iteration in deciding which hidden node will cause the
maximal error, and in then adjusting the weights again
according to this finding. The convergent property will
not suffer due to extra adjustment of weights because
the constraint functions are well defined. Other types
of constraint functions which enable the network to
possess other good properties, such as generalization,
sensitivity, etc., are still being studied.

References

Abhijit, S. P. and R. B. Macy (1996) Pattern Recognition with Neural
Networks in C++. CRC Press Inc., Kansas City, KS, U.S.A.

Arun, T. and M. Polycarpou (1997) Neural network-based robust
fault diagnosis in robotic system. IEEE Trans. on Neural
Networks, 8(6), 1410-1420.

Bhenam, S. A. and A. E. Amawy (1997) on fault tolerant trarning
of feedforward neural networks. Neural Networks, 10(3), 539-
553.

Carlo, H. S. (1990) Fault tolerance in artificial neural networks.
International Joint Conference on Neural Networks, San Diego,
CA, U.S.A.

Chalapathy, N. (1992) Maximally fault tolerant neural networks.
IEEE Trans. on Neural Networks, 3(1), 16-22.

Chu, L. C. and W. W. Benjamin (1990) Fault tolerant and neural
networks with hybrid redundancy. International Joint Confer-
ence on Neural Networks, San Diego, CA, U.S.A.

Diamantaras, K. l. and S. Y. Kung (1996) Principle Component
Neural Networks Theory and Application. John Wiely and Sons,
Inc., New York, NY, U.S.A.

Huang, S. C. (1992) Bound on the number of hidden neurons in
multi layer perceptrons. IEEE Trans. on Neural Networks,
3(1), 47-55.

Khunasaraphan, C., K. Vanapipat, and C. Lursinsap (1994) Weight
shifting techniques for self-recovery neural networks. IEEE
Trans. on Neural Networks, 5(4), 651-658.

Martin, D. E. and R. 1. Damper (1993) Determining and improving
the fault tolerance of multilayer perceptrons in a pattern-recog-
nition application. IEEE Trans. On Neural Networks, 4(5), 788-
793.

Minnix, J. I. (1992) Fault tolerance of the backpropagation neural
network trained on noisy inputs. International Joint Conference
on Neural Networks, Baltimore, MD, U.S.A.

Nijhuis, J., B. Hofflinger, A. Schaik, and L. Spaanenburg (1990)
Limit to the fault tolerance of a feedforward neural network with
learning. International Joint Conference on Neural Networks,
San Diego, CA, U.S.A.

Peter, W. P. and D. L. Palumbo (1992) Performance and fault-
tolerance of neural networks for optimization. IEEE Trans. on
Neural Networks, 4(4), 600-614.

Phatak, D. S. and I. Koren (1992) Fault tolerance of feedforward
neural net for classification tasks. International Joint Conference
on Neural Networks, Baltimore, MD, U.S.A.

Reed, D. C. and C. H. Sequin (1992) Fault tolerance training
improves generalization and robustness. International Joint Con-
ference on Neural Networks, Baltimore, MD, U.S.A.

Table 9. Tendency of the Energy Function

modification contradiction case, m=1 ideal case, m=1
of weights En Ec

m 0
 Ec

m1 En Ec
m 0

 Ec
m1

∇'(w) ↓ ↑ ↑ ↓ ↓ ↓
∇"(w) ↑ ↓ ↑ ↓ ↓ ↓
∇'''(w) ↑ ↑ ↓ ↓ ↓ ↓

Notes: (1) w'(n+1)=w(n)+∇'(w)
(2) w"(n+1)=w'(n+1)+∇''(w)
(3) w(n+1)=w"(n+1)+∇'''(w)

Fig. 7. The Max(H mf) and the Max(H) of network N2 after multi-
plying various values of constant C. The horizontal axis
represent the various values of the constant multiplied by
weights between the hidden layer and output layer.

B.Y. Sher and W.S. Hsieh

− 608 −

�� !"#$%&'()

��G�� !GG

G�� !"#$%&'()*

GG�� !"#$%&'()*

��

�� !"#$%&'()!*+,-./0(123456"#$%&78/09:;1<=>$?@/A
�� !"#$%&'()*+,-./0123456789)'(:;"<=>?'(@ABC�7DBC@A
�� !"#$%&'()*+,-./012345678�9:2;<=>?9:�@�#ABCD%E�2F
�� !"#$%&'()*+,-./'01%&2"#$%&34567894:;<=)*>?@ABCDE
�� !"#$%&'()*+ ,-./0!"123$456789:;-<=>?@A67BCDEFG3H
�� !"#$%&'(!)*+,-'./012

