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Abstract 

 

X-ray crystal structure determination of agglutinin from abrus precatorius in Taiwan is presented. The 

crystal structure of agglutinin, a type II ribosome-inactivating protein (RIP) from the seeds of Abrus 

precatorius in Taiwan, has been determined from a novel crystalline form by the molecular replacement 

method using the coordinates of abrin-a as the template. The structure has space group P41212 with Z=8, and 

been refined at 2.6Å to R-factor of 20.4%. The root-mean-square deviations of bond lengths and angles 

from the standard values are 0.009Å and 1.3 º. Primary, secondary, tertiary and quaternary structures of 

agglutinin have been described and compared with those of abrin-a to a certain extent. In subsequent 

docking research, we found that Asn200 of abrin-a may form a critical hydrogen bond with G4323 of 

28SRNA, while corresponding Pro199 of agglutinin is a kink hydrophobic residue bound with the cleft in a 

more compact complementary relationship. This may explain the lower toxicity of agglutinin than abrin-a, 

despite of similarity in secondary structure and the activity cleft of two RIPs. 

 

 

Background 

 

Ribosome inactivating proteins (RIPs) are enzymes that can inactivate ribosomes. The molecular 

mechanism of inhibitory effect on protein synthesis has been shown that RIPs act as a RNA N-glycosidase 

hydrolyzing the C-N glycosidic bond of the adenosine residue at position 4324 in rat 28S rRNA [1] [2]. 

They can cleave the synthetic RNA structure having a short double-helical stem and a loop containing a 

centered GAGA sequence, the first A being the cleavage site [3]. The depurination inactivates the ribosomes 

for binding to elongation factor 2 catalyzing GTP hydrolysis and translocation of peptidyl-tRNA to the P 

site [4], with a consequence inhibiting the protein synthesis. There are three categories of RIPs according to 

the physical composition and characteristics. Most commonly RIPs are type I RIPs, only single polypeptide 

chain proteins composed of the toxophoric A subunit with a molecular mass around 30 kDa [5][6][7][8] 
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such as curcin [9] and trichomislin [10]. Some are type II RIPs consisting of two types of polypeptide 

subunits, A chain of homologous and functionally similar to type I RIPs and B chain with a 

galactose-specific lectin domain that binds to cell surfaces, such as ricin [11] abrin and abrus agglutinin 

(AAG) [12]. A chain and B chain are from one gene and link through disulfide bond after post-translation 

modification [13]. Type III RIPs are derived from inactive pro-protein and activated after proteolysis [14]. 

The mature type III RIPs are two polypeptide subunits acting as an N -glycosidase jointly. 

Various RIPs can be isolated from the same plants [15][16]. Some type II RIPs have been isolated from 

the beans of the tropical and subtropical leguminous plant Abrus precatorius, jequirity. They are lectins and 

have an inhibitory effect on the growth of experimental animal tumors [17][18]. They can be classified as 

abrins and AAG by oligomerization. Abrins are potent toxic heterodimeric glycoproteins with an LD50 of 

20 µg/kg body weight; while AAG is a relatively less toxic heterotetrameric glycoprotein of which the 

LD50 is 5 mg/kg body weight [12]. But their therapeutics indexes are similar [18].  

The primary structures of abrin-a and AAG were determined [19][20][21]. AAG had high homology to 

the extremely toxic ABRa, with 44 (8.0 %) similar amino acid residues and 382 (69.8 %) invariant amino 

acid residues. In the A chain of AAG, the 13 amino acid residues with catalytic function among RIPs were 

completely conserved [21]. The cDNAs of the RIPs isolated from Abrus precatorius have been cloned and 

their A chains were expressed in Escherichia. coli [21] [22][23]. The amino acid residues at proposed active 

sites and Pro199 of AAG, which corresponding to Asn200 of abrin-a, were analyzed with site-directed 

mutagenesis for studying the structure and function of these RIPs [21] [23] [24]. And the results showed that 

Pro199 in A- (or C-) chain of AAG impair the activity of protein synthesis inhibition because of steric 

hindrance [21]. According to the biochemical experiments, the mutation of Asn200 on abrin a-chain to 

Pro200 dramatically decreases the activity than other kind of mutation, including those residues without 

side-chain, such as Gly [23] [24]. These peculiar results motivate us to crystallize AAG, and make 

comparison with abrin, since both contains almost identical active pocket, and most important of all, 

different at Asn200 (the corresponding residue is on AAG Pro199). Bagaria et al., [25] reported a 3.5 Å 

X-ray crystal structure, and proposed the less toxic nature is because of the fewer interactions involved with 

the substrate adenine. 

 Bagaria et al., [25] assigned their low resolution of AAG crystal to belong to the space group of P42212, 
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instead of our present and previous P41212 [26], to analyze the crystal structure based on a mixture of 

indigenous and alien data. They crystallized their Indian AAG material in a condition similar to, but 

different from ours [25] [26]. Strange to us, they did not determine their own Indian AAG amino acid 

sequence, but adopted the Taiwanese primary structure [21][25]. Indian AAG molecular packing may be 

different from our Taiwanese that could manifest itself some way in different space group. Although 

they published the controversial paper of 60 kDa structure in advance [25], this detail worthwhile work of 

more complicated and precise 120 kDa heterotetramer agglutinin structure spurs the continuous study of our 

last research [26].  

 

Methods 

 

Purification 

 

AAG was isolated from the kernels of Abrus precatorius seeds by chromatographies on a Sepharose 6B 

column and a Sephadex G-100 column as described previously [12]. The flow rate of chromatography was 

20 ml/hr and protein concentration was determined by the bicinchonic acid method [27]. The kernels of 200 

g were soaked in 5% cold acetic acid of 1 L overnight and homogenized. After centrifuging at 10,000 g at 4 

ºC for 15mins, the supernatant was collected for subsequently subjecting to the ammonium sulfate fraction 

between 35 and 90 and then centrifuging at 10,000 g at 4 ºC for 20mins. The precipitate was collected for 

dialysis against cold 10mM sodium phosphate buffer, pH 8 at 4 ºC. The dialysis buffer was changed every 8 

hrs for more than 2 days. The supernatant of dialysate was centrifuged at 17,800 g at 4 ºC for 20mins and 

then applied on a Sepharose 6B affinity column (3.0 X 50 cm) pre-equilibrated and washed with 10mM 

sodium phosphate buffer, pH 8. The eluent constiting of abrins and AAG were obtained with the elution 

buffer, the wash buffer containing 100mM D-galactose. Then the precipitate was obtained from the eluent 

subjected to 90% ammonium sulfate and dialyzed and centrifuged as mentioned above. The supernatant was 

loaded onto gel filtration on Sephadex G-100 column (2.2 X 100 cm) with 10mM sodium phosphate buffer, 

pH 8. Two major peaks can be observed and the fractions of AAG, corresponding to the first peak, were 
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pooled and lyophilized. 

 

Crystallization 

 

The formula for crystallization was described in our previous paper [26]. Crystals suitable for X-ray 

analysis were obtained by the sitting drop vapor-diffusion method at room temperature (297 (2) K) [28]. 8 

µl of protein solution at a concentration of 10 mg/ml prepared from lyophilized protein was mixed with 8 µl 

of reservoir solution containing PEG 8000; the precipitant condition was 0.1 M Tris pH 7.5 with 6.5% PEG 

8000 plus 1% sodium azide and crystals appeared after nearly four months. 

 

Data Collection 

 

X-ray Data were collected with a crystal of dimensions 0.30x0.30x0.25 mm that was mounted in a 

cryo-loop manufactured by Hampton Research. After immersed in the cryo-protectant of 20% glycerol and 

80% mother liquor for several seconds, the cryo-loop was mounted on goniometer head inside liquid 

nitrogen stream at 100 K. X-ray diffraction was measured with CCD (ADSC Quantum-Q4R CCD Area 

Detector), on 1 D synchrotron radiation X-ray  (SPring-8 Taiwan Contract Beam-line BL12B2 of NSRRC). 

The crystal-to-detector distance was 215 mm. The space group and unit-cell parameters were determined 

from the well resolved diffraction spots. The data were processed using the programs HKL2000 [29]. The 

agglutinin crystal belongs to the tetragonal system, with unit-cell parameters a = b = 137.05, c = 214.42 Å, 

V =4.0275x106 Å3, Z = 8. A 99.1% complete dataset to 2.47Å resolution of 73,976 unique reflections was 

collected with averaged Rsym of 7.2%, averaged χ2 of 1.153, averaged I/σ of 11.89, and redundancy of 4.1. 

 

Determination of space group and initial phase 

 

The systematic absences, l = 4n + 1, 2, 3 for 00l reflections, and h = 2n + 1 for h00 reflections, indicate 

that there are two possible space groups, namely P41212 or P43212. The ambiguity of space group was 

solved together with the initial phase problem by molecular replacement method using version 1.1 of CNS 
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program [30] with the coordinates of abrin-a [31] as model. An X-ray diffraction data shell from 4 to 15 Å 

was used for the calculation of the cross rotation function with CNS program [32]. The highest two were 

corresponding to a rotation of the model by the rotation angel of θ1=37.9E, θ2=39.6E, θ3=342.1E, and 

θ1=358.1E, θ2=-0.5E, θ3=2.4E in the space group of P41212. After translation searches with CNS program 

[33] according to these two rotation angles, the initial model of AB- and CD- chains of agglutinin was 

established. 

 

Crystallographic Refinement 

 

Structural refinement were performed in the following iteration steps: rigid body refinement [34], 

simulated annealing [35] of residue coordinates, group B factor refinement [34], density modification [36], 

manual manipulation using O program [37], and energy minimization [38]. The crystal data and R factor are 

listed in Table 1. The final R factor using all reflections in the resolution range 2.6 to 30 Å is 20.4%, while 

Rfree using randomly selected 10% reflections which were excluded from refinement is 23.6%. The 

Ramachandran plot including A-, B-, C-, and D-chains is acceptable as shown in Table 1. 

 

Docking 

 

The program SPHGEN identifies the active site, and other sites of interest, and generates the sphere centers 

that fill the site. It has been described in the original paper [39]. The program GRID generates the scoring 

grids [40][41]. Within the DOCK suite of programs, the program DOCK matches spheres (generated by 

SPHGEN) with ligand atoms and uses scoring grids (from GRID) to evaluate ligand orientations [38][39]. 

Program DOCK also minimizes energy based scores [42]. Parameters used in DOCK were modified from 

the paper of protein docking and complementary principle [43].  

  The atomic coordinates of the refined agglutinin structure and the reflection data have been deposited 

with the Protein Data Bank in Japan. The accession numbers for these atomic coordinates are (PDB ID) 2ZR1 

and (RCSB ID) RCSB028317. 
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Results and Discussion 

 

As shown in figure 1, the AAG AB-chains are very similar to the abrin-a molecule, the structure of which 

has been described in detail [31]. A conserved disulfide bond between Cys246 of A (or C)-chain and Cys8 of 

B (or D)-chain holds the two chains tightly as shown in figure 1. An asymmetric unit of AAG crystal 

contains four peptide chains, AB- and non-crystallographical-symmetric related CD-chains, as shown in 

figure 1. The two heterodimers AB and CD are bonded together through hydrogen bonds by using the water 

molecules between them as intermediate bridges. They are identical except two N-acetylglucosamines 

(NAGs) are found in AB-chains, and one in CD-chains. An AAG molecule is a tetramer, consisting of AB 

(or CD) and symmetry-related A'B' (or C'D'). 

 

Structure of the AAG A(or C)-chain 

 

The AAG A(or C)-chain was divided into three folding domains γ1,γ2, and γ3 by reference to the 

description of the abrin-a A-chain [31], and to the CATH database [44]. Figure 2 shows the sequence and 

secondary structures, while figure 3 shows the cartoon of the three domains. Domain γ1 (figure 3(a)), 

composed of residues 1 to 111, consists of two β-sheets and two α-helices. The former β-sheets include six 

strands of adefgh (sheet 1) and two strands of bc (sheet 2), while the latter α-helices include helix A of 

residues 13 to 27, and helix B of residues 91 to 96. The strands and helices alternate in the order 

aAbcdefgBh. In sheet 1, the first strand, a, of the β-sheet 1 and the last strand, h, lie parallel to the 

neighboring strands, d and g, respectively. The four central strands of the β-sheet 1, d to g, are anti-parallel. 

In sheet 2, strands b and c are anti-parallel. The main differences between domains γ1 of AAG and abrin-a 

occurred in N-terminal. The N-terminal of the AAG A-chain is one residue shorter than that of the abrin-a 

A-chain and the first five terminal residues are different. Domain γ2, residues 112 to 195, is dominated by 

five helices (figure 3(b)), C to G. Helix C, composed of residues 112 to 119, D, residues 120 to 141, E, 

residues 147 to 166, F, residues 168 to 180, and G, residues 188 to 194.  Helix C is 3 residues longer than 

that of abrin-a, due to replacement of Thr114 and Arg118 in abrin-a by Asp113 and Lys117 in AAG. Other 
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secondary structures in domain 2 are almost conserved in abrin-a and AAG. Domain γ3 (figure 3(c)), 

composed of residues 198 to 250, contains two helices, H, residues 197 to 206 and I, residues 234 to 238, 

and a β-sheet of two anti-parallel strands, i and j, situated in the order HijI, and a random coil in the C 

terminal part. The last 8 residues in the C terminal of A-chain are severely disordered, and we could not 

determine their structures by X-ray diffraction. 

 

Structure of the AAG B (or D)-chain 

 

The overall folding of the AAG B (or D)-chain and the abrin-a B-chain is very similar, as shown in figure 

1, and the disulfide bond connecting A- and B-chains is conserved. The α-carbon traces of their N terminal, 

residues 1 to 12 differ significantly. The first four residues in the AAG B (or D)-chain are severely 

disordered, and we could not determine their structures by X-ray diffraction. The AAG B-chain is composed 

of two homologous domains, δ1 and δ2, mainly formed by β-sheets and loops. Figure 4 shows the sequence 

and secondary structures, while figure 5 shows the cartoon of the two domains. Domain δ1 (figure 5(a)), 

composed of residues 5 to 140, consists of five anti-parallel β-sheets, one 4-stranded (of ijkl), one 

3-stranded (of aef), and three 2-stranded (strands bm, cd, and gh respectively), and one α-helix of residues 

90 to 94. The strands and helices alternate in the order abcdefghAijklm. Domain δ2 (figure 5(b)), composed 

of residues 141 to 267, consists of four anti-parallel β-sheets, including two 4-stranded (strands ynqr and 

uvwx respectively), and two 2-stranded (strands op and st) sheets.  

Each domain of δ1 and δ2 contains two intra-domain disulfide bonds (Cys25-Cys44, Cys68-Cys85, 

Cys156-169, and Cys195-Cys212), which are conserved in abrin-a. Two NAGs are found in B-chain, but 

only one presents in D chain. The NAGs are bound to B-Asn100 (figure. 6), B-Asn140, and D-Asn140 

respectively. The bond length between NAG and Asn140 is 1.45 Å.   

 

Structure of Active site 

 

The active site is exactly the cleft formed by the intersection of all 3 domains in AAG A (or C)-chain. The 

location of the active site region of the AAG A (or C)-chain is shown in figure 7(a), and enlarged in figure 
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7(b). Five invariant residues (Tyr73, Tyr112, Glu163, Arg166 and Trp197) and five conserved residues 

(Asn71, Arg123, Gln159, Glu194 and Asn195) are located in the active site cleft. The alignment of the 

amino acid sequences shows that all five invariant residues in the active site of abrin-a are absolutely 

conserved throughout the wide range of ribosome-inactivating proteins [19][45]. The similarity of active 

site structures between abrin-a and AAG shows in figure 7(b) that they may work in the same way, but 

could not explain the less than half biochemical activity of AAG. We try to answer this question by the 

28SRNA docking study. 

 

Quaternary Structure of AAG 

 

An AAG molecule is a hetero-tetramer (as shown in figure 8) contains two subunits, ABA'B' (or CDC'D'), 

stabilized by mainly hydrophilic and little hydrophobic forces. The two subunits are in equivalent positions 

of the space group P41212. The transformation from AB to A'B' is (x, y, z) to (1-y, 1-x, 0.5-z), while CD to 

C'D' is (x, y, z) to (y, x, 1-z). The hydrophilic interaction is dominated by inter-subunit hydrogen bonds, as 

listed in table 2. These hydrogen bonds belong to residues of domains γ2 and γ2'. Since the γ2 domain is 

almost made up with α-helices, which hydrophobic side-chains are buried inside, hydrophobic forces 

contribute little to the stabilization of quaternary structure of AAG. The total buried surface area is 9360 for 

ABA'B' and 9460 for CDC'D' interfaces. The gain in hydrophobic energy is -68 KCal/Mol for ABA'B' and 

-72 KCal/Mol for CDC'D'. The buried surface and hydrophobic energy are calculated by Protein interfaces, 

surfaces and assemblies service PISA at European Bioinformatics Institute 

(http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html) [46]. 

 

Docking of 28SRNA to AAG and Abrin-a 

 

As pointed out in the mutagenesis study [21], Pro199 in A- (or C-) chain of AAG impair the activity of 

protein synthesis inhibition. Bagaria et al., [25] suggested that the less toxic nature is because of the fewer 

interactions involved with the substrate adenine. From our docking study, we found Asn200 of abrin-a may 

form a critical hydrogen bond with G4323 of 28SRNA, while corresponding Pro199 of agglutinin is a 
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non-extended residue bound with the cleft in a more compact complementary relationship as shown in 

figure9(c). This may explain the lower toxicity of agglutinin, despite of similarity in secondary structure and 

the activity cleft of two RIPs. The docking model of 28SRNA was artificially deformed at the ribose sugar 

of A4324 from the X-ray crystal structure 430D [47], as shown in figure9(a), so that A4324 of 28SRNA can 

overlap with the adenine of the ricin-adenine complex, 1IFS [48]. Figure 9(b) shows deformed model fit 

well in the active clefts of both abrin-a and AAG. Figures 9(a), 9(b) and 9(c) were generated with UCSF 

Chimera [49]. 

We want to explore whether the difference in the critical residue, bring any change in structure. However, 

we could not observe significant main-chain distortion due to the difference in the 200 residue on higher 

resolution structure. Hence, the reason for the lower toxicity of agglutinin than abrin-a might be due to the 

deformation from inactive to active state of abrin depends on the meta-stable huge helix, composed of helix 

h and helix g. The mutation of Asn200 to Pro200 destroys the mechanism. 

 

 

Conclusion 

 

We have successfully solved the structure of 120 kDa heterotetramer agglutinin AB and CD chains, and 

reduced the R-factor to 20.4% at 2.6 Å resolution data. Ten disulfide bonds, three N-acetylglucosamines, 

and 169 water molecules were found in the successive (2Fo-Fc) map. 22 hydrogen bonds between A (or 

C)-chain and symmetry-related A' (or C') were found. Water molecules were not found in the Bagaria’s 

paper and no subsequent hydrogen bond lengths were listed based on their lower resolution structure [25]. 

Docking study revealed that due to Pro199, agglutinin is unable to form a critical hydrogen bond with 

G4323 of 28SRNA, which is found in the docking result of abrin-a. This may explain the lower toxicity of 

agglutinin than abrin-a, despite of similarity in secondary structure and the activity cleft of two RIPs. 
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Figure Legends 

 

Figure 1 Comparison of AAG with abrin-a (green) molecule. The α-carbon backbone of abrin-a AB-chains 

are superimposed on that of the AAG molecule using least-squares analysis. A P41212 asymmetric unit of 

AAG contains an AB-chain and a CD-chain. Disulphide bonds are plotted as big yellow balls. This figure 

was generated by O program (Jones et al., 1991). 

 

Figure 2 AAG A (or C)-chain sequence & secondary structures.  The symbol of “arrow” represents a 

β-strand, “spiral” represents an α-helix, “dot” represents missing residues, and the alphabets a, b, A, etc, 

denote the corresponding secondary structures in figure 3. 

 

Figure 3 Three domains of AAG A (or C)-chain: (a) domain γ1, (b) domain γ2, (c) domain γ3. These figures 

were generated by O program (Jones et al., 1991). 

 

Figure 4 AAG B (or D)-chain sequence & secondary structures.  The symbol of “arrow” represents a 

β-strand, “spiral” represents an α-helix, “dot” represents missing residues, and the alphabets a, b, A, etc, 

denote the corresponding secondary structures in figure 5. 

 

Figure 5 Two domains of AAG B (or D)-chain: (a) domain δ1, and (b) domain δ2. These figures were 

generated by O program (Jones et al., 1991). 

 

Figure 6 Electron density of the NAG (red) near B 100Asn using the (2Fo - Fc) map contoured at 2.0 F. 

This figure was generated by O program (Jones et al., 1991). 

 

Figure 7 (a) Three domains of AAG A (or C)-chain are drawn as ribbons. Gray, purple, and green indicate 

domain γ1, γ2, and γ3 respectively. Active site residues are drawn in red. (b) Active Site comparison of 



 19

abrin-a (red), AAG A-chain (black), and AAG C-chain (blue). These figures were generated by O program 

(Jones et al., 1991) and UCSF Chimera [32]. 

 

Figure 8 Ribbon presentation of AAG quaternary structure: Red residues indicate the active site location. 

Purple and green residues constitute inter-subunit hydrogen bonds. Domain γ2s are drawn in brown. This 

figure was generated by O program (Jones et al., 1991). 

 

Figure 9 (a) The docking model (blue) and the original 28SRNA (yellow). A4324 was artificially 

manipulated. (b) The docking of 28SRNA (blue) on abrin-a A-chain (purple) and AAG A-chain (yellow). 

(c) G4323 (red) of 28SRNA docking model (blue), is hydrogen-bonded with Asn200 of abrin-a A-chain 

(purple), but has no interaction with corresponding Pro199 of AAG A-chain (yellow). 

 

Tables 

Table 1. Crystal data and refinement statistics for AAG.  

Crystal ID                                   AAG 

Agglutinin A-Chain                                   Residues 1-250 
Agglutinin B-Chain                                    Residues 5-267 
Agglutinin C-Chain                                    Residues 1-250 
Agglutinin D-Chain                               Residues 5-267 
X-ray wavelength (Å)                                     1 
Crystal system                                              tetragonal 
Space group name                                          P41212 
Cell length a (Å) 137.050 
Cell length b (Å)                                           137.050                                                   
Cell length c (Å)                                           214.424 
Cell volume (Å^3)                                        4027462.2             
Cell formula units Z                                        16 
Cell measurement temperature (K)                   100 
Crystal shape                                              octahedron 
Crystal color                                        transparent 
Crystal size (mm^3)                                         0.30x0.30x0.25 
Colvent content (%)                                         72.33 
Matthews coefficient (Å^3/Da)                            4.45 
Unique reflections                                          73976 
Averaged R_sym   (outer sell)                            0.0727 (0.3600) 
Averaged I/FI (outer sell)                                   11.9 (1.8) 
Completeness (%) (outer sell)                            99.1 (98.1) 
Redundancy  (outer sell)                                    4.1 (3.6) 
Resolution range of collection (Å)                      2.47 ~ 30.0 
Resolution range of refinement (Å)                    2.6 ~ 19.88 
R_cryst (outer sell)                                       0.204 (0.211)       
R_free (outer sell)                                      0.236 (0.256)       
No. of protein atoms                                        8062 
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No. of water molecules                                      169 
No. of NAG atoms                                         42 
rms deviation from ideal bond length (Å) 0.009 
rms deviation from ideal bond angle (º)                         1.3 
Isotropic thermal factor restraints                      rms    sigma 
              Main chain bond (Å^2)                                  1.87 ;  1.50 
              Main chain angle (Å^2)                                 2.84 ;  2.00 

Side chain bond (Å^2)                                  2.87 ;  2.00 
               Side chain angle (Å^2)    3.90 ;  2.50 
Ramachandran plot [50] (% of residues)  

          in the most favored regions (A, B, L)  81.7 

            in the additionally allowed regions 
(a, b, l, p) 

18.3% 

 

 

Table 2. Hydrogen bonds between inter-subunit with symmetry-related  AA' and CC' chains. 

Donor Acceptor D….A (A) Donor Acceptor D….A (A) 
A Gln 121 NE2 A’Gln121 OE1 2.85 A Gln121 NE2 A’Gln121 OE1 2.85 
A Arg 25 NH1 A’Glu148OE2 2.77 A Arg125NH1 A’Glu148OE2 2.77 
A Leu 130 N A’Glu131OE2 3.15 A Leu 130 N A’Glu131OE2 3.15 
A Arg 134 NH2 A’Asn 180 O 2.86 A Arg 134 NH2 A’Asn 180 O 2.86 
A Arg 134 NE A’Asn 181 O 3.06 A Arg 134 NE A’Asn 181 O 3.06 
A Gln 135 NE2 A’Ser 127 OG 3.07 A Gln 135 NE2 A’Ser 127 OG 3.07 
C Gln 121 NE2 C’Ser 145 O 2.75 C Gln 121 NE2 C’Ser 145 O 2.75 
C Ser 127 OG C’Gly 143 N 2.95 C Ser 127 OG C’Gly 143 N 2.95 
C Arg 134 NR C’Tyr57    OH 2.64 C’ Arg 134 NR C Tyr57    OH 2.64 
C Gln 135 NE2 C’Gln135 O 2.94 C’ Gln 135 NE2 C Gln135 O 2.94 
C Ser 145 N C’Gln121OE1 2.59 C’ Ser 145 N C Gln121 O 2.59 

 



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8



A

B

C

Figure 9


	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

