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ABSTRACT

A brief review is given of the development of the dynamical theory of x-ray diffraction from crystals.
It begins with the geometrical theory and kinematical theory and then goes on to the dynamical theories,
where the plane-wave and spherical-wave approximations for perfect crystals and distorted crystals are
discussed. The statistical dynamical theory and the calculation schemes for multiple diffraction and grazing

incidence geometry are also reviewed.
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l. Introduction

X-rays, discovered by Wilheim Conrad Rontgen

more than one hundred years ago, have had a tremen-
dous impact on the evolution and development of
modern sciences and technologies, where x-ray diffrac-
tion from crystals has played an important role in basic
research and industrial applications. For example, x-
ray diffraction from single crystals makes possible
crystal-structure determination and lattice defect map-
ping; x-ray diffraction from polycrystalline materials
(powders) provides various means of phase identifica-
tion, structure recognition, and materials characteriza-
tion; and x-ray diffraction from surface/interface
reveals quasi two-dimensional structures and related
phenomena in magnetic, metallic, semiconducting, su-
perconducting, and even biological systems. More-
over, with the advent of synchrotron radiation, x-ray
diffraction from perfect crystals has become important
in designing x-ray optical components for beamlines.

1996 marked the centennial of the discovery of
x-rays, but it is not too late to celebrate this great
achievement in‘science. Thus, it seems appropriate to
give the following review of the development of x-ray
diffraction theories, especially the dynamical theories,
based upon which various diffraction mechanisms have
been understood and useful experimental techniques
designed.

Il. Geometrical/Kinematical Theories
of X-ray Diffraction

Theoretical investigation into the propagation of
electromagnetic waves in a three-dimensional periodic
array of dipoles, a few angstroms (A) apart, was ini-
tiated by P. P. Ewald in 1911 (Ewald, 1962a), even
before the discovery of x-ray diffraction by Laue,
Friedrich, and Knipping (Ewald, 1962a). This theory
of the dispersion of light in crystals later formed the
basis for the then called ‘dynamical theory of x-ray
diffraction’ (Ewald, 1916a, 1916b, 1917, 1937).

In 1912, soon after Friedrich’s and Knipping’s x-
ray diffraction experiments on a copper sulfate crystal,
Laue derived a simple theory based on the diffraction
and interference of waves in three-dimensional grat-
ings. This is Laue’s well-known geometrical theory,
which specifies diffractions via three vector equations:

G (5-5)=hA, be(5-5p)=kA,
TeG-igp)=1A, )

where @, ; ,and ¢ are the basis vectors of a crystal
lattice, s and s, stand for the scattered and the incident
unit wavevectors, and A is the x-ray wavelength. Here,
h, k, and [ are integers for constructive interference.

This theoretical treatment is also called Laue’s
kinematical theory because Laue considered x-ray
diffraction by a simple space lattice as the scattering
of a set of plane waves by the lattice points, where these
lattice points become the centers of spherical scattered
wavelets. The following assumptions were made by
Laue to simplify this scattering problem: (1) The
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interaction between the incident waves and the scat-
tered waves is neglected; (2) each scattered wave trav-
els through the crystal without being rescattered by
other lattice points; and (3) no absorption is considered
for both the incident and the scattered waves within
the crystal. As a result, the scattered amplitude is
governed only by the phase factor determined by Eq.
(1). The corresponding scattered intensity then takes
the familiar form of sin’ny/sin’y, which is usually
encountered in optics for interference (James, 1962).

lll. Darwin’s Kinematical Theory and
Extinction

Laue’s kinematical theory is not rigorous in the
sense that multiple scattering of x-rays by the various
lattice points, or more precisely, the atoms in a crystal,
is not considered and the law of the conservation of
energy is violated becasue the energy of the incident
wave passing through the crystal is treated as being
constant. From 1913 to 1914, C. G. Darwin developed
a rather complete theory (Darwin, 1914a, 1914b), which
took into account multiple scattering in the diffraction
process. In his theory, x-ray reflection from a crystal
is regarded as successive reflections of x-rays by the
many parallel atomic planes which form the crystal.
For simplicity, multiple scattering within each plane
is neglected. Suppose that T; and R; are the amplitudes
of the incident and reflected waves, respectively, at the
Jj-th plane. By considering the interchange of energy
between the incident and the reflected beams, for
example, the contribution of R; through the reflection
of T; by the j-th plane and the transmission of R;,;
through the j-th plane, the following recurrence rela-
tions can be established:

Ri=—iqTi+(1—igo)e R}, 2)
Tj=(1-igo)e™*T=i'q e **Ry1, 3

where —igq is the reflection coefficient, (1-iggy) a trans-
mission coefficient, and ¢ and g, are defined as (James,
1962)

g=—(NdM/sin@)f-r, (4a)

go=—(NdA/sinB)fyr,. (4b)
N, d, and f are the number of atoms per unit volume,
the inter-planar distance, and the atomic scattering
factor, respectively. 20 is the scattering angle for the
given reflection, and f0=f(%— =0). The phase factor ¢
is equal to 5~dsin®. ¢ is the reflection coefficient
from the lower side of the j-th plane, and r, is the classic

radius of the electron. Equations (2) and (3) lead to
the amplitude ratio given below:

R -

R@O)=>0= . 3)
g0+vE/ @+ -7

where v is defined as (2a/A)dsin@=mm+v; v=0 as 6=6,

(Bragg angle). Accordingly, the integrated intensity

from a perfect crystal plate of both o- and 7-polariza-

tion is

1+ \ cos290‘

2

1=fR(9)d9-i NA? rfeo)|.

" 37 sin 26,

which is Darwin’s well-known formula. This is in
contrast to the expression for imperfect crystals:

NA3
" sin 26,

o)+ 2 ™

That is, Darwin’s treatment is a dynamical rather than
kinematical approach. As can be seen, Eq. (6) differs
from Eq. (7) in the power of |f(26)|. This fact has been
the source of the discrepancy between the measured and
the theoretical integrated intensities in many x-ray
diffraction experiments. To explain this discrepancy,
Darwin proposed a mosaic structure for crystals; i.e.,
an imperfect crystal consists of many slightly
misoriented perfect crystal blocks. Darwin then pre-
dicted the so-called primary extinction (i.e., the de-
crease in the diffracted intensity) due to the total
reflection of x-rays from perfect crystals and the sec-
ondary extinction due to gradual reflection of x-rays
from separate crystal blocks satisfying Bragg’s law.
This consideration leads to Eq. (6) for primary extinc-
tion and Eq. (7) for secondary extinction. It should
be noted that the idea of mosaic crystals is only an ideal
picture for real crystals which accounts for the discrep-
ancy in actual intensity measurements. In reality, it
is difficult for real crystals to form such a mesoscopic
structure.

IV. Ewald’s Dynamical Theory

Ewald’s dynamical theory deals also with the
intensity of x-ray reflection by crystals by considering
the dynamical interaction of the scattered waves and
the crystal lattice. Independent of the work of Darwin,
Ewald expressed the laws of crystal optics in terms of
the discrete lattice, instead of in terms of the con-
tinuum. ‘According to Ewald (1916a, 1916b, 1917,
1937), when x-rays propagate in a crystal, each lattice-
point of the crystal acts as an oscillating dipole, which
in turn radiates an electromagnetic wave (EM wave).

—432—



Dynamical Theory of X-ray Diffraction

Therefore, the dipole wave and the EM wave form a
dynamically self-contained system, where the
wavevector K of the dipole wave and the wavevector
k of the EM wave are related by K=k(1+€), where
€ is the deviation of the refractive index from unity.
In this self-contained system, a dipole wave in the
lattice is accompanied by an EM wave travelling at a
speed very close to the speed of light, whose amplitude
is inversely proportional to the difference between K
and k, i.e., ke.

The relation between the moment p of a dipole
and the excited EM field E is governed by

T 2y~ 1 omk, 7
E= v ;pimeme , (€))

where p,, is the component perpendicular to the
wavevector K, . Since E=——"12(w2—a)02)§ is the
e

steady-state solution of the equation of motion of the
dipole with @y as its natural frequency, the maximum
dipole moment b satisfies the following relation:

b=-5% EM%, 9)

where d=1/ [z—m—z(a)z—woz)V]=1—n, the correction in the
e

refractive index n.

For a simple Bragg reflection, the so-called 2~
beam (O, G) case, the dispersion equation, derived from
the coefficients of Eq. (9), takes the form

—61—0 + % = % . (10)
The starting points of the wavevectors E, the so-
called wave-points according to Ewald, therefore lie
on a certain hyperboloid. The excitation of dipole
waves to generate EM waves, namely, the excitation
of the dispersion surface, depends on the crystal bound-
ary. As is usual in optics, the tangential components
of the wavevectors inside and outside the crystal at the
boundary must be continuous for phase matching. This
leads to the rule of selecting the proper wave-points
on the dispersion surface. By applying appropriate
boundary conditions for the generated EM waves, the
intensities of the direct reflection O and the diffraction
G can be calculated.

It should be noted that the development of the
dynamical theory of Ewald was a formidable task in
the early 1900s because Fourier transform was not
available that time.

\
V. Laue’s Dynamical Theory

Soon after the discovery of electron diffraction
in 1927, H. A. Bethe developed a dynamical theory

of electron scattering (Bethe, 1928), analogous to
Ewald’s x-ray dynamical theory. In Bethe’s theory,
the electrons are taken as the scatters with a continuous
three-dimensional periodic distribution of the internal
crystal potential. This work inspired Laue and a dif-
ferent version of dynamical theory was then developed.
In his treatment, in place of the arrays of dipole reso-
nators, Laue considered a crystal as a continuous three-
dimensional periodic complex dielectric medium which
represents continuous electron density with positive
charges located at the centers of atoms (Laue, 1931).
The polarization of the crystal by the electric field of
the incident wave depends on the strength of the local
electric field.

Based on the macroscopic point of view, Laue
applied Maxwell’s equation to describe x-ray diffrac-
tion from a crystal. The solutions to Maxwell’s equa-
tion are the Bloch functions, expressed as

D(?,t):%fc exp (0t — 27 K, *7) a1
for electric displacements, where K, is the wavevector
of the G-reflection satisfying Bragg’s law, i.e.

Ks =Ko+ (12)
for every G-reflection involved.

Let the electric susceptibility, y/4x, be expressed
as a Fourier series:

X= gxcexp [-27(g = 7)1, (13)
where
r A2
Xo=-"%7Fo. (14)

Here, F is the structure-factor of the G-reflection, r,
2

is the classic radius of the electron (i.e. re=—e—2 ), Ais
mc

the x-ray wavelength and V the volume of a crystal unit
cell.

After substituting the Bloch functions and the
electric susceptibility into Maxwell’s equations, the
Fourier components satisfy the so-called fundamental
equation of wavefield given below:

Ki-k*— —
- DG=§ZG—LDL(L?G) ;
G

(15)

where EL(J_;G y represents the vector component of Dy,

perpendicular to the wavevector K; and k=1/A.
Employing the approximation D =E at x-ray fre-

quencies (Laue, 1931) and considering the polarization
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of x-rays, the fundamental equation can be written in
the following matrix form:

D[ E =0,

where E is a column vector, expressed horizontally
as E =[EsoEz0E 6 Erc,--Eoc, Exq,.,), and @ is a (2NX
2N) complex matrix, with the diagonal terms equal to
D(i,i)=xo—20; and the off-diagonal terms @(i,j)=
Xi—iPizj With 205=( K —kz)/k N is the number of Bragg
reflections mvolved ‘and o and 7 are the polarization
unit vectors perpendicular to and lying in the plane of
incidence, respectively. The polarization factor p;_; is
the product of the corresponding polarization unit
vectors. The 2¢’s are the eigenvalues, which can be
determined from the dispersion equation det[®]=0 for
non-trivial solutions for E , where det stands for a
determinant. The real parts of the 2&’s describe the
dispersion relation between the wavevectors and the
crystal angular settings while the imaginary parts yield
the absorption. The fundamental equation also gives
the eigenvectors, i.e., the ratios of the wavefield
amplitudes among the diffracted beams. Their absolute
amplitudes can be determined from the boundary
conditions usually adopted in electromagnetism.
Hence, the diffracted intensities can be calculated
accordingly.

Several review articles and books have been written
based on this rather simple version of dynamical theory
(Zachariasen, 1945; Borrmann, 1959; Laue, 1960;
James, 1962, 1963; Ewald, 1962b; Kato, 1963a, 1974;
Batterman and Cole, 1964; Authier, 1970; Pinsker,
1978; Chang, 1984; Authier et al., 1996).

VI. Spherical-wave Dynamical Theory

The dynamical theories discussed above are mainly
for x-ray diffraction from perfect crystals using plane-
wave approximation. In 1959, Kato and Lang inves-
tigated interference effects in dynamical diffraction on
a wedge-shaped crystal and found that the observed
interference patterns could only be accounted for if the
incident wave was a spherical wave (Kato and Lang,
1959). Kato then developed the spherical-wave version
of dynamical theory (Kato, 1961a, 1961b, 1968a,
1968b).

The essential point of the spherical-wave theory
is that the x-ray beam divergences of laboratory sources
are usually one-order of magnitude or more larger than
the FWHM of a dynamical diffraction. In other words,
the actively excited region is not a small portion but
the entire dispersion surface as far as the dynamical
excitation of the crystal is concerned. Therefore, all
the wavepoints on the dispersion surface are excited,

and the interactions among the various x-ray waves
must be considered in the dynamical diffraction pro-
cess. Two-dimensional integration over those wave-
points in the reciprocal space is then needed for all the
wavefield amplitudes. With the aid of Kelvin’s sta-
tionary-phase approximation (Kato, 1974), the expres-
sions for diffracted intensities involve zero-th and
first-order Bessel functions of the first kind. The
derivation of this theory is very lengthy, and interested
readers are advised to'refer to Pinsker’s book (Pinsker,
1978).

Vil. Dynamical Theories for Dis-
torted Crystals

The development of a theory for dynamical dif-
fraction from distorted crystals was initiated by Pen-
ning and Holder (1964, 1968a, 1968b) and then by Kato
(1963b, 1964a, 1964b). Ray approximation in the
optics of the visible spectra was adopted to handle the
scattering from areas with deformation gradients. This
approach is useful although in interpreting the experi-
mental results, it is not very general as far as the .
application is concerned. A generalized theory, which
could cover x-ray diffraction from both perfect and
distorted crystals, was then needed. In 1962 Takagi
proposed the fundamental equations for distorted crys-
tals based on Darwin’s recurrence relations. These
were called Takagi equations or, later, Takagi-Taupin
equations (Takagi, 1962, 1969; Taupin, 1964). Solu-
tions to these equations for transmission (Laue) cases
and reflection (Bragg) cases were then published by
Authier and Simon (1968), Afanasiev and Kohn (1971)
and Uragami (1969), respectively.

For slightly distorted crystals, the amplitudes of
the electric displacement are a function of the position
inside the crystal. Taking this assumption into account
in Maxwell’s equations, Takagi derived the following

- fundamental equations of wavefields for slightly dis-

torted crystals (Takagi, 1962):

aD,,

_,% £ 2 =xoDo +pX_cDg (16)
oD

~i% = o= %) +PXeDo a7

where s, and s are the unit vectors along the refracted
and reflected beams, respectively. p is the polarization
factor, which equals unity for o-polarization and cos26,
for m-polarization. The geometrical factor ¢ is de-
fined as

og=(Kg'~K*)Ik, (18)

~434 -



Dynamical Theory of X-ray Diffraction

which is the unknown variable to be determined.

For a crystal with large lattice distortion, the
Takagi-Taupin equations are still valid, except that
now the interbranch scattering due to the jumping of
excited wavepoints on the dispersion surface should be
considered. This is different from the Eikonal theory
(ray optics) in that the lattice distortion is so large that
it is no longer possible to define a ray. Therefore, the
Eikonal theory of optics is invalid. In this case, the
wavefield amplitudes through the largely distorted
crystal may be evaluated step by step by means of the
Takagi-Taupin equations using a grid, as proposed by
Authier et al. (1968), to divide the diffraction Borrmann
fan of a given reflection (Borrmann, 1959) into a large
number of small cells. Within each cell, the lattice
distortion is considered to be small, so that the Takagi
theory is still valid.

VIIl. Statistical Dynamical Theory

Statistical dynamical theory is an extension of
Kato’s extinction theory (Kato, 1976a, 1976b, 1979,
1980a, 1980b, 1980c). The aim was to provide a unified
theory which could deal with primary and secondary
extinction simultaneously, namely, a theory valid for
perfect and imperfect crystals. The theory first derives
the energy-transfer equation (or reflection-power trans-
fer) from Maxwell’s (wave) equation for a small por-
tion of the crystal. This equation is of a kinematical
nature. The theory then considers the coupling between
these kinematical equations of different portions and
leads to the dynamical theory. In this approach, x-ray
diffraction from a crystal is considered as an ensemble
of various routes needed for x-ray diffraction to occur
in the Borrmann-fan triangle. Within the triangle, there
are millions of routes for successive x-ray reflections
with a minimum step equal to an interdistance of atomic
planes. Therefore, the diffracted intensities are the
ensemble average of all the individual diffracted in-
tensities associated with the routes mentioned. With
this scheme, Kato was able to obtain an analytical
expression for the intensities of x-ray diffraction for
perfect and imperfect crystals, or more precisely, for
primary, secondary, and even mixed extinction (Kato,
1980b, 1980c).

IX. Dynamical Theories for Many-
beam Cases

Many-beam diffraction, or so-called multiple dif-
fraction, is a combination of several two-beam diffrac-
tions. Hence, one can regard multiple diffraction as
generalized two-beam diffraction. Diffraction theories
for multi-beam cases have, therefore, been derived

from the two-beam diffraction theories. In 1928, Mayer
(Chang, 1984) attempted to account for his four-beam
experiments using Ewald’s dynamical theory. Later
Renninger (Renninger, 1937) presented a semi-quan-
titative theoretical treatment for Renninger reflection.
Also, Ewald (1937) formulated the dispersion equation
and the excitation of wavefields in crystals for 3-beam
dynamical diffraction. In 1958, Kato (Kato, 1958)
derived a matrix formulation for multi-beam diffrac-
tion and Laue then applied his dynamical theory to
3-beam cases (Laue, 1960). Other contributors to this
particular theory were Saccocio and Zajac (1965a,
1965b), Hildebrandt (1966), Joko and Fukuhara (1967),
Ewald and Heno (1968), Heno and Ewald (1968), and
many others. It should be noted that Ewald and Heno
gave a detailed analytical expression for the dispersion
relation of wavevectors in reciprocal space and dis-
cussed the relationship between the dispersion surface
and reflection phases. A relevant theory was also given
by Penning and Polder (1968a, 1968b). Recently, a
dynamical approach, interpreting the diffracted inten-
sity in Bragg type multiple diffraction, has been pur-
sued by Colella (1974), and Chang (1982a, 1984).

Kinematical theories for multi-beam diffraction,
involving equations of power-transfer, were reported
by Moon and Shull (1964), Zachariasen (1965), Caticha-
Ellis (1969), and Chang (1982b).

The formalism of the dynamical theory for mul-
tiple diffraction is exactly the same as that for 2-beam
cases (see Sec. III). However, unlike the case in 2-
beam cases, analytical expressions for dispersion re-
lation and diffracted intensities are difficult to derive
in multi-beam cases because of complications intro-
duced by the presence of the third reflection and by
the polarization factors for three-beam diffraction
geometry. Therefore, numerical calculation becomes
a must in interpreting experimental results. Usually,
in dynamical calculations, the o-, #-polarization vec-
tors, and the wavevector K of a given reflection are
defined as being mutually orthogonal to one another,
and the polarization unit vectors serve as the reference
directions in analyzing the components of the electric
displacements of the x-ray wavefields. Details about
the theory and computing scheme can be found in the
references (Colella, 1974; Chang, 1984).

X. Dynamical Theories for Grazing
Incidence

Grazing incidence x-ray diffraction (GIXD) from
crystal surfaces and interfaces has been widely used
in surface structure determination. This kind of dif-
fraction takes place when the incident angle 6; is set
close to the critical angle of the total external reflection.
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The beam diffracted by a set of atomic planes perpen-
dicular to the crystal surface is specularly reflected by
the crystal surface in a direction tilted slightly off the
surface. A dynamical formulation was first derived by
Afanasiev and Melkonyan (1983) for dynamical GIXDs.
The main difference between it and the conventional
theory (wide-angle) is that the specularly reflected
beams are considered in the diffraction process. That
is, the specularly reflected and diffracted wavefield
amplitudes are included in the boundary conditions.
Further theoretical development along this line includes
the geometrical analysis of GIXD (Durbin and Gog,
1989), and extension of the GIXD theory to multi-beam
GIXDs (Hung and Chang, 1989; Tseng and Chang,
1990; Stepanov and Ulyanenkov, 1994).

The reciprocal lattice of a truncated crystal sur-
face is a combination of the 2-dimensional reciprocal
rods of the surface and the 3-dimensional discrete
reciprocal lattice points of the crystal bulk. To analyze
the quasi 2-dimensional structures of surfaces/inter-
faces from GIXD data, very often, the surface normal
scan (the so-called crystal truncation rod scan) in the
reciprocal space is employed. Interpretation of the
diffracted intensity distributions of rod scans has been
a difficult task in terms of the dynamical theory of
GIXD. Attempts have been made (Colella, 1991;
Caticha, 1993) in recent years, but only specular rods
involving no surface in-plane momentum transfers can
be accounted for using Darwin’s dynamical theory
(Nakatani and Takahashi, 1994; Caticha, 1994). The
other type of rod scan, the non-specular rod, which
involves surface in-plane momentum transfers, still
poses a problem in developing a suitable dynamical
theory for GIXD in general. The difficulty, according
to Gau and Chang (1995), is the non-linear equations
of high-order polynomials involved in the dispersion
surface and the angle-dependent off-diagonal elements
of the scattering matrix @. Numerical solutions to the
non-linear dispersion equations can only be found
asymptotically (Gau and Chang, 1995) by means of
numerical calculations. Although the numerical analy-
sis scheme proposed is useful in describing the inten-
sity distributions of rods, it is very time-consuming to
perform this type of calculation. A directly solvable
scheme for this particular problem is desired. Very
recently, Stetsko and Chang (1997) proposed a gener-
alized dynamical calculation algorithm which can handle
all of the wide-angle and grazing-angle x-ray diffrac-
tion from bulk crystals and surfaces/interfaces. The
above stated difficulties can be eliminated by adapting
a Cartesian coordinate system with one of the axes, say

the z-axis, along the crystal surface normal to define
the polarization unit vectors. The angle-dependent off-
diagonal elements are automatically absorbed into the
eigenvectors of the fundamental equations of wavefields.
The eigenvalue equation then becomes a polarization-
free linear equation which can be easily solved.

This generalized algorithm has recently been
applied to calculate surface nonspecular rods involving
three reciprocal lattice points and wide-angle three-
beam diffractions. Satisfactory and correct results have
been obtained. Details of these calculations will be
reported elsewhere (Chien er al.').

Xl. Discussion and Concluding Re-
marks

We have briefly reviewed the geometrical/kine-
matical theories and dynamical theories for various
situations, such as perfect crystals, distorted lattices,
multi-beam cases, and grazing incidence. The geo-
metrical and kinematical theories are, in general, valid
for x-ray diffraction in imperfect crystals while the
dynamical theories is applicable to cases involving
perfect or nearly perfect crystals. The criterion for
applying these theories is determined by the parameter
A defined as

A=r ATIFGU(V\/ | Yo¥s ] ),

where r, and T are the classical radius of electron and
the crystal thickness, respectively. V is the volume of
the unit cell, ¥, and ¥; are the direction cosines of the
incident beam O and the diffracted beam G with respect
to the inward normal to the crystal surface. When the
crystal is small, or the reflection involved is weak, or
the radiation used is more penetrating, the correspond-
ing A is small, i.e., A<1. Under this circumstance, the
kinematical theory is suitable for describing the dif-
fraction mechanism. Otherwise (A>1), the dynamical
theories should be used. Since the dynamical theories
are much more fundamental than the kinematical ones,
the kinematical theories are special cases of the dy-
namical theories. By making appropriate assumptions
and simplifications, the dynamical theories can cer-
tainly lead to the same kinematical formalism. More-
over, the quantum theories of x-ray diffraction are an
extension of the dynamical theories. Due to space
limitations, we will not discuss them here. In any case,
the formation of x-ray wavefields, the excitation of
modes of wave-propagation, the dispersion relation,
and the dynamical equilibrium of the wavefields in the

! Chien, H. C., T. S. Gau, S. L. Chang, and Y. Stetsko, “Dynamical calculation of crystal truncation rods using a Cartesian coordinate

system.” In preparation.
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crystal lattice are the essence of x-ray diffraction and
have contributed importantly to our understanding of
x-ray crystal optics, to the design of advanced x-ray
diffraction apparatus, and to solving long-standing
difficult problems, such as extinction and x-ray phase
problems.

The author is indebted to the National Science
Council for financial support provided during the course
of research related to dynamical x-ray diffraction
phenomena.
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