Proc. Natl. Sci. Counc. ROC(A)
Vol. 19, No. 4, 1995. pp. 309-320

The Design and Implementation of a Distributed

Semaphore Facility: DISEM

CHa10-CHUNG WU, Hsiou-MiaN LIEN, anp Sayan-Ming YUAN

Department of Computer and Information Science
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

(Received October 21, 1993; Accepted November 24, 1994)

ABSTRACT

Most operating systems provide a semaphore mechanism to users because the semaphore is an
excellent, classic mechanism for synchronizing concurrent processes. This paper describes the design
and implementation of a distributed semaphore facility called DISEM (DIStributed SEMaphore). DISEM
supports a semaphore mechanism in a distributed workstations environment, and it is implemented at the
application level for workstations running a version or a derivative of the UNIX operating system which
supports both BSD sockets and System V IPCs. The use of the DISEM system is made entirely transparent.
It enables use of many of these library functions to be as simple across machine boundaries as within
a single machine. In addition, it also provides fault tolerant service in case a workstation crashes. In
order to distribute the server load and to enhance the reliability of the system, we distribute the shared
data onto several servers. In other words, the distributed semaphores in the system are not managed by
a central server, but rather partitioned and served by several servers. The preliminary performance results
indicate that the effectiveness of our DISEM system is acceptable. Generally speaking, DISEM is a useful
and portable facility for supporting a distributed semaphore in a local area network of workstations.

Key Words: distributed system. interprocess communication, synchronization, distributed semaphore,

fault tolerance

. Introduction

Distributed systems have become more and more
attractive in recent years because of the drop in hard-
ware costs and advances in computer network technolo-
gies. A distributed application usually contains several
concurrently executing processes which may be ex-
ecuted in different hosts. Usually, there is direct or
indirect interaction between these processes. To ensure
correct cooperation among these concurrent processes,
a distributed system must provide mechanisms for
process synchronization and communication. There
are many problems related to synchronization in a
distributed system, for example, serialization of con-
current access to shared objects by multiple processes,
synchronization between the sender and receiver of a
message, and specification and control of the joint
activity of cooperating processes, and so on. There-
fore, process synchronization is crucial for the design
of a distributed system.

Conventionally, semaphore is a very powerful and
classic mechanism for handling process synchroniza-
tion and mutual exclusion control. Most modern

operating systems provide such a mechanism, for ex-
ample UNIX System V IPCs. However, there are only
few commercially available semaphore facilities for
distributed systems (Fleisch, 1986). Hence, we design
and implement a distributed semaphore facility to sup-
port process synchronization and mutual exclusion in
a distributed environment.

Distributed systems have several advantages over
centralized ones. The major advantages include effi-
cient utilization of resources, the ability to enhance the
system gradually, and computation speedup. In addi-
tion, an important and desirable property of a distrib-
uted system is its ability to tolerate failures (Schneider,
1986). This stems from the fact that most failures in
such systems are only partial, and that there may be
enough resources left to.allow operation to proceed in
spite of failures. Therefore, we have introduced a new
architecture which best exploits this capability into our
Distributed Semaphore facility DISEM. The main
advantages claimed for the new architecture are simple
strategies and low network traffic overhead for fault
tolerance.

The remainder of the paper is organized as fol-

—-309 -

C.C. Wu et al.

lows. In the next section, we will give the definitions
of the distributed semaphore that will be used in the
remainder of the paper and review other related works.
Section III states the overall strategies of our design.

In Section IV the detailed implementation of DISEM

is described; moreover, the user interfaces and the
performance evaluation of our DISEM are presented.
Finally, we conclude the paper by emphasizing the
important achievements of the project and our plans
for future work in the last section.

Il. Definitions and Related Works

This section gives some basic definitions for the
semaphore and considers some examples to illustrate
its usages. Some corresponding works on semaphores
are also reviewed in this section.

1. Definitions and Notations

Semaphores are very powerful synchronization
primitives. They were first put forward by the Dutch
theoretician Dijkstra (1965, 1968) as an alternative
means to reduce the complexity involved in achieving
mutual exclusion of n processes using busy waiting.
Semaphores can be used to prevent two or more pro-
cesses from accessing a shared resource simultaneously;
our distributed semaphore is also used in the same way.
The processes can synchronize their operations on the
different hosts by using the distributed semaphores.

A semaphore S is an integer variable that, apart
from initialization, is accessed only through two stan-
dard atomic operations: P and V. P and V are also
sometimes called “wair” and “signal”, respectively.
The classical definitions of P and V are

P(S): while S<0 do skip (nothing)
S:=5-1;
V(S§):S:=8+1;

Modifications to the integer value of the semaphore in
the P and V operations are executed indivisibly. That
is, when one process modifies the semaphore value, no
other process can simultaneously modify the same
semaphore value. In addition, in the case of P(S), the
testing of the integer value of S(S<0) and its possible
modification (S:=S—1) must also be executed without
interruption. The semaphore system calls in the UNIX
System V are a generalization of Dijkstra’s P and V
operations, in that several operations can be done
simultaneously, and increment and decrement opera-
tions can be done using values greater than 1.

Semaphores can be divided into two classes:binary
semaphores and general semaphores. A semaphore is
called a binary semaphore if it assumes only binary
values 0 or 1. A semaphore is called a general or
counting semaphore if it assumes arbitrary non-nega-
tive integer values. Our distributed semaphores are
implemented as general semaphores.

2. Usages of Semaphores

Usually, semaphores are used to deal with the n-
process critical-section problem. The n processes
share a common semaphore, mutex (standing for mutual
exclusion), initialized to 1. Each process P; is orga-
nized as follows.

repeat
P(mutex);
critical section
V(mutex);
remainder section
until false;

In addition, semaphores can also be used to solve
various synchronization problems. For example, con-
sider two concurrently running processes: P; with a
statement S, and P, with a statement S,. Suppose that
we require that S, be executed only after S; has been
completed. We can implement this scheme readily by
letting P; and P, share a common semaphore synch,
initialized to 0, and by inserting the statements

St
V(synch);,

in process P;, and the statements

P(synch);
S2;

in process P,. Since synch is initialized to 0, P, will
execute S, only after P; has invoked V(synch), which
is after §;. In addition, to control resource allocation,
general semaphores are useful. The initial value of a
semaphore S can be set to be the number of units of
resource available; P(S) or V(S) is, respectively, ex-
ecuted when a unit of resource is allocated or is re-
leased.

Furthermore, semaphores can be used to solve
some classical synchronization problems, such as the
bounded-buffer (producer-consumer) problem, the
readers-writers problem, and the dining-philosophers
problem. These problems are important because they
can be modeled for a large class of concurrent control

-310-

DISEM: A Distributed Semaphore Facitlity

problems. An example of using a distributed sema-
phore to resolve the dining- philosophers problem will
be given in Appendix.

3. Related Works

In distributed systems, the implementation of
mechanisms for communication and synchronization
has traditionally taken one of two approaches: the
application-level based approach and OS (Operating
System) kernel-level based approach. The distributed
System V IPCs in Locus (Fleisch, 1986) is one of the
early attempts in realizing a distributed semaphore
mechanism. It is an OS kernel-level implementation
and concerns itself with augmenting the Locus distrib-
uted operating system.

An important issue in any distributed shared
memory system is synchronized access to shared data.
Therefore, there are many distributed shared memory
systems which use distributed semaphores to synchro-
nize access to shared data. The implementation of
distributed shared memory on a hypercube as explained
by Li and Schaefer (1989) guarantees coherence of
shared memory using message passing to provide dis-
tributed semaphores for synchronization. Their algo-
rithms allow ownership of semaphores to change
dynamically; that is, semaphores can migrate to the
sites where they are accessed. However, this design
decision is based on low latency of message transmis-
sion on Intel iPSC/2 hypercube multicomputers. Clouds
provides the distributed semaphore mechanism to
support the abstraction of a distributed shared memory,
as described by Khalidi et al. (1989). Unlike Li’s
scheme, which uses the dynamic approach, Clouds’s
semaphore operations are performed statically at the
owner site.

Ho(vever, the usefulness of the systems described
above is limited because they are tailor-made for specific
environments and require modification of the under-
lying kernels. Currently, most of the popular engineer-
ing workstations are being marketed with one or both
of the predominant UNIX systems (BSD and System
V). For the foreseeable future, we think UNIX will
continue to be the operating system preferred by most
users. Since new facilities for distributed and parallel
processing are also being developed, to require changes
to the kernel has become a costly and self defeating.
An alternative is to develop these facilities entirely at
the application level.

Consequently, the DISEM design requires no
changes to the UNIX operating system kernel. DISEM
is implemented entirely at the application level, so it
has the advantage of portability for all workstations
running a version or a derivative of the UNIX operating

system which supports both BSD sockets and System
V IPCs.

Ill. Design Issues

In this section, we describe the strategies used to
implement our distributed semaphore facility. In our
strategies, a high level of fault tolerance is achieved
by redundantly storing data in two independent sites.
The main advantages claimed for our strategies are the
relative simplicity of the strategies and reduction of
overhead due to fault tolerance.

1. Descriptions of Our Approach

A semaphore can be thought of as a shared vari-
able. However, for (loosely coupled) distributed sys-
tems, no physically shared memory is available to
support such a mechanism. Therefore, we must provide
an abstract shared memory in the distributed system
to simulate a shared physical memory for our distrib-
uted semaphore. That is, some location in the network
implements the physical memory, and all processes
access the memory through the network operations of
the underlying communication system.

As stated above, a distributed semaphore can be
treated as a special type of distributed shared memory.
The simplest strategy for implementing distributed
shared memory uses a single central server which is
responsible for serving all accesses to shared data. The
central server, or data server called later, maintains the
one and only copy of the shared data. Our distributed
semaphore algorithm follows this approach. The sema-
phore operations (P and V) involve the sending of a
request message to the data server by the process
executing of the operation, as depicted in Fig. 1(a).
The data server accomplishes the request and responds
with a reply to the client. In our model, each site runs
the same and only copy of DISEM. Meanwhile, only
one site of the DISEM is the central server while the
others are clients.

A simple request-response protocol can be used
for communication in implementation of this algo-
rithm. For communications reliability, a request is
retransmitted after each time-out period when there is
no response from the server. For each of semaphore

-operations, the server must keep a sequence number

for each client so that it can detect duplicate requests
(due to retransmissions) and acknowledge them appro-
priately. In our model, a failure condition is detected
after several time-out periods with no response.
One potential problem with the central server is
that it may become a bottleneck since it has to serve
requests from all the clients. In order to distribute the

-311 -

C.C. Wu et al.

Client Central server

send request
recelve request

perform request
send response

rece1ve response
(a) The base algonithm
Client

Primary server | Backup server

send request
recerve request

perform request
send to backup
receive request
perform request
reply ~

receive reply
send reply

receive reply

(b) The fault tolerant algonthm
Fig. 1. The central server algorithm.

server load and to enhance the reliability of the system,
we distribute the shared data onto several servers. In
other words, all distributed semaphores in the system
are not managed by a central server but are partitioned
and served by several servers. We will explain in detail
how the server’s load is distributed in the next sub-
section.

2. Fault Tolerant Features

In order to make the distributed semaphore mecha-
nism more reliable, some degree of fault tolerance is
a mandatory requirement of such distributed facilities.
In a computing environment consisting of a local area
network of workstations, a workstation may incur errors
due to hardware or software failure. Software failure
is caused by incorrect programming or even ill-devised
algorithms. Errors of this kind are very unpredictable
and hard to deal with as they contradict the assumption
that all the execution results will preserve the consis-
tency of the system. In general, applications use software
design such as N-version programming (Avizienis,
1985) and the recovery block approach (Randell, 1975)
to handle software failure. Therefore, we do not handle
such errors. On the other hand, hardware failure such
as site crashes are more predictable than software failure.
Thus our fault tolerant approach is aimed primarily at
hardware failure.

As mentioned above, we just tolerate hardware
failure in our model. Instead of trying to survive all
types of hardware failure, we attempt to survive only
the most common types (site crashes) and attempt to
do so at a reasonable cost. Since we observe that site

crashes in a distributed system are usually independent
of each other and are relatively infrequent (say, at most
several a day), we have designed our fault-tolerant
algorithm such that it will tolerate only single site
crashes. As soon as a site crash is detected, the al-
gorithm enters a recovery phase, after which they are
again capable of tolerating another single site crash.
1-resilient algorithms appear desirable because the cost
of providing this degree of resiliency is relatively modest
(compared to more resilient versions of the algorithm)
and because the time it takes to recover from a failure
can be made short, so that the probability of a second
fault occurring during the recovery phase is small. The
cost of z-resilient algorithms with #£>1 is substantially
higher and appears to be acceptable for only,the most
critical applications. Therefore, we only consider the
case of a single site crash (detected through timeouts
and taking on the order of a few seconds in an Ethernet-
based environment) and assume that sites act in a fail-
stop way (Schlichting and Schneider, 1983); that is, a
failed site completely halts in response to a failure in
such a way that processes on other sites can detect that
a failure has occurred.

Replicating the data on different nodes is the key
to data fault tolerance. According to Yapet al. (1988),
the distributed schemes (in contrast to non-distributed
ones (Bartlett, 1981)) that use replication to support
fault tolerance can be divided into two categories: the
primary-standby approach and the modular redundancy
approach. The primary-standby approach (Walker et
al.,1983; Birmanetal., 1984; Borget al., 1984) selects
one copy from the backups and designates it as the
primary one whereas the others are standbys. Then all
subsequent requests are sent to the primary copy only.
The standby copies are not responsible for this service,
and they only synchronize with the primary copy
periodically. In the case of a failure, one of the standby
copies will be selected as the new primary one, and
service goes on from the last synchronized point. Such
a scheme does not waste resources on duplicated copies
although recovery from a crash is not instantaneous.
A variation is primary-secondary copies (Popeket al.,
1981), in which the modification requests are propa-
gated to the secondary copies, but consistency between
secondary copies is not guaranteed at any time, and
enquiries are not limited to the primary copy.

The modular redundancy approach (Baninoet al.,
1985), also called unanimous update (Bernstein and
Goodman, 1984), makes no distinction between the
primary copy and the standby ones. Requests are sent
to all the backups simultaneously, and service is per-
formed by all the copies. Thus, as long as there exists
at least one correct copy, fault tolerance is provided.
In contrast to the primary-standby approach, service

-312 -

DISEM: A Distributed Semaphore Facitlity

continues instantaneously after a fault occurs, but it is
costly to maintain synchronization between the dupli-
cated items, especially when there are many of them.

Basically, our fault tolerance model, which we
call the “host-standby” strategy, is a form of the modular
redundancy approach. Each distributed semaphore has
its own hot-standby replica maintained by the backup
server at the other site, as depicted inFig. 1(b). Other
methods of achieving fault tolerance were considered
to be too costly in terms of run-time delays. Our goal
has been to achieve as much simplicity as possible.
Elegant but complex solutions are generally costly in
terms of delay. In the following, we will show how
the model works.

Under normal circumstances when failures are
absent, a service request is sent to the primary server
of the distributed semaphore. Upon receiving a re-
quest, the primary server of the distributed semaphore
propagates the request to the backup server of the
distributed semaphore. While the primary server waits
for acknowledgement from its backup server after it
has sent out the request, it also handles the request.
Upon receiving the ACK from its backup server, the
primary server sends the result to the requesting client
if the request has been completely processed. From
the viewpoint of client, however, the request is made
only once, and only one copy of the result is received
by the client. Figure 2 shows message flow for the
client’s request in normal condition.

We now informally argue the fault tolerance of
our model by considering the failure of individual

Q Servers' maintain the object of the distributed semaphore

O Clients: access the distributed semaphore
@ Failed Server

—l-
i

Request message sent before server failed
Request/ACK message

-~ -9 Backup message during recovery

Fig. 2. Message flow for the client’s request in normal condition.

processes at different points in time and by describing
the steps necessary to recover from failures. Let us
examine our model under the following conditions.

First, if a client site fails, then either the data
server (primary/backup) received the client’s most
recent request, in which case the system behaves as if
the client failed immediately after the request had been
executed, or the data server (primary/backup) did not
receive the most recent request, in which case the
system behaves as if the client failed without having
executed this request. We usually do not handle such
failures, because they will not affect the normal op-
erations of the entire system. That is, the failed site
will not be the server (primary/backup) of any distrib-
uted semaphore in the system. However, there is an
exception if the failed client obtains some distributed
semaphores (i.e. P operations) and did not release them
(i.e. V operations) so that other active clients cannot
obtain these distributed semaphores. The primary server
will then detect that the client site has failed by repeat-
edly receiving the same request from other active clients,
and then the system will perform recovery for this
failed client site.

The second case is when failure occurs in the
primary server. If the primary server site fails, then
the backup server becomes the new primary server, and
it creates and starts a new backup server from hosts
which are using the distributed semaphore and passes
a copy of the shared data to it. This kind of failure
can occur at two times: before or after the primary
server has propagated the request. In the event that
the failure occurs in the primary server before the
request is propagated to its backup server, the client
will detect that the primary server has failed by repeat-
edly timing out when it tries to send the same request.
As shown in Fig. 3, after recovery actions are com-
pleted, the client will send the same request to the new
primary server. Then everything will continue just as
if no error has occurred except that the client will
resend the request, and the result will be sent from the
new primary server to the client.

Now, let us consider the case of failure occurring
in the primary server .after the request is propagated
to its backup server, as shown in Fig. 4. If the primary
server fails after the request has propagated to its
backup server, in the same manner as stated above, the
client will detect that the primary server has failed by
repeatedly timing out when it tries to send the same
request. After recovery actions are completed, the
client will send the same request to the new primary
server (backup server). The new primary server will
receive the same request twice. Since each request
carries a sequence number, the new primary server will
process the request only once. And if the new primary

-313 -

C.C. Wu et al.

Fig. 3. Message flow for the client’s request when the primary server
fails before it does not send this client’s request to its backup
server.

(b) backup server does not do the client’s request before recovery

Fig. 4. Message flow for the client’s request when the primary server
fails after it has sent this client’s request to its backup server.

server has proéessed this request before recovery, the
result will be sent directly from the new primary server
to the client; otherwise the new primary server will
have to propagate this request to its new backup server

(as in the normal case) and return the result of this
request to the client when it receives the
acknowledgement from its new backup server. The fact
that a new site now serves as the primary data server
causes a minor addressing problem: clients will address
their next request to the failed primary server and,
therefore, will timeout. Our solution to this problem
is that as soon as a new primary server is created, it
broadcasts its address to all the clients in the system.

In case the backup server site fails, the primary
server will detect this (when it receives the same request
repeatedly from the client but finds this request has
been done by itself), start up a new backup server from
hosts which are using that distributed semaphore and
pass a copy of the shared data to it, as shown in Fig.
5. If the backup server fails while serving a request,
then after recovery the new backup data copy will
reflect that change. This is because the new backup
data copy is a hot-replica of its primary server’s data
space that has been changed. After recovery actions
are completed, the client will send the same request
to the primary server. Then everything will continue
just as in under normal conditions except that the client
will resend the request.

There are some problems involved in our model.
First, how do we select a data server as the primary
server of a distributed semaphore in the system? We
choose the simplest and most effective way: let the host
which first uses the distributed semaphore be the primary
server of that distributed semaphore in the system.
Secondly, there is the similar problem of how we select
a data server as the backup server of a distributed
semaphore. We let the host which next uses the dis-

Fig. 5. Message flow for the client’s request when the backup server
fails.

-314-

DISEM: A Distributed Semaphore Facitlity

tributed semaphore be the backup server of that dis-
tributed semaphore in the system. In this way, per-
formance is optimized because operations on the sema-
phore are local operations for clients in the primary
server.

3. Recovery

Recovery from failure is important for a fault
tolerant system. In contrast to fault detection and
assessment, which are passive because they are not
intended to change the system (Anderson and Lee,
1988), recovery does produce changes in the system
in order to accomplish the restoration; therefore it is
active. Our recovery procedure has at least two respon-
sibilities. One is to reverse the effect of every sema-
phore operation which the processes have carried out
at the failed site if necessary. The other is to make
a new standby replica for the failed semaphores so as
to ensure that a hot-standby replica is alway available
at the other site in the system.

Dangerous situations could occur in the event that
a,process carries out a semaphore operation, presum-
ably thereby locking some resource, and then exits
without resetting the semaphore value. Such situations
can occur as the result of a site-crash or receipt of a
signal that causes sudden termination of a process. In
this case, at a later time, other processes would find
the semaphore locked even though the process that had
locked it no longer existed. To avoid such problems,
it is necessary to back out the updates so that changes
are invisible. It is worthy of notice that we are only
concerned about site crashes here. To implement
this feature, we maintain a list which is called an
undo_list for every distributed semaphore in the sys-
tem. The undo_list structure will be discussed more
fully in ‘Section IV.2.

In our description, operations on distributed
semaphores can involve up to two different sites. The
using sites are the client machines that issue the request
and receive the result; the storage sites are the places
where a distributed semaphore is actually stored. The
storage sites are the (primary/backup) server machines
that serve requests from clients.

When a node fails, all other active nodes have to
take part in recovery so that the system can continue
to function. Specifically, the nodes that are storage
sites for the failed semaphores and storage sites whose
semaphore values have been updated by the clients at
the failed node take part in recovery. When a node
i detects that a node N, has failed, it announces the
event to all other nodes in the system and executes the
procedure perform-recovery; for theé failed node. The
procedure, as shown below, is executed by a node i

.

every time the failure of some node N; is detected or
announced.

procedure perform-recovery; for N,
begin
(* PART 1%)
for each using semaphore §; of site i do
AVAILABLE[S]:=False;
resident_number[Sj]:=
number of storage site for S;;
(* PART 2; only for storage sites *)
for each semaphore object S; of site i do
if (N, is the using site of semaphore §))
undo the operations from Ny;
endif
if (V. is the storage site of semaphore S))
change primary_server(S;) to site i;
elect the other using site of semaphore S; to
act as backup_server(S));
endif
broadcast a success message of semaphore Sj;
end

The boolean variable AVAILABLE of semaphore
§; is used to record the current status of a distributed
semaphore, thereby indicating whether the distributed
semaphore S; has recovered completely or not. The
resident_number of semaphore S; is the current number
of storage sites exclusive of the failed site for sema-
phore S;, and its value is either 1 or 2. T his information
is used to reset the boolean variable AVAILABLE
later. In part 1 of the recovery procedure, the fact that
semaphore §; was unavailable is recorded. When a user
requests distributed semaphore §; whose AVAILABLE
is False, the request will be blocked until its AVAIL-
ABLE becomes True. In addition, we also compute
the value of resident_number for each semaphore S;.

Part 2 contains actions to be performed by the
nodes that are the storage sites of some distributed
semaphores. If the failed node N; is a using site of
semaphore S;, then node i uses the information in the
undo structure of semaphore S, to undo the operations
of the failed node.N;. If the failed node N, is a storage
site of semaphore S}, then node i becomes the primary
server of semaphore S;. And, if there exist other using
sites -of semaphore S; in the system, then node i will
elect randomly one of.these using sites of semaphore
S; to act as the new backup server of semaphore S;.
Finally, for every semaphore S;, node i will broadcast
a success message with the primary/backup server’s
address to all nodes in the system. On the other hand,
after receiving this message on each node, the
resident_number of semaphore S; will be decreased by

-315 -

C.C. Wu ef al.

1 if this node is a using site of semaphore §;. Once
the resident_number of semaphore S, becomes zero, the
boolean variable AVAILABLE of semaphoresS; is reset
to True, and this node unblocks the requests concerning
semaphore S;.

IV. Implementation

We have implemented an initial version of DISEM
on a cluster of about ten Sun workstations connected
by a 10Mbps Ethernet. The DISEM implementation
executes on top of UNIX (as a user process). We made
no changes to the operating system kernel. This section
outlines the implementation of DISEM.

‘

1. DISEM’s Architecture

Each workstation involving distributed sema-
phores runs the same and only copy of DISEM. A
DISEM is constructed by two modules: the semaphore
server and the communication server. The semaphore
server is responsible for providing the main function
of DISEM, for maintaining the objects of distributed
semaphores, and for sending and receiving messages
from all the clients in its site. All intrasite commu-
nications are based on UNIX System V IPC - Message
Queue. The communication server is only responsible
for receiving all messages from the socket on the LAN,
and it then relays these messages to the semaphore
server through the message queue.

All inter-site communications are based on the
SOCK_DGRAM protocol (Leffleret al., 1983). Figure
6 shows the architecture of DISEM.

2. Semaphore Object Management

In our DISEM, we provide a mechanism which
is called a storage_table. Each entry in the storage_
table stands for a distributed semaphore’s object and
is implemented as follows:

type semaphore=record
value: integer;
L: proceess_list;
U: undo_list,
end;

Each semaphore has an integer value and a process_list.
When a process must wait on a semaphore, it is added
to the process_list. A V operation removes one process
from the list of waiting processes and awakens it. One
method that we use to add and remove the process from
the list, which ensures bounded waiting, is first-in first-
out (FIFO; a queue), where the semaphore contains

Network
TN IIIIIIIAIIIISOCket
1

Site :

Fig. 6. DISEM’s architecture.

both the head and tail pointer of the queue. This
scheduling algorithm is fair as no starvation can occur.
In addition, there is also a list of undo structure
(undo_list) which is stated in section I11. 3. Each entry
of this undo_list is an undo structure that indicates how
to undo the semaphore value if a process has updated
the semaphore value and is aborted by site crash. The
undo structure consists of three components: the
hostname of this process, identifier of this process, and
adjustment value for this process. Because semaphore
does not survive site crashes, this undo structure can
be stored in memory.

Our system allocates undo structures dynamically
when a process invokes a new distributed semaphore
for the first time. On subsequent semaphore operations
(P and V), we search the process’ undo structure for
the semaphore with the same hostname and process ID
from the semaphore operation: if we find one, we
subtract the value of this semaphore operation from the
adjustment value. Thus, the undo structure contains
a negated summation of all semaphore operations the
process had carried out on the semaphore. If no undo
structure for the semaphore exists, we create one. The
undo structure is removed when the semaphore is closed
by the process.

The critical aspect of semaphores is that they are
executed atomically. We must guarantee that no
two processes can execute P and V operations on the
same semaphore at the same time. This situation is
a critical-section problem. However, because our
model is the central-server model, synchronization is

-316-—

DISEM: A Distributed Semaphore Facitlity

achieved via mutual exclusion performed by this cen-
tral server.

3. Name Space Management

A naming service, which binds global and high-
level names to objects, is a key component in distrib-
uted systems. A global naming service can provide
names for objects in the system that can be passed
between clients without change in interpretation. In
our distributed semaphore, we want to provide a global
naming service to meet the above requirement. More
importantly, the transparency constraints of the net-
work must be satisfied.

In UNIX System V, IPCs use two types of names:
keys and identifiers (Bach, 1986). A key is a 32-bit
integer which the user selects and associates with a
message queue, a semaphore set, or a shared memory
segment. Identifiers operate on objects. Typically
when an object is located using a key, an identifier is
returned. The name space for our distributed sema-
phore simulates in the same manner.

In order to implement much of the naming func-
tionality described, we provide a mechanism called
using_table to locate distributed semaphores whose
objects are distributed among some storage sites (serv-
ers). Each using site (client) maintains a small
using_table that identifies the storage site for a using
distributed semaphore. Using_tables are constructed
using a simple broadcast protocol and are updated
automatically as the configuration of storage sites
changes (after recovery). So there is no need for a
separate name server in the system and no need to worry
about the reliability of the name service. .

In our DISEM system, the name lookup operation
invoked by users (with a create/open call) must return
two things from the server: a storage site’s address and
a token. The storage site’s address is used to send
requests to the appropriate site, and the token is passed
to the site (as part of requests) to identify the object
of the distributed semaphore being manipulated. In this
case, the token is typically an index into the distributed
semaphore table (storage_table) of the storage site; it
saves the server of storage site from having to retrans-
late the name of the distributed semaphore on each
request.

Each entry in the using_table corresponds to one
of the distributed semaphores being used in the local
processes: it contains the name of the distributed sema-
phore (key), the address of the storage site, and a token.
Initially, each using_site starts with an empty
using_table. When a user requests a lookup operation
on a distributed semaphore, the DISEM of using_site
searches the using_table for the name that matches the

]

name of the distributed semaphore. If it finds no
matching name in its table, it broadcasts the request
to all servers. Each DISEM of storage_site then sea-
rches its local storage, and one successful DISEM
(if any) responds to the request with the address of
the storage site and the token for the distributed sema-
phore. Then, the DISEM of using_site uses the re-
sponse to create a new entry in its using_table. Finally,
the result of the lookup operation returns the iden-
tifier (an index into its using_table) to the user. The
identifiers serve the same purpose as the tokens de-
scribed above: they allow the DISEM of using_site to
locate the entry of using_table for a distributed sema-
phore without having to repeat an expensive name
search. If there is no response to the broadcast after
a time-out period, then this implies that the distributed
semaphore does not exist in the system, and different
operations are then carried out depending upon the
request. Entries are added to the using_table only when
needed: a distributed semaphore that has never been
accessed by local processes will not appear in the
using_table.

As stated above, a distributed semaphore’s iden-
tifier is returned as the result of a lookup operation.
Application programmers typically do not inspect the
identifier. Rather, they present it to the DISEM to
access an underlying object. Most function calls we
will later describe take an identifier as their first ar-
gument. Note however that it is possible that access
to a distributed semaphore can be obtained by “guess-
ing” or “misusing” an identifier. Thus, in addition to
those mechanisms stated above, we must provide an
additional authentication mechanism for access of the
identifier to prevent unauthorized access to an iden-
tifier from interfering with the normal operation on this
semaphore.

This authentication mechanism is called
private_table. There is a private_table for every user
process that involving distributed semaphores. Ini-
tially, each user process starts an empty private_table.
When a lookup operation returns an identifier, we
allocate a new entry of private_table used to store
the identifier and reply the index’s value of this entry
but real identifier to the user. That is to say, the
identifier obtained by the user is actually an index
to its private_table. In this manner, we can quickly
achieve authentication .of this distributed sema-
phore’s identifier because if the identifier is valid
for the user, we will obtain the real identifier through
the index of the user’s private_table; otherwise, we
will not. Totally, there are three kinds of tables
(private_table, using_table, and storage_table) used to
access a distributed semaphore, which are depicted in
Fig. 7.

-317 -

C.C. Wu et al.

storage_table

P Nkey=1001,val=1 §

o

[}

11 .

[| M

[}

[}

' N\
[

1

[

[)

Fig. 7. Data structures for access to distributed semaphore.

4. User Interface

Use of the DISEM system is entirely transparent.
DISEM enables users to use much of these library
functions as simply across machine boundaries as within
a single machine. The system provides access facilities
that are invoked in the user’s program by calling a set
of C functions such as dsem_create(), dsem_open(),
dsem_P(), dsem_V() and dsem_close().

A new distributed semaphore with a specified
initial value is created by using the dsem_create()
function:

int dsem_create (key,val,flag).

dsem_create() returns the distributed semaphore iden-
tifier associated with key. A semaphore identifier and
associated data structure and a distributed semaphore
are created for key if key does not already have a
distributed semaphore associated with it. Upon cre-
ation, the value of the new distributed semaphore is
initialized asval. Flagisused to indicate whether fault-
tolerance is necessary or not for this distributed sema-
phore.

We have another function, dsem_open(), which
should be used instead of dsem_create() if the calling
process knows that the semaphore already exist:

int dsem_open (key).

dsem_open() returns the identifier of the existing sema-
phore associated with key. A semaphore identifier is
returned for key if key does already have a distributed
semaphore associated with it.

Once a distributed semaphore is created (or
opened), operations are performed on the semaphore
value using the dsem_P() and dsem_V() functions:

int dsem_P (semid,val,flag)
int dsem_V (semid,val,flag).

dsem_P() is used to perform a general Dijkstra’s P
operation on the semaphore associated with the sema-
phore identifier specified by semid. val is the amount
of decrement. If the semaphore value is greater than
or equal to the absolute value of val, the absolute value
of val is subtracted from the semaphore value. Oth-
erwise, dsem_P() will suspend execution of the calling
process until the following condition occurs: the sema-
phore value becomes greater than or equal to the absolute
value of val. When this occurs, the absolute value of
val is subtracted from the semaphore value, and the
absolute value of val is added to the calling process’
adjustment value for the specified semaphore.

dsem_V() is used to perform a general Dijkstra’s
V operation on the semaphore associa}ed with the
semaphore identifier specified by semid. val is the
amount of increment. The absolute value of val is
added to the semaphore value, and the absolute value
of val is subtracted from the calling process’ adjust-
ment value for the specified semaphore. Flag is used
to indicate whether undo is necessary or not for both
the dsem_P() and dsem_V() functions.

dsem_close() is used to close the using semaphore
associated with the semaphore identifier specified by
semid.

int dsem_close (semid).

dsem_close() decreases the count of the processes using
the semaphore associated with the semaphore identifier
specified by semid in the system, and if the calling
process is the last one, then the function will remove
the semaphore from the system and destroy the data
structure associated with the semaphore. This function
is for a process’ to call before it exits, when this is done
with the semaphore.

5. Performance Measurements

We measured the performance of the DISEM
implementation on UNIX. All measurements were
done on SUN 4/40 workstations connected through a
10-megabit per second Ethernet local network. Table
1 presents the average time in milliseconds required
for DISEM semaphore operations. The times shown
are for the elapsed time (returned by gettimeofday
system call).

These operations were executed under three dif-
ferent kinds of conditions, which include all the cases
of DISEM operation. The first column is the case where
the semaphore is local and does not have a backup on
the other site. Because all communications are local,
it is the most non-expensive one. The second column
is the case where the semaphore is remote and has a

-318 -

DISEM: A Distributed Semaphore Facitlity

Table 1. Measurements of DISEM Operations on UNIX

without backup | with backup

with backup

dsem_open 3.039 ms 30.529 ms 16.834 ms
desm_P 2.065 ms 29.173 ms 15.637 ms
desm_V 1.842 ms 29.111 ms 15.526 ms

backup on the other site. This case is also a general
condition for DISEM operation, and has four steps
(request, backup, ack, and reply). It requires four
messages on the network and is the most expensive one.
The last column is the case where the semaphore is local
and has a backup on the other site. Because it requires
two messages on the network, its elapsed-time is nearly
half as much as that for the second case. The results
indicate that the amount of network traffic is a strong
influence on the overhead of these operations. Table
2 shows the elapsed times of these primitives imple-
mented by a SUN RPC server which used the UNIX
System V semaphores. Because the current SUN RPC
server was constructed as an iterative server, the clients
had to use busy waiting to avoid causing the server to
be blocked. Thus, a successful P operation could
actually involve several requests to the RPC server. In
this experiment, this re-request effect was ignored.
Other shortcomings of RPC implementation are that the
centralized server may become a performance bottle-
neck, and that it suffers from the single point of failure.
Although the performance of simple RPC implemen-
tation is better than that of DISEM implementation for
remote operations, DISEM provides fault-tolerance,
nonbusy waiting clients, better performance for local
operations, afid load balancing. Therefore, the effec-
tiveness of DISEM is clear.

V. Conclusion

This paper has outlined the objectives and signifi-
cance of a distributed semaphore facility-DISEM. We
have overviewed issues related to DISEM and de-
scribed DISEM implementation. Currently, the DISEM
system has been developed entirely at the application
layer, which is highly portable.

The fault tolerant distributed control strategy de-
scribed in this paper is useful in various situations to
realize fault-tolerant global control of resources in
distributed computing systems. Fault tolerance is
achieved by providing a hot-standby replica at the other
site for each distributed semaphore. In order to dis-
tribute the server load and to enhance the reliability

Table 2. Comparisons between DISEM and SUN RPC Server

®
5| (5) @B e

DISEM RPC DISEM RPC
P operation | 2.065 ms | 3.178 ms | 15.482 ms 3.242 ms
V operation| 1.842 ms | 2.844 ms | 15.298 ms 3.560 ms

of the system, we distribute the shared data onto several
servers. In other words, all distributed semaphores in
the system are not managed by a central server but are
partitioned and served by several servers. The user
interface to the DISEM system is both simple and clear.
In the development of some typical asynchronous con-
current programs, there was no ambiguity or difficulty
in using the DISEM system. Our performance results
show that the effectiveness of our DISEM system is
acceptable.

Future works include development of other dis-
tributed interprocess communication facilities such as
a distributed message queue and distributed shared
memory to form the package of distributed System V
IPCs. Also, future work is needed to improve protec-
tion of access, management of replicas, and
interworkstation communication efficiency.

Acknowledgments

1. The authors would like to thank the referees for their helpful
comments. 2. This work ws supported by the National Science
Council, under contract number NSC82-0408-E009-053.

Appendix

The following program is the code of philosopher i (i=0) for
the dining philosophers problem.
#include “dsem.h”
#define FORKOQ (key_t) 1001
#define FORK1 (key_t) 2002
#define UNDO 1
main()
{
int fork0, forkl;
forkO=dsem_open(FORKO);
forkl=dsem_open(FORK1);
for(;) {
“sleep(5); /* Think */
dsem_P(fork0,1,UNDO);
dsem_P(fork1,1,UNDO);
sleep(6); /* Eat */
dsem_V(fork0,1,UNDO);
dsem_V(fork1,1,UNDO);
}
dsem_close(forkQ);
dsem_close(forkl);

-319 -

C.C. Wu et al.

Note: We use the dsem_open() function in the program (instead of
the dsem_create() function) provided that there exists some
philosopher j in the system which is responsible for creating
the distributed semaphore.

References

Anderson, T. and P. A. Lee (1988) Fault Tolerance-Principles and
Practice. Prentice-Hall.

Avizienis, A. (1985) The N-version approach to fault toleranf
software. IEEE Trans. on Software Engineering, SE-11(12),
1491-1501.

Bach, M. J. (1986) The Design of the UNIX Operating System.
Prentice-Hall.

Banino, J. S., J. C. Fabre, M. Guillemont, G. Morisset, and M. Rozier
(1985) Some fault-tolerant aspects of the chrous distributed
system. IEEE Conference on Distributed Computing Systems,
430-437.

Bartlett, J. (1981) A NonStop kernel. 8th ACM Symp. on Operating
System Principles, 22-29.

Bernstein, P. A. and N. Goodman (1984) An algorithm for concurrency
control and recovery in replicated distributed databases. ACM
Trans. on Database Systems, 596-615.

Birman, K. P., T. A. Joseph, T. Raeuchle, and A. E. Abbadi (1984)
Implementing fault-tolerant distributed objects. 4th ACM Sym-
posium on Reliability in Distributed Software and Database, 124-
133.

Borg, A., J. Baumbach, and S. Glazer (1983) A message system
supporting fault tolerance. 9th ACM Symposium on Operating
System Principles, 90-99.

Dijkstra, E. W. (1965) Solution of a problem in concurrent pro-
gramming control. Communications of the ACM, 8(9), 569.
Dijkstra, E. W. (1968) Cooperating sequential processes. In:

Programming Languages, pp. 43-112. F. Genuys, Academic

Press, New York.

Fleisch, B. D. (Aug. 1986) Distributed system V IPC in locus: a
design and implementation retrospective. Proceedings ACM
SIGCOMM’ 86 Symp. on Communications Architectures and
Protocols, Stowe, Vermont, 386-396.

Khalidi, A., U. Ramachandran, M. Ahamad, and M. Yousef (1989)
Coherence of distributed shared memory: unifying synchroniza-
tion and data transfer. Proceedings 1989 International Confer-
ence on Parallel Processing, 160-169.

Leffler, S. J., R. S. Fabry, and W. N. Joy (Feb. 1983) A 4.2 BSD
interprocess communication primer. Technical Report, Dept. of
Computer Science and Electrical Engineering,University of Cali-
fornia, Berkeley, CA, U.S.A.

Li, K. and R. Schaefer (1989) A hypercube shared virtual memory
system. Proceedings 1989 International Conference on Parallel
Processing, 125-132.

Popek, G., B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin,
and G. Thiel (1981) A network transparent, high reliability
distributed system. 8th ACM Symp. on Operatifig System Prin-
ciples, 169-177.

Randell, B. (1975) System structure for software fault tolerance.
IEEE Trans. on Software Engineering, SE-1, 220-232.

Schlichting, R. D. and F. B. Schneider (1983) Fail-stop processors:
an approach to designing fault-tolerant distributed computing
systems. ACM Trans. on Computer Systems, 1(3), 222-238.

Schneider, F. B. (April 1986) Abstractions for fault tolerance in
distributed systems. Technical Report TR86-745, Dept. of
Computer Science, Cornell University, NY, U.S.A.

Walker, B., G. Popek, R. English, C. Kline, and G. Thiel (1983) The
Locus distributed operating system. 9th ACM Symp. on Operating
System Principles, 49-70.

Yap, K. S., P. Jalote, and S. Tripathi (1988) Fault tolerant remote
procedure call. 11th IEEE Conf. on Distributed Computing
Systems, 48-54.

— 1A 53 BUE SE A] 2 8wt BLE AR : DISEM

SR IE

L B

ERBEENPER

I

BRI ITRE) (concurrent process) B[R # (synchronize) FHfH » {5554 (semaphore) E—RE S W HiE

ey 5 BT R S BURSE R A ATR (5 DR A FR O B G0 © A5t 3 £ AR o — B3 1988 2 I DISEM K 23 8%

A5 9E# (distributed semaphore) 2 5% 5F B E {E - DISEME ¥ B EE #1147 H HFBSD socketF1System V IPCsf UNIX

YE R BRI ARG E A 2 TAES R RS L ERe3 e B M TR BER T » OB AIRHAR G - DISENR &

MERATEREFHEASN ERNERTAMNPEERZEER PN EXEFRNEBF—KEE Abx%

VA B BB DT T Y B A o BRUbZSh 0 BB TAEE BB (crash) RAE T AT B EFAIARES o 4E4T25 MR BERPAG &5 SR o
Rt - DISEMAGHIRLAER AT LU R 309 - AN F » DISEME —ME7E2 B TR RETARKWARE
R R (5 BEAEAR A o

-320 -

