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ABSTRACT

Degradation is a phenomenon where certain measurements of quality characteristics deteriorate over
time. When an item subject to life testing is too well made to fail, we often turn our attention to degradation
measurements and hope to obtain life time information from this type of data. The first part of this paper
presents a general discussion of the degradation phenomenon. The second part reviews some scattered
works related to the analysis. Topics involve shelf life studies, growth curve, S-shaped curves, experimental
design, stochastic process modeling, accelerated life testing and step-stress models.
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l. Introduction failure is observed during the testing period. The idea
is simple indeed: if it takes too long to observe a true
| started to do a relatively intensive literaturefailure, we simply try to observe how bad the item under
search on topics concerning degradation analysis whenspection can become. In doing so, we hope that perhaps
we were awarded a 3-year project by the Nationatome conclusion can be made which is still useful in
Science Council in 1996. At that time, there was noeal world terms.
intention to perform a thorough review except for fear One of the subjects most carefully studied using
of missing something important. What is degradation®egradation data is determining the shelf life of drugs.
As time goes on, things become worse. Degradatiofhere are good reasons: on the one hand, it is an official
is just a technical term used to describe this phenomenorequirement. Stating on the labels the expiration dates
Since the degradation phenomenon takes place naturalfpr all marketable drugs is required by health authori-
there is a vast amount of work in the literature and outies in most developed countries. On the other hand,
task is necessarily limited by this author's inability andhere is a powerful profit-driven pharmaceutical indus-
his selection bias. A major problem we encounteretry behind the scenes. In spite of the amount of work
is that most of these works are closely related to certaimctually done, the methodology used to determine the
physical processes. Subject matter knowledge, at leashelf lives is basically mature, however. Some recent
at the superficial level, is needed when in depth unworks are reported in Section IIl.
derstanding is called for. Nevertheless, the statistical In Section IV, we examine the development of
behavior of degradation data and its related applicaanother related topic, the study of growth curves. As
tions have been well studied. in the shelf life problem, the basic underlying assump-
Degradation analysis involves the degradatiortion of growth curve studies is that observations are
data. Four sets of such data are reported in Section jdintly normal. This implies that, among other things,
just to provide a flavor of the subject matter. Wethe basic methodology is solid. Strictly speaking,
examine and explain the reasons why such data amothing is surprising.
collected. The true objective is to study the life time The classical S-shaped curves, also called
distribution of certain subjects under inspection, busigmoids, are discussed in Section V. This type of
we are driven by the need to extrapolate into the unknoweurve fitting is traditionally used to model different
because the subjects are too well made and no or littgrowth rates of a subject or a group of subjects under
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study when there is a natural limit of growth. structed from this sample, we can make an inference
We then move to the problem of how degradatiorwith respect to the unknown parametgr
data are collected. For traditional data collection, the When the form of~(-;0) is known and the com-
most effective way is through a well designed experiplete distribution of is determined by a finite dimen-
ment where the criterion is to select observations ational paramete#, then we have a classical parametric
points maximizing certain information measurementmodel; if F is completely unknown except for some
For degradation problems, since the objective is tgualitative descriptions such as continuity or
make inference on the extreme tail part of the life datasmoothness, then we have a non-parametric model;
a class of problems, called extrapolation design, comgnally, if F is unknown but the parametérhas some
into the picture naturally (Section VI). structure to explore, then we have a semi-parametric
In Section VII, we examine the methods used tanodel.
model the degradation process. There are basically two  When the parametétexhibits some structure, we
types of probability models that have been used: theill naturally embed our inference problem into
compound Poisson process and the Brownian motioncaditional, and time-tested as well, models for statis-
The former is the basis of the cumulative damage¢ical analysis. These include techniques such as ex-
model, and the latter allows the use of stochastiperimental design, regression, logistic regression,
differential equations. accelerated life testing, etc. These methods incorporate
The original version of this work was done in 1996various situations that one may encounter in practice.
when the project started. As time went on more recenthere is no need, however, to restrict the inference to
papers were included. Efforts have not been made the classical frequentists’ parametric setup. We can,
search back for the purpose of giving credits foif the situation requires, use the Bayesian method or
priorities; rather, the objective of this work is to pro-even the empirical Bayes techniques.
vide readers with enough background material to start What we have described is the general setup for
work. Most practical problems are solved using knowrthe reliability inference. The real problem, particularly
methods. Since doing good data analysis is only tectwhen applied on the shop floor or in a reliability testing
nical in nature, true scientific contributions for this center, is of course much more complicated. We have
type of problems are rare. | have, however, tried tat best provided a very rough description for this
cite works by local researchers as much as possiblamportant topic, but it cannot be too far away from the
general picture. There is extensive literature on reli-

Il. The Degradation Phenomenon and ability analysis, and research is still very active. On
Why We Study It the other hand, several excellent books exist on this
topic, and industrial standards have been established,

1. Reliability Analysis e.g., by the Department of Defense, U.S.A. (1991):

MIL-HDBK-217F.

Most things have a life span, defined in one way There is a common requirement for reliability
or another. These lives, when measured, present asalysis: we have to make observations on the true life
with data sets we can use to explore further for scitimesTy, T, ..., T,. A certain percentage of the observed
entific or other purposes. It is natural to study the lifel’s may be be censored, but all methods fail when this
time distribution of a subject through a set of measuregercentage becomes too high.
data. One of the earlier topics in this respect, which
is still very much alive in research activities, is the2. Data Collection Problems
theory of reliability. A generic definition of reliability
is: In the last section, it was mentioned that one has

to take true lifetime observations to make a sensible
Reliability is the probability of a product or a system performinginference on the properties of the life distribution of
its intended function without failure for a specified period of time the subject matter under study. In reality, however,
under specific conditions. it is difficult to actually observe the true failure of a

well-made item even under accelerated environment.

For reliability analysis, the basic subject matterWith rapid advances in technology, products nowadays
to study is the probability distribution of the life times are just too well-made to fail within a reasonable amount
of the subject under study. For this purpose, the staf time. For example, the average life time of a light-
dard method is to take a set of observed life tifigs emitting diode (LED) is around 100,000 hours in theory.
T,, ..., Tn, censored sometimes, though basically weBut this is about 11 years, and if a firm has to wait
assumer;~F(-;6). From the likelihood function con- for that long, or even half that long, to obtain infor-
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mation about its mean life before failure (MLBF, one
of the most important pieces of reliability information),

Table 1. Dielectric Breakdown Strength

then it will lose purchase orders for these items to otheremperature\Weeks 1 2 3 4 5 6 7 8
com.petlto'rs. It. is entlre!y possible th_at some other 180 15 14 135 15 185 125 13 13
devices will be invented in the mean time which will 17 16 17.5 15 17 13 13.5 12.5
replace the functions of LED, and in 11 years the LED 15,5 13 17.5 15.5 153 16 16.5 16.5
may no longer be needed in the market. On the other 16.5 13.5 13.5 16 16 12 13.5 16
hand, reliability information, and the ability to supply 225 15513 12513 13 11 11511
it, is an important means of persuading a buyer. We 12 igg 125 ig;’ 35 12-5 ig: iég
must develop some other methods to cope with this 145 125 13 14 11 11 12 10
problem when the items are slow to fail.
o is 10 ob d calculate. t hat 250 15 12512 12512 11 7  7.2667
ne way is to observe, and calculate, to wha 145 12 13 12 12 10 69 75
extent the items under study have deteriorated. We may 125 11.5 12 11.5 11.5 10.5 8.8 6.7
take measurements on one or several characteristics 11 12 135 11512 105 7.9 7.6
over a period of time and observe how bad they become. 275 14 13 10 65 6 27 12 15
From the data set thus collected, the life time distribution, 13 115115 55 6 27 15 1
or some characteristics of the life distribution, under 14 13 11 6 5 25 1 12
115 125 95 6 55 24 15 1.2

study can be estimated. For example, by measuring
luminosity of fluorescent lamps, Tsemg al. (1995) Source:Nelson (1981)
estimated the time when the amount of degradation in
the luminous flux fell below 60% of its original value. 3. Basic Data Form
The degradation phenomenon takes place
naturally: iron can rust, copper may oxidize, bacteridA. Example 1
make food rotten. In general, the impact of the
environment, be it natural or artificial, takes its toll We want to estimate the dielectric breakdown
gradually. The item under inspection may still bestrength (DS) of certain insulation specimens. For this
useable and the amount of deterioration, properlpurpose, a sample of 128 such specimens is obtained
measured, can provide us with useful information. lrunder 4 different temperature settings: 80 225°C,
some cases, it can be translated into regulations: drug@$0 °C, and 275°C. Eight aging times are used: 1,
and food and other biomasses have proper shelf liveg; 4, 8, 16, 32, 45, and 64 weeks. The datadble
we expect the life expectancy of an under sea cablerepresent the measured dielectric strengths. We are
to be 25 years, etc. interested in knowing the amount of time needed for
Some degradation phenomenon can in theory be typical specimen to degrade to 2 kVolts when the
calculated. One example is the half-life of a certaiiemperature is set at 15C (Nelson, 1981).
radioactive material. Another example is the amount The amount of degradation in this data set is
of time that a satellite stays in orbit. For many othersneasured on the different specimen. Therefore the
degradation phenomenon the underlying theory isbservations are independent and there is no need to
limited, and the only sensible way to make an inferencdo time series analysis. However, when we plot the
is to actually take samples and establish a model omeasurements against time, it is clear that for any fixed
which an inference can be made. Still many othertemperature, the trend with time is obvious in scatter
degradation phenomenon lie between these twplots.
extremes: there is some theoretical background, but Let
further verifications are needed. Degradation data,
however, basically have the following characteristics:
(1) there is a subscript indicating the time sequence
in which the data were obtained; (2) an important parbe the DS values measured at temperaTurat thet-
of the data changes monotonically with time. This isth week. shows the respective scatter plots
among other things, the basic essence of degradatiamd the related regression lines.
is that it changes with time along a definite direction.
Milk spoiles with time, iron cannot become less rustyB. Example 2
the cracks in a reinforced concrete structure can only
grow, the luminosity of fluorescent lamps may fluc- Table 2shows a typical set of data obtained from
tuate due to unstable voltages but basically goes dowan stability study of certain drugs for a new drug
with time. application. There are 24 batches, and measurements

Xiw (1I=1, 2, 3, 4it=1, 2, ..., 64k=1, 2, 3, 4)
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of the contents of their major components are taken at

Talbe 2. Data from a Stability Study

0, 12, 24, and 36 months. The main purpose of ana-
lyzing this type of data is to determine the shelf lives

of these drugs. In general, the potency of variougatch

components decreases with time. This data set comes
from Chow and Shao (1991).

C. Example 3

A copper bearing intra-uterine contraceptive
device (IUCD) consists essentially of a length of copper
wire coiled around a plastic former. When pladed 9
uterus the copper is released, which increases theio
efficacy of the device. The contraceptive action is 11
dependent upon the surface area of the copper, whicH?

age age
batch

0 12 24 36 0 12 24 36

1 105 104 101 98 13 105 104 99 95
2 106 102 99 96 14 104 103 97 94
3 103 101 98 95 15 105 103 98 96
4 105 101 99 95 16 103 101 99 96
5 104 102 100 96 17 104 102 101 98
6 102 100 100 97 18 106 104 102 97
7 104 103 101 97 19 105 103 100 99
8 105 104 101 100 20 103 101 99 95
103 101 99 99 21 101 101 97 90

103 102 97 96 22 102 100 99 96

101 98 93 91 23 103 101 99 94

105 102 100 98 24 105 104 100 97

may be regarded as the main factor controlling the rat®ource Chow and Shao (1991)

of copper release. The data set consisting of 811

IUCD’s was collected through intra-uterine device |,

research networks and family planning centers in th  — ’ ,
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Fig. 3. Growth of cracks. [Adapted from Bogdanoff and Kozin (1985)]
Fig. 1. Aging of dieletric strength. [Adapted from Nelson (1981)]
90 - Manchester area, U.K. The copper content was deter-
mined by using atomic absorption spectroscopy.
The data and two types of fit are plottedFin
(Faragheet al.,1985) and it is clear that the copper
. content decreases with time.
£
> D. Example 4
5 eol M AN
€ . <~ .
€ ¢ AN ; taken from a book by Bogdanoff and
&> . o . . .
g X Kozin (1985), indicates the growth of crack length
© caused by stress. Here, we use “million cycles” in the
75k abscissa, instead of time, to indicate the stress levels
applied.
This data set has been thoroughly analyzed by Lu
and Meeker (1993).
70 I i L L j
0 6 12 18 24 42 .
Manths of use 4. Some Conditions on the Form of the Data

Fig. 2. Degradation of copper content. [Adapted from Farager
al. (1985)]
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section, we may use the following form to describe thevell developed. If we can find some background

type of degradation data: knowledge, say thaX; satisfies a certain set of differ-
ential equations, then we may try to see if the use of
{Xa alA, tOT}, stochastic differential equations can be a better approach.

whereA denotes a set of labels afids either [0p) 6. Danger of Extrapolation

or {tg, ty, tp, ...}, implying time. For real observations

made, the seT is discrete; but theoretically we may We mentioned in previous sections that the reason

considerT as being continuous. for doing degradation analysis is that we need to make
The label seA may have some structure which use of the degradation phenomenon to model an un-

indicates the conditions under which these observasbservable time of failure. This means that we need

tions were made. In general, affJA are all distinct, to do extrapolation. All methods of extrapolation are

we may assume that,;, i=1, 2, ... are mutually in- dangerous, however.

dependent. But for the sameand differentt;<t,<..., The simplest method of extrapolation is to fit the
<ty, there may be some dependence among the obselata with a straight line and extend the line further into
vations modeled in probability terms. the future. Straight lines can indeed be extended, but
The theme “degradation” implies that whgs  any small error is magnified as the abscissa increases.
t,, we should expect one of the following: The further we extrapolate, the more mistakes we may
expect. This is a basic problem with all extrapolation
Condition D. E[Xa]=E[Xat)] (and forecast) methods. One may replace the straight

We believe that Condition D can reasonably be imposeline with some other curves, but the problem remains.
on all degradation data. Unfortunately, this conditionlt is fair to say that academic rigor is inversely related
has not been sufficiently utilized in the literature. Ato the degree of extrapolation.

more stringent condition is the following. We may need to understand, or make a judgement
on, whether an under sea cable has a useful life of 25
Condition SD. For all t;<to[JT, Xz, =Xy, years, or whether an LED can last for 11 years. But

Because of measurement errors and perhaps other notbe accuracy of these judgements depends on the
factors (such as an unstable voltage), strict degradati@ppropriateness of the fitted statistical model. When
conditions are hard to satisfy. In practice, when degthe model is wrong, the forecast may still be valid. A

radation data are clearly defined and the analysis isimple model may out-perform the more sophisticated

basically sound, Condition D usually holds. ones in forecasting. Nevertheless, more sophisticated
models models continue to appear and disappear. Long
5. Data Analysis Method in General range forecasting and extrapolation cannot be accurate.

Depending on their final use, the danger due to inac-

If we can write down the form of the likelihood curacies of extrapolation can be serious, not so serious
function (or some variation of it) of the observed datapr sometimes (fortunately) irrelevant. In many cases,
be it parametric, non-parametric, or semi-parametricthese may be the only educated guesses. It is difficult
basically for this set of data the method of analysis i$0 make a distinction between true scientific work and
more or less determined. What is left is either technicgiseudo scientific work; nevertheless, the distinction is
in nature (such as the Newton-Raphson iteration methodnportant. An example is provided at the end of Section
or doctrine of schools, for example, Bayesian oV which shows that even a well planned experiment
frequentist. Therefore, the basic problem is to choosean lead to an incorrect result if extrapolation is not
a proper probability model to describe the behavior otarried out with care.
the observed data.

Works along this direction, except for the use ofl||. Shelf Lives of Drugs
Condition D or SD, are abundant in the literature. Their
basic strategy is to look at the data set first. For One of the formally documented procedures in
example, when the label sAtis a singleton set, then degradation analysis concerns the determination of the
all we have is the datax{, tOT}, a time series. IfT  shelf lives of drugs. All drugs are specifically labeled
contains 25 or more points, we will naturally try to use'to be used before (a certain date)”. How are these
traditional time series models, such as the autoregressiegpiration dates determined?
integrated moving average (ARIMA) model. Afhas Studies of this kind are called stability studies in
some linear structure ardhas less than 10 points, then pharmaceutical literature. A more common term is
we may employ growth curve analysis, which is alsd'shelf life studies”. For formal documentation, see
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FDA, U.S.A. (1987), MHW, Japan (1991), and ICH, 2. Fixed Effect Model

Switzerland (1993). A monograph by Chow and Liu

(1995) gives the technical details of shelf life studies The estimation of shelf life, as described in the
and illustrates them using well-prepared examples. Iprevious section, can be modified. When the statistical
is perhaps the best text on this topic so far. In whanethodology becomes maturer, it is sensible to believe
follows, we will only discuss shelf life studies relatedthat for the same data, better estimates can be obtained

to statistical analysis. than before.
The fundamental question is: whaSkr,? When
1. Official Definition of Shelf Life we follow the procedure under which the shelf life is

defined, it seems proper to say that a clear definition
Suppose there atebatches of drugs to be tested.is possible only when no batch to batch variation is
Let Y; be the result of theth assay of the-th batch. discovered. When the problem is examined from the

The following model is used: consumers’ point of view, any single purchased drug
should have a 95% chance that the amount of its
Yijzxi'jﬁi+ei, i=1, ...,k; j=1, ...,n components is more tham'=0.9n, as stated on the

label. Here, “any drug” means that a drug chosen at
wherex; is of dimensiorpx1 and denotes the appro- random, so from the users’ point of view, the essence
priate regressor, ang denotes the error term. of the shelf life problem is the prediction of a future
The simplest form ok is of the formx;=(1%), observation rather than estimation of some unknown
wheret;<t,<...<t, denote the time points when theseparameters. There has been basically no research done
assays are performed. on shelf life (of drugs) with prediction in mind. The
The first step after data collection and cleaningonly related work, in terms of prediction and life length
is to test whether there is between batch variation. Tha&stimation, is a paper by Carey and Koenig (1991).

is, the null hypothesis Their topic is estimation of the life of some under sea
cables, which we will describe later.
Ho: B1=...=0« When we assume the viewpoint of a consumer,

the shelf life problem is then predictive in nature. Since

is tested. The size of the type | error usedr#9.25, it is the value of a typical future observation that is
which is employed based on a suggestion made bgur concern, we must include variation due to the
Bancroft (1964). IfHy is accepted then we may pool observation itself in our prediction interval. A natural
thek sets of data together to obtain a shelf life estimate&zonsequence is that the modified estimateShfwill
If Hy is rejected, then we will find a shelf life estimatebe shorter. Here, the emphasis is on random selection
for each batch, and the smallest amdnghelf lives of a single drug. This is different from selection of
will be used. a batch of drugs at random from many batches at hand,

The method used to estimate the shelf life of anjiowever. The latter, termed “the random effect” model,
batch (or a combined batch) is as follows. First, was well represented in the literature. We will discuss
take EB=b, soEY=x'b. In generalx is a function of it in the next section.
t, so we writex=x(t). The main concern of the FDA On the other hand, ifly is rejected, then using
is whether the contents of the drug components fathe shortest shelf life only assures ti&dt is one
below the amount as claimed on the label.q i the of the true average shelf lives. Since this method is
content of a component described on the label, thegonservative, the estimatel must at least be a safe
the “true shelf life” is then the time needed for the valuehumber to use. When this approach is employed, it
of n to reach a certain lower level. Typically, we setis implicitly assumed that these few batches must be
the threshold af'=0.9n; in doing so, it is implicitly representative batches. Strictly speaking, in this situ-
assumed thak(t)'b is a decreasing function af ation we are not very sure what the true definition of

Therefore, Sl is and yet efforts have been made to find its
respective confidence intervals. The work is still under
Slye=inf{ t:x(t)'b=n'}. the framework of frequentists, but its explanation is not
entirely clear.
From the frequentists’ point of vievLr,e is an When the number of batchkss large, the shortest

unknown parameter, so it is possible to define itdength method may be too conservative. Efforts have
confidence interval. The one-sided lower confidencéeen made to solve this problem (Shao and Chow,
level is often used, for conservative reasons. The levdl994). LetSL, be the shelf life of theth batch. Then

is usually set at the standard 95% level. whenk- o,
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lg}ingLﬁo. works on accelerated degradation tests are cited. We

T should also mention the work of Shao and Chow (1994).
Hence, wherk is large, it is unreasonable to simply It summarizes some known exact results and suggests
select the shortest shelf life among all the batches. Farmethod for actually estimating the shelf life in case
most new drugs the value &fis about 3 or 5. But (ii). Wei (1998) suggested simple method for deter-
for a so-called marketing stability study, a larger valuanining release limits for drug products. The method
of k is used and the sampling intervals will be closeis still somewhat artificial, and this author feels that

(Chow and Shao, 1991). even under the assumption of a normal model, the
The simplest model for thieth batch is perhaps problem of shelf life estimation is relatively narrow and
of the form mostly consists of piecemeal research topics. This is
not a glamour topic to jump into, however, and young
Yij=ai+Bitj+e€j;. statisticians should look at it carefully before putting

efforts into it.
So far, we have assumed that S; are fixed but
unknown parameters. All tests for IV. Growth Curves

Ho: B1=...=Bx, Compared with research works related to the
determination of shelf life, a more general framework
treat's as unknown parameters as well. To tdgt is the growth curve. Growth curves stand alone as a
the method of analysis of covariance is employed. Faself-sufficient topic, and there is a vast amount of
some real case examples, see Ruberg and Stegemnlasrature dealing with this subject. For a succinct
(1991). This paper deals with the problem of how tdntroduction, yet with considerable depth, see Ware
pool data from various batches when the main concerf1983).

is fixing the power of the test. The basic data form of a growth curve is of the
form {X4, alJA, tOT}. The earliest example of a growth
3. Random Effect Models curve study examined the ramus heights of 20 boys

measured at age 8, 8.5, 9 and 9.5, respectively (Elston

We may treat the parameter as being of 2 or morand Grizzde, 1962). Independence among the boys was
dimensions. For random effect models, the coefficientassumed, of course, but the measurements taken at
a, B may be modeled as random variables. Thus, wdifferent times for each boy were dependent. Tradi-
will consider parameters of the formr,3). Here,(i)  tionally, a “growth curve” does not have to deal with
a; and B can both be unknown parametefi$) a; can real growth (i.e., Condition D is not needed), but it must
be an unknown parameter aiffi can be treated as consider the dependence structure at different points
random; or(iii) a; and 3; can both be random. of time. Furthermore, normality is still assumed.

Statisticall analysis in these cases, since they all Because of the assumption of normality, the study
assumpe normality, can be carried out without tomf growth curves is so well developed that rather
much difficulty, at least for large sample cases. Foctomplicated situations may be considered. See, for
example, Chert al. (1995) treated3; as missing data example, Lundbye-Christensen (1991). The general
and used a unified approach to treat ca@ggiii) picture is that we are not too far away from the tra-
mentioned earlier using the same EM algorithm. Irditional likelihood setup, and it is often necessary to
principle, this falls into the framework of Dempstdr apply the EM algorithm. Dempstet al (1981) is the
al. (1981) for the Bayesian/EM setup. The EM algo-standard reference, where the mixed effect model (some
rithm can be slow sometimes. In reality computingof the 8 are fixed effects while othe8 are random
efficiency is not a main concern, however, so the geneffect) is carefully sorted out. Using this idea, Chen
eral technique developed in this work is sufficient toet al. (1995) discussed the shelf life problem mentioned
solve almost all shelf life problems under the assumpearlier. However, since the tests are destructive, it is
tion of normality. reasonable to assume that measurements taken at dif-

There are other scattered works. Murphy anderent time points are independent. There is no such
Weisman (1990) considered ca$i@; as did by Chow a convenience in traditional growth curve studies.
and Shao (1991). Most works on shelf life have used  Our main concern is still prediction. For fixed
the ordinary least squares method to estimate tha {X, tOT} are dependent. Therefore, even with the
parametersd,f), but weighted least squares may alsonormality assumption, for prediction at tinbg-supr,
be employed. Kirkwood (1977) used the maximumit is necessary to assume that the covariance matrix
likelihood directly, and in that paper, some earlier{ Xy, tOT} has a natural definition forr>supl. When
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the covariance matrix is of either form listed below:curve. This suggests the possibility that a growth curve
may be obtained from a differential equation.

(@) Z=9;0°+(1-9;)pd?, or Using this idea, various growth models can be
obtained. Let¥X(t) be a birth-death process wiX{0)

(b) Z=d*(p'h =Ng which satisfies

Lee (1988) has a clear solution. Of course, qéde PriX(t+At)=j+1|X(t)=j]=jb(t)At+o(At),

corresponds to an AR(1) model. We believe it is

possible to treat the case of AfR( This generalization, PriX(t+At)=j-1[X(t)=j]=jd () At+o(At).

if it can be done, is not too surprising.

Special credit must be given to Rao (1987). Thislan (1986) proved that
article is rich in content and essence and is a key .
reference for this topic. For a more recent review, see E[X(t)|x(0)=No]=Noexp{[ Yx)dx3,
Lee and Geisser (1996). Jo

V. Sigmoid and the Like where y(x)=b(x)-d(x). Here, we have some freedom
in choosing the form of(x). If we choose/(X)=Lexp
The problems discussed in this section are alfb(x)-d(x)}, then Gompertz's form is obtained.
related to the fit of data to an S-shaped curve. A  The logistic growth curve is also used to model
classical term for these curves is “sigmoid” (see Stongational selection by customers between two products
(1980)). to study the market shares of these products (see Oren
The basic idea of this type of curve fitting is thatand Schwartz (1988)).
certain growths are by nature bounded above, so an S- Another example, which was used to study the
shaped curve may be used to model the changing raéopagation delay of an under sea cable, is given by
of growth from the beginning to the end. At first growth

is slow and gradually speeds up. After it reaches a peak ~ Y=6(1-exp{-VAt})+e. (2)
it then begins to slow down and eventually levels off. _ _ _
Let F(x) be any cumulative distribution function, Using this model, together with temperature as the

then we may usg=6F(x)+e to model this type of accelerating factor (i.e., the Arrenius Law), Carey
growth (see Boulanger and Escobar (1994)). Not afnd Koenig (1991) obtained measurements at°I00

F’'s are S-shaped, of course, and except of traditiondl50 °C and 175°C and obtained 3 data sets. The
reasons, there is no theoretical reason to stick with theurpose was to determine whether the propagation delay
S-shape either. One of the most popular S-shapepuld be more than 2 nano seconds{t2° seconds)

growth curves is the Gompertz distribution. in 25 years at a use temperature of°@ This is a
The model well-documented report with many technical details
except for raw data. Regressions, linear and non-linear,

i=1, 2, ...,n (1) are used. This is an engineering paper; although it is
not 100% rigorous, it is mostly satistactory. Their basic
theory follows that of Jennrich (1969), which can be
is often called a logistic growth model. Whep-  extended to mixed effect models (see Wu (1996)).
N(0,0%), it is necessary to use non-linear regression to  The real shortcoming of Carey and Koenig (1991)
estimate the parametess A, andB. In practice,a, B> s that the condition “25 years” has never been used.
0, and ag -, yi(t)t a anda may be over-estimated. |n fact, its conclusion is based on the estimated value
This model, and a slightly modified version, is usedof 8, which is the value oy att— . Therefore, if
to estimate the yield of crops 15 days before harvesheir conclusion is valid for 25 years, then it also

_ a .
YiT1vexp{A-Bt} "

in India (see Jairet al. (1992)). applies to 10000, and the same logical conclusion is
The logistic growth model was perhaps one of theilso obtained.
earliest fitted growth models. Under certain birth- When used in extrapolation, the final inference

death processes, it can be shown that the expected sizeém this type of model is sensitive to the functional
of the population at time can be roughly represented forms employed. Its intermediate behavior is usually
by a logistic function (Tan and Pientadosi, 1991). Foexplained by the differential equation and its implied
a more systematic treatment, see Tan (1992). movement. Unless there are good reasons to believe
The classical approach starts from Eq. (1) withthat the same physical law applies to the far end of time,
€=0. A differential equation is used to describe thisthe conclusion, when far stretched, is relatively thin.
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In the old days when computer use was not ver}/Il. Stochastic Process
popular, various techniques were used to facilitate
estimation of an S-curve. But these usually caused There are two basic approaches used to describe
confusion in the meaning of residuals. The commenthe degradation process: the direct approach and the
by Oliver (1964) that “there is no substitute for full indirect approach. In the direct approach, equations are
least squares in estimating the logistic function” isset up first, and data fitting is the basic means of
perhaps correct, and the same comment may be appliadalysis. No, or little, attention has been paid to the
to other S-curves. For related software, see Ross (198@uestion of why the model works. The indirect approach,
on the other hand, starts from theoretical justification
VI. Design of Experiment and then tries to derive more theory. Once in a while,
we see something in between; the logistic growth curve,
Only a limited number of works have utilized the for example, is supported by both data and theory (Tan,
concept of experimental design in the analysis 0986, 1992; Tan and Piantadosi, 1991).
degradation data. One report is that of Cullis and Degradation is caused by enduring stress. The
McGilchrist (1990). Although the model consideredmodel based on this logic is the cumulative damage
is a little bit complicated, basically it still is one of (CD) model. The earliest CD model was perhaps Miner’s
the growth models with the assumption of normality.Law, which is deterministic, and we shall not discuss
Another work is that of Tsengt al. (1995), where a it further. Most of the CD models nowadays are related
2% fractional factorial design was used. For someo the compound Poisson process (see Sanders (1982)).
similar works, see Yu and Tseng (1999). These works  The system fails when a certain amount of cumu-
start with the boundary crossing of the degradatiotative damage is inflicted. Le{(t) denote a CD process,
path, and from this it is concluded that the respectivand letT be the life time of this system; then,
life times follow a lognormal distribution. Then analy-
sis of design data from this design is carried out under  T=inf{t: X(t)=d}
(transformed) normality. In this type of degradation
study, however, little attention is paid to prediction.In principle, when the distribution of(t) is known,
Rao (1987), when dealing with the prediction problemwe can find the distribution of.
in growth curve models, found that when making a Use of this technique is not limited to the CD
prediction, the weights of the “last few data points"models. Let
play a more important role than do the other ones.
Therefore, for a reasonable design where prediction  X(t)=a+bt+W(t)
(or extrapolation) is the main concern, one should
consider the unbalanced version. A basic concefivhere W(t) is a Brownian motion); thenT has a
here is so-called-optimality, and the proper paper to distribution which is inverse Gaussian. This is one of
start with is Hoel and Levine (1964) (see also Chathe few cases where we can find the exact solution (see
(1995)). Bhattacharyya and Fries (1982)). Using this relation,
Optimal designs are statistical methods seekin@oksum (1991) and Doksum and Normand (1995)
the proper locations of various settings that can be usggerformed analysis on degradation data (also see
to take observations in scientific experiments. MosWhitmore (1995)). Work in this direction seems to
traditional optimal designs are based on the invarianceave concentrated on finding the distribution or asymp-
property of the respective design matixtypically totic distribution ofT (see for example, Sethuraman and
characterized by its eigenvalues. Theptimal design, Young (1986), Desmond (1985), Berman (1970) and
on the other hand, looks for settings that maximize thgvhitmoreet al. (1998)). All these works were essen-
variance ofZ;c;8;, wherec;’s are constants ané;’s tially motivated by the classical work of Cramér and
denote generic estimates. For degradation analysis, oueadbetter (1965).
main interest lies in the upper quantiles of the under- It is natural to extend this work into the framework
lying distribution, which is usually of formc;6. A  of It6 integral and related stochastic differential
typical example is the normal quantile which is esti-equations. This approach has been well studied in other
mated byji+z,0, wherez,=®™(1-a). It is natural to fields, such as economics and finance. A good review
expect that positive effects will result when the desigmpaper is that of Bollerslest al. (1994). | know of very
concept is incorporated into growth curve analysis. Bulittle work in this direction using degradation data
| haven’'t seen any work that uses the concept oéxcept for the initial report by Ueng (1988). Another
experimental design in the study of growth curves wittapproach is to study the fatigue of metal under stress
prediction. and the growth of the crack length therein. A related
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physical law is the Paris Law (see Cinlar (1996) andot imply, of course, that this approach is unimportant

Palettas and Goel (1996)). More recent works are thogeee, for example, Wu (1993)). A good starting point

of Lu and Meeker (1993) and Meeket al. (1998). in this direction is a book by Crandall and Mark (1963).
Another related topic we have ignored is that of sta-

VIIl. Step Stress Models tistical methods related to nondestructive evaluation
(see Olin and Meeker (1996)).
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