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ABSTRACT

Degradation is a phenomenon where certain measurements of quality characteristics deteriorate over
time.  When an item subject to life testing is too well made to fail, we often turn our attention to degradation
measurements and hope to obtain life time information from this type of data.  The first part of this paper
presents a general discussion of the degradation phenomenon.  The second part reviews some scattered
works related to the analysis.  Topics involve shelf life studies, growth curve, S-shaped curves, experimental
design, stochastic process modeling, accelerated life testing and step-stress models.

Key Words: accelerated life testing, degradation, design of experiments, growth curve, S-shaped curves.
step-stress models

− 555 −

I. Introduction

I started to do a relatively intensive literature
search on topics concerning degradation analysis when
we were awarded a 3-year project by the National
Science Council in 1996.  At that time, there was no
intention to perform a thorough review except for fear
of missing something important. What is degradation?
As time goes on, things become worse.  Degradation
is just a technical term used to describe this phenomenon.
Since the degradation phenomenon takes place naturally,
there is a vast amount of work in the literature and our
task is necessarily limited by this author's inability and
his selection bias.  A major problem we encountered
is that most of these works are closely related to certain
physical processes.  Subject matter knowledge, at least
at the superficial level, is needed when in depth un-
derstanding is called for.  Nevertheless, the statistical
behavior of degradation data and its related applica-
tions have been well studied.

Degradation analysis involves the degradation
data. Four sets of such data are reported in Section II
just to provide a flavor of the subject matter.  We
examine and explain the reasons why such data are
collected.  The true objective is to study the life time
distribution of certain subjects under inspection, but
we are driven by the need to extrapolate into the unknown
because the subjects are too well made and no or little

failure is observed during the testing period.  The idea
is simple indeed: if it takes too long to observe a true
failure, we simply try to observe how bad the item under
inspection can become. In doing so, we hope that perhaps
some conclusion can be made which is still useful in
real world terms.

One of the subjects most carefully studied using
degradation data is determining the shelf life of drugs.
There are good reasons: on the one hand, it is an official
requirement.  Stating on the labels the expiration dates
for all marketable drugs is required by health authori-
ties in most developed countries.  On the other hand,
there is a powerful profit-driven pharmaceutical indus-
try behind the scenes.  In spite of the amount of work
actually done, the methodology used to determine the
shelf lives is basically mature, however.  Some recent
works are reported in Section III.

In Section IV, we examine the development of
another related topic, the study of growth curves.  As
in the shelf life problem, the basic underlying assump-
tion of growth curve studies is that observations are
jointly normal.  This implies that, among other things,
the basic methodology is solid. Strictly speaking,
nothing is surprising.

The classical S-shaped curves, also called
sigmoids, are discussed in Section V.  This type of
curve fitting is traditionally used to model different
growth rates of a subject or a group of subjects under
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study when there is a natural limit of growth.
We then move to the problem of how degradation

data are collected.  For traditional data collection, the
most effective way is through a well designed experi-
ment where the criterion is to select observations at
points maximizing certain information measurement.
For degradation problems, since the objective is to
make inference on the extreme tail part of the life data,
a class of problems, called extrapolation design, come
into the picture naturally (Section VI).

In Section VII, we examine the methods used to
model the degradation process.  There are basically two
types of probability models that have been used: the
compound Poisson process and the Brownian motion.
The former is the basis of the cumulative damage
model, and the latter allows the use of stochastic
differential equations.

The original version of this work was done in 1996
when the project started.  As time went on more recent
papers were included. Efforts have not been made to
search back for the purpose of giving credits for
priorities; rather, the objective of this work is to pro-
vide readers with enough background material to start
work.  Most practical problems are solved using known
methods. Since doing good data analysis is only tech-
nical in nature, true scientific contributions for this
type of problems are rare.  I have, however, tried to
cite works by local researchers as much as possible.

II. The Degradation Phenomenon and
Why We Study It

1. Reliability Analysis

Most things have a life span, defined in one way
or another.  These lives, when measured, present us
with data sets we can use to explore further for sci-
entific or other purposes.  It is natural to study the life
time distribution of a subject through a set of measured
data.  One of the earlier topics in this respect, which
is still very much alive in research activities, is the
theory of reliability.  A generic definition of reliability
is:

Reliability is the probability of a product or a system performing

its intended function without failure for a specified period of time

under specific conditions.

For reliability analysis, the basic subject matter
to study is the probability distribution of the life times
of the subject under study.  For this purpose, the stan-
dard method is to take a set of observed life times T1,
T2, ..., Tn, censored sometimes, though basically we
assume Ti~F(.;θ).  From the likelihood function con-

structed from this sample, we can make an inference
with respect to the unknown parameter θ.

When the form of F(.;θ) is known and the com-
plete distribution of F is determined by a finite dimen-
sional parameter θ, then we have a classical parametric
model; if F is completely unknown except for some
qual i tat ive descript ions such as continuity or
smoothness, then we have a non-parametric model;
finally, if F is unknown but the parameter θ has some
structure to explore, then we have a semi-parametric
model.

When the parameter θ exhibits some structure, we
will naturally embed our inference problem into
traditional, and time-tested as well, models for statis-
tical analysis.  These include techniques such as ex-
perimental design, regression, logistic regression,
accelerated life testing, etc.  These methods incorporate
various situations that one may encounter in practice.
There is no need, however, to restrict the inference to
the classical frequentists’ parametric setup.  We can,
if the situation requires, use the Bayesian method or
even the empirical Bayes techniques.

What we have described is the general setup for
the reliability inference.  The real problem, particularly
when applied on the shop floor or in a reliability testing
center, is of course much more complicated.  We have
at best provided a very rough description for this
important topic, but it cannot be too far away from the
general picture.  There is extensive literature on reli-
ability analysis, and research is still very active.  On
the other hand, several excellent books exist on this
topic, and industrial standards have been established,
e.g., by the Department of Defense, U.S.A. (1991):
MIL-HDBK-217F.

There is a common requirement for reliability
analysis: we have to make observations on the true life
times T1, T2, ..., Tn.  A certain percentage of the observed
T’s may be be censored, but all methods fail when this
percentage becomes too high.

2. Data Collection Problems

In the last section, it was mentioned that one has
to take true lifetime observations to make a sensible
inference on the properties of the life distribution of
the subject matter under study.  In reality, however,
it is difficult to actually observe the true failure of a
well-made item even under accelerated environment.
With rapid advances in technology, products nowadays
are just too well-made to fail within a reasonable amount
of time.  For example, the average life time of a light-
emitting diode (LED) is around 100,000 hours in theory.
But this is about 11 years, and if a firm has to wait
for that long, or even half that long, to obtain infor-
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mation about its mean life before failure (MLBF, one
of the most important pieces of reliability information),
then it will lose purchase orders for these items to other
competitors.  It is entirely possible that some other
devices will be invented in the mean time which will
replace the functions of LED, and in 11 years the LED
may no longer be needed in the market.  On the other
hand, reliability information, and the ability to supply
it, is an important means of persuading a buyer.  We
must develop some other methods to cope with this
problem when the items are slow to fail.

One way is to observe, and calculate, to what
extent the items under study have deteriorated.  We may
take measurements on one or several characteristics
over a period of time and observe how bad they become.
From the data set thus collected, the life time distribution,
or some characteristics of the life distribution, under
study can be estimated.  For example, by measuring
luminosity of fluorescent lamps, Tseng et al. (1995)
estimated the time when the amount of degradation in
the luminous flux fell below 60% of its original value.

The degradation phenomenon takes place
naturally: iron can rust, copper may oxidize, bacteria
make food rotten.  In general, the impact of the
environment, be it natural or artificial, takes its toll
gradually.  The item under inspection may still be
useable and the amount of deterioration, properly
measured, can provide us with useful information.  In
some cases, it can be translated into regulations: drugs
and food and other biomasses have proper shelf lives;
we expect the life expectancy of an under sea cable
to be 25 years, etc.

Some degradation phenomenon can in theory be
calculated.  One example is the half-life of a certain
radioactive material. Another example is the amount
of time that a satellite stays in orbit.  For many others
degradation phenomenon the underlying theory is
limited, and the only sensible way to make an inference
is to actually take samples and establish a model on
which an inference can be made.  Still many others
degradation phenomenon lie between these two
extremes: there is some theoretical background, but
further verifications are needed.  Degradation data,
however, basically have the following characteristics:
(1) there is a subscript t, indicating the time sequence
in which the data were obtained; (2) an important part
of the data changes monotonically with time.  This is,
among other things, the basic essence of degradation
is that it changes with time along a definite direction.
Milk spoiles with time, iron cannot become less rusty,
the cracks in a reinforced concrete structure can only
grow, the luminosity of fluorescent lamps may fluc-
tuate due to unstable voltages but basically goes down
with time.

3. Basic Data Form

A. Example 1

We want to estimate the dielectric breakdown
strength (DS) of certain insulation specimens.  For this
purpose, a sample of 128 such specimens is obtained
under 4 different temperature settings: 180 °C, 225 °C,
250 °C, and 275 °C.  Eight aging times are used: 1,
2, 4, 8, 16, 32, 45, and 64 weeks.  The data in Table
1 represent the measured dielectric strengths.  We are
interested in knowing the amount of time needed for
a typical specimen to degrade to 2 kVolts when the
temperature is set at 150 °C (Nelson, 1981).

The amount of degradation in this data set is
measured on the different specimen.  Therefore the
observations are independent and there is no need to
do time series analysis.  However, when we plot the
measurements against time, it is clear that for any fixed
temperature, the trend with time is obvious in scatter
plots.

Let

Xitk (i=1, 2, 3, 4; t=1, 2, ..., 64; k=1, 2, 3, 4)

be the DS values measured at temperature Ti at the t-
th week.  Figure 1 shows the respective scatter plots
and the related regression lines.

B. Example 2

Table 2 shows a typical set of data obtained from
a stability study of certain drugs for a new drug
application.  There are 24 batches, and measurements

Table 1. Dielectric Breakdown Strength

Temperature\Weeks 1 2 3 4 5 6 7 8

180 15 14 13.5 15 18.5 12.5 13 13
17 16 17.5 15 17 13 13.5 12.5
15.5 13 17.5 15.5 15.3 16 16.5 16.5
16.5 13.5 13.5 16 16 12 13.5 16

225 15.5 13 12.5 13 13 11 11.5 11
15 13.5 12.5 10.5 14 9.5 10.5 11.5
16 12.5 15 13.5 12.5 11 13.5 10.5
14.5 12.5 13 14 11 11 12 10

250 15 12.5 12 12.5 12 11 7 7.2667
14.5 12 13 12 12 10 6.9 7.5
12.5 11.5 12 11.5 11.5 10.5 8.8 6.7
11 12 13.5 11.5 12 10.5 7.9 7.6

275 14 13 10 6.5 6 2.7 1.2 1.5
13 11.5 11.5 5.5 6 2.7 1.5 1
14 13 11 6 5 2.5 1 1.2
11.5 12.5 9.5 6 5.5 2.4 1.5 1.2

Source: Nelson (1981)
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of the contents of their major components are taken at
0, 12, 24, and 36 months.  The main purpose of ana-
lyzing this type of data is to determine the shelf lives
of these drugs.  In general, the potency of various
components decreases with time.  This data set comes
from Chow and Shao (1991).

C. Example 3

A copper bearing intra-uterine contraceptive
device (IUCD) consists essentially of a length of copper
wire coiled around a plastic former. When placed in
uterus, the copper is released, which increases the
efficacy of the device.  The contraceptive action is
dependent upon the surface area of the copper, which
may be regarded as the main factor controlling the rate
of copper release.  The data set consisting of 811
IUCD’s was collected through intra-uterine device
research networks and family planning centers in the

Manchester area, U.K.  The copper content was deter-
mined by using atomic absorption spectroscopy.

The data and two types of fit are plotted in Fig.
2 (Faragher et al., 1985), and it is clear that the copper
content decreases with time.

D. Example 4

Figure 3, taken from a book by Bogdanoff and
Kozin (1985), indicates the growth of crack length
caused by stress.  Here, we use “million cycles” in the
abscissa, instead of time, to indicate the stress levels
applied.

This data set has been thoroughly analyzed by Lu
and Meeker (1993).

4. Some Conditions on the Form of the Data

Summarizing the examples given in the previous

Talbe 2. Data from a Stability Study

age age

0 12 24 36 0 12 24 36

1 105 104 101 98 13 105 104 99 95
2 106 102 99 96 14 104 103 97 94
3 103 101 98 95 15 105 103 98 96
4 105 101 99 95 16 103 101 99 96
5 104 102 100 96 17 104 102 101 98
6 102 100 100 97 18 106 104 102 97
7 104 103 101 97 19 105 103 100 99
8 105 104 101 100 20 103 101 99 95
9 103 101 99 99 21 101 101 97 90
10 103 102 97 96 22 102 100 99 96
11 101 98 93 91 23 103 101 99 94
12 105 102 100 98 24 105 104 100 97

Source: Chow and Shao (1991)

Fig. 1. Aging of dieletric strength. [Adapted from Nelson (1981)]
Fig. 3. Growth of cracks. [Adapted from Bogdanoff and Kozin (1985)]

Fig. 2. Degradation of copper content. [Adapted from Faragher et
al. (1985)]

batchbatch
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section, we may use the following form to describe the
type of degradation data:

{ Xat, a∈A, t∈T},

where A denotes a set of labels and T is either [0,∞)
or { t0, t1, t2, ...}, implying time.  For real observations
made, the set T is discrete; but theoretically we may
consider T as being continuous.

The label set A may have some structure which
indicates the conditions under which these observa-
tions were made. In general, if ai∈A are all distinct,
we may assume that Xait, i=1, 2, ... are mutually in-
dependent.  But for the same a and different t1<t2<...,
<tk, there may be some dependence among the obser-
vations modeled in probability terms.

The theme “degradation” implies that when t1<
t2, we should expect one of the following:

Condition D. E[Xat1]≥E[Xat2]
We believe that Condition D can reasonably be imposed
on all degradation data.  Unfortunately, this condition
has not been sufficiently utilized in the literature.  A
more stringent condition is the following.

Condition SD. For all t1<t2∈T, Xat1≥Xat2
Because of measurement errors and perhaps other noise
factors (such as an unstable voltage), strict degradation
conditions are hard to satisfy.  In practice, when deg-
radation data are clearly defined and the analysis is
basically sound, Condition D usually holds.

5. Data Analysis Method in General

If we can write down the form of the likelihood
function (or some variation of it) of the observed data,
be it parametric, non-parametric, or semi-parametric,
basically for this set of data the method of analysis is
more or less determined.  What is left is either technical
in nature (such as the Newton-Raphson iteration method)
or doctrine of schools, for example, Bayesian or
frequentist.  Therefore, the basic problem is to choose
a proper probability model to describe the behavior of
the observed data.

Works along this direction, except for the use of
Condition D or SD, are abundant in the literature.  Their
basic strategy is to look at the data set first.  For
example, when the label set A is a singleton set, then
all we have is the data {Xt, t∈T}, a time series.  If T
contains 25 or more points, we will naturally try to use
traditional time series models, such as the autoregressive
integrated moving average (ARIMA) model.  If A has
some linear structure and T has less than 10 points, then
we may employ growth curve analysis, which is also

well developed.  If we can find some background
knowledge, say that Xt satisfies a certain set of differ-
ential equations, then we may try to see if the use of
stochastic differential equations can be a better approach.

6. Danger of Extrapolation

We mentioned in previous sections that the reason
for doing degradation analysis is that we need to make
use of the degradation phenomenon to model an un-
observable time of failure.  This means that we need
to do extrapolation.  All methods of extrapolation are
dangerous, however.

The simplest method of extrapolation is to fit the
data with a straight line and extend the line further into
the future.  Straight lines can indeed be extended, but
any small error is magnified as the abscissa increases.
The further we extrapolate, the more mistakes we may
expect.  This is a basic problem with all extrapolation
(and forecast) methods.  One may replace the straight
line with some other curves, but the problem remains.
It is fair to say that academic rigor is inversely related
to the degree of extrapolation.

We may need to understand, or make a judgement
on, whether an under sea cable has a useful life of 25
years, or whether an LED can last for 11 years.  But
the accuracy of these judgements depends on the
appropriateness of the fitted statistical model.  When
the model is wrong, the forecast may still be valid.  A
simple model may out-perform the more sophisticated
ones in forecasting.  Nevertheless, more sophisticated
models models continue to appear and disappear.  Long
range forecasting and extrapolation cannot be accurate.
Depending on their final use, the danger due to inac-
curacies of extrapolation can be serious, not so serious
or sometimes (fortunately) irrelevant.  In many cases,
these may be the only educated guesses.  It is difficult
to make a distinction between true scientific work and
pseudo scientific work; nevertheless, the distinction is
important.  An example is provided at the end of Section
V which shows that even a well planned experiment
can lead to an incorrect result if extrapolation is not
carried out with care.

III. Shelf Lives of Drugs

One of the formally documented procedures in
degradation analysis concerns the determination of the
shelf lives of drugs.  All drugs are specifically labeled
“to be used before (a certain date)”.  How are these
expiration dates determined?

Studies of this kind are called stability studies in
pharmaceutical literature.  A more common term is
“shelf life studies”.  For formal documentation, see
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FDA, U.S.A. (1987), MHW, Japan (1991), and ICH,
Switzerland (1993).  A monograph by Chow and Liu
(1995) gives the technical details of shelf life studies
and illustrates them using well-prepared examples.  It
is perhaps the best text on this topic so far.  In what
follows, we will only discuss shelf life studies related
to statistical analysis.

1. Official Definition of Shelf Life

Suppose there are k batches of drugs to be tested.
Let Yij  be the result of the j-th assay of the i-th batch.
The following model is used:

Yij=  x ij′ βi+n i, i=1, ..., k; j=1, ..., n

where xij  is of dimension p×1 and denotes the appro-
priate regressor, and n i denotes the error term.

The simplest form of x is of the form xij=(1,tj),
where t1<t2<...<tn denote the time points when these
assays are performed.

The first step after data collection and cleaning
is to test whether there is between batch variation.  That
is, the null hypothesis

H0:β1=...=βk

is tested. The size of the type I error used is α=0.25,
which is employed based on a suggestion made by
Bancroft (1964).  If H0 is accepted then we may pool
the k sets of data together to obtain a shelf life estimate.
If H0 is rejected, then we will find a shelf life estimate
for each batch, and the smallest among k shelf lives
will be used.

The method used to estimate the shelf life of any
batch (or a combined batch) is as follows.  First, we
take Eβ=b, so EY=x′b.  In general x is a function of
t, so we write x=x(t).  The main concern of the FDA
is whether the contents of the drug components fall
below the amount as claimed on the label.  If η is the
content of a component described on the label, then
the “true shelf life” is then the time needed for the value
of η to reach a certain lower level.  Typically, we set
the threshold at η′=0.9η; in doing so, it is implicitly
assumed that x(t)′b is a decreasing function of t.
Therefore,

SLTrue=inf{ t:x(t)′b=η′}.

From the frequentists’ point of view, SLTrue is an
unknown parameter, so it is possible to define its
confidence interval.  The one-sided lower confidence
level is often used, for conservative reasons.  The level
is usually set at the standard 95% level.

2. Fixed Effect Model

The estimation of shelf life, as described in the
previous section, can be modified.  When the statistical
methodology becomes maturer, it is sensible to believe
that for the same data, better estimates can be obtained
than before.

The fundamental question is: what is SLTrue?  When
we follow the procedure under which the shelf life is
defined, it seems proper to say that a clear definition
is possible only when no batch to batch variation is
discovered.  When the problem is examined from the
consumers’ point of view, any single purchased drug
should have a 95% chance that the amount of its
components is more than η′=0.9η, as stated on the
label.  Here, “any drug” means that a drug chosen at
random, so from the users’ point of view, the essence
of the shelf life problem is the prediction of a future
observation rather than estimation of some unknown
parameters.  There has been basically no research done
on shelf life (of drugs) with prediction in mind.  The
only related work, in terms of prediction and life length
estimation, is a paper by Carey and Koenig (1991).
Their topic is estimation of the life of some under sea
cables, which we will describe later.

When we assume the viewpoint of a consumer,
the shelf life problem is then predictive in nature.  Since
it is the value of a typical future observation that is
our concern, we must include variation due to the
observation itself in our prediction interval.  A natural
consequence is that the modified estimate of SL will
be shorter.  Here, the emphasis is on random selection
of a single drug.  This is different from selection of
a batch of drugs at random from many batches at hand,
however.  The latter, termed “the random effect” model,
is well represented in the literature.  We will discuss
it in the next section.

On the other hand, if H0 is rejected, then using
the shortest shelf life only assures that SLTrue is one
of the true average shelf lives.  Since this method is
conservative, the estimated SL must at least be a safe
number to use.  When this approach is employed, it
is implicitly assumed that these few batches must be
representative batches.  Strictly speaking, in this situ-
ation we are not very sure what the true definition of
SLTrue is and yet efforts have been made to find its
respective confidence intervals.  The work is still under
the framework of frequentists, but its explanation is not
entirely clear.

When the number of batches k is large, the shortest
length method may be too conservative.  Efforts have
been made to solve this problem (Shao and Chow,
1994).  Let SLi, be the shelf life of the i-th batch.  Then
when k→∞,
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   min
1 ≤ i ≤ k

SLi→0.

Hence, when k is large, it is unreasonable to simply
select the shortest shelf life among all the batches.  For
most new drugs the value of k is about 3 or 5.  But
for a so-called marketing stability study, a larger value
of k is used and the sampling intervals will be closer
(Chow and Shao, 1991).

The simplest model for the i-th batch is perhaps
of the form

Yij=αi+βi tij+n ij .

So far, we have assumed that α i, β i  are fixed but
unknown parameters.  All tests for

H0:β1=...=βk,

treat β’s as unknown parameters as well.  To test H0,
the method of analysis of covariance is employed.  For
some real case examples, see Ruberg and Stegeman
(1991).  This paper deals with the problem of how to
pool data from various batches when the main concern
is fixing the power of the test.

3. Random Effect Models

We may treat the parameter as being of 2 or more
dimensions.  For random effect models, the coefficients
α, β may be modeled as random variables.  Thus, we
will consider parameters of the form (α,β).  Here, (i)
αi and βi can both be unknown parameters; (ii)  αi can
be an unknown parameter and β i  can be treated as
random; or (iii)  αi and β i can both be random.

Statisticall analysis in these cases, since they all
assumpe normality, can be carried out without too
much difficulty, at least for large sample cases.  For
example, Chen et al. (1995) treated βi as missing data
and used a unified approach to treat cases (i) -(iii)
mentioned earlier using the same EM algorithm.  In
principle, this falls into the framework of Dempster et
al. (1981) for the Bayesian/EM setup.  The EM algo-
rithm can be slow sometimes.  In reality computing
efficiency is not a main concern, however, so the gen-
eral technique developed in this work is sufficient to
solve almost all shelf life problems under the assump-
tion of normality.

There are other scattered works.  Murphy and
Weisman (1990) considered case (ii) ; as did by Chow
and Shao (1991).  Most works on shelf life have used
the ordinary least squares method to estimate the
parameters (α,β), but weighted least squares may also
be employed.  Kirkwood (1977) used the maximum
likelihood directly, and in that paper, some earlier

works on accelerated degradation tests are cited.  We
should also mention the work of Shao and Chow (1994).
It summarizes some known exact results and suggests
a method for actually estimating the shelf life in case
(ii) .  Wei (1998) suggested simple method for deter-
mining release limits for drug products.  The method
is still somewhat artificial, and this author feels that
even under the assumption of a normal model, the
problem of shelf life estimation is relatively narrow and
mostly consists of piecemeal research topics.  This is
not a glamour topic to jump into, however, and young
statisticians should look at it carefully before putting
efforts into it.

IV. Growth Curves

Compared with research works related to the
determination of shelf life, a more general framework
is the growth curve.  Growth curves stand alone as a
self-sufficient topic, and there is a vast amount of
literature dealing with this subject.  For a succinct
introduction, yet with considerable depth, see Ware
(1983).

The basic data form of a growth curve is of the
form {Xat, a∈A, t∈T}.  The earliest example of a growth
curve study examined the ramus heights of 20 boys
measured at age 8, 8.5, 9 and 9.5, respectively (Elston
and Grizzde, 1962).  Independence among the boys was
assumed, of course, but the measurements taken at
different times for each boy were dependent.  Tradi-
tionally, a “growth curve” does not have to deal with
real growth (i.e., Condition D is not needed), but it must
consider the dependence structure at different points
of time.  Furthermore, normality is still assumed.

Because of the assumption of normality, the study
of growth curves is so well developed that rather
complicated situations may be considered.  See, for
example, Lundbye-Christensen (1991).  The general
picture is that we are not too far away from the tra-
ditional likelihood setup, and it is often necessary to
apply the EM algorithm.  Dempster et al. (1981) is the
standard reference, where the mixed effect model (some
of the β are fixed effects while other β are random
effect) is carefully sorted out.  Using this idea, Chen
et al. (1995) discussed the shelf life problem mentioned
earlier.  However, since the tests are destructive, it is
reasonable to assume that measurements taken at dif-
ferent time points are independent.  There is no such
a convenience in traditional growth curve studies.

Our main concern is still prediction.  For fixed
a, {Xat, t∈T} are dependent.  Therefore, even with the
normality assumption, for prediction at time t1>supT,
it is necessary to assume that the covariance matrix
{ Xat, t∈T} has a natural definition for t1>supT.  When
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the covariance matrix is of either form listed below:

(a) Σ=δijσ2+(1−δij )ρσ2, or

(b) Σ=σ2(ρ|i−j |)

Lee (1988) has a clear solution.  Of course, case (b)
corresponds to an AR(1) model.  We believe it is
possible to treat the case of AR(p).  This generalization,
if it can be done, is not too surprising.

Special credit must be given to Rao (1987).  This
article is rich in content and essence and is a key
reference for this topic.  For a more recent review, see
Lee and Geisser (1996).

V. Sigmoid and the Like

The problems discussed in this section are all
related to the fit of data to an S-shaped curve.  A
classical term for these curves is “sigmoid” (see Stone
(1980)).

The basic idea of this type of curve fitting is that
certain growths are by nature bounded above, so an S-
shaped curve may be used to model the changing rate
of growth from the beginning to the end.  At first growth
is slow and gradually speeds up.  After it reaches a peak
it then begins to slow down and eventually levels off.

Let F(x) be any cumulative distribution function,
then we may use y=θF(x)+n  to model this type of
growth (see Boulanger and Escobar (1994)).  Not all
F’s are S-shaped, of course, and except of traditional
reasons, there is no theoretical reason to stick with the
S-shape either.  One of the most popular S-shaped
growth curves is the Gompertz distribution.

The model

    y i = α
1 + exp {A – Bt i}

+ n i , i=1, 2, ..., n (1)

is often called a logistic growth model.  When n i~
N(0,σ2), it is necessary to use non-linear regression to
estimate the parameters α, A, and B. In practice, α, B>
0, and as t→∞, yi(t)↑α and α may be over-estimated.
This model, and a slightly modified version, is used
to estimate the yield of crops 15 days before harvest
in India (see Jain et al. (1992)).

The logistic growth model was perhaps one of the
earliest fitted growth models.  Under certain birth-
death processes, it can be shown that the expected size
of the population at time t can be roughly represented
by a logistic function (Tan and Pientadosi, 1991).  For
a more systematic treatment, see Tan (1992).

The classical approach starts from Eq. (1) with
n=0. A differential equation is used to describe this

curve.  This suggests the possibility that a growth curve
may be obtained from a differential equation.

Using this idea, various growth models can be
obtained.  Let X(t) be a birth-death process with X(0)
=N0 which satisfies

Pr[X(t+∆t)=j+1|X(t)=j ]= jb(t)∆t+o(∆t),

Pr[X(t+∆t)=j−1|X(t)=j ]=jd(t)∆t+o(∆t).

Tan (1986) proved that

E[X(t)|x(0)=N0]=N0exp{
  

0

T
γ(x)dx},

where γ(x)=b(x)−d(x).  Here, we have some freedom
in choosing the form of γ(x).  If we choose γ(x)=βexp
{ b(x)−d(x)}, then Gompertz’s form is obtained.

The logistic growth curve is also used to model
rational selection by customers between two products
to study the market shares of these products (see Oren
and Schwartz (1988)).

Another example, which was used to study the
propagation delay of an under sea cable, is given by

y=θ(1−exp{−   λt })+ n. (2)

Using this model, together with temperature as the
accelerating factor (i.e., the Arrenius Law), Carey
and Koenig (1991) obtained measurements at 100 °C,
150 °C and 175 °C and obtained 3 data sets.  The
purpose was to determine whether the propagation delay
could be more than 2 nano seconds (=2×10−9 seconds)
in 25 years at a use temperature of 40 °C.  This is a
well-documented report with many technical details
except for raw data.  Regressions, linear and non-linear,
are used.  This is an engineering paper; although it is
not 100% rigorous, it is mostly satistactory.  Their basic
theory follows that of Jennrich (1969), which can be
extended to mixed effect models (see Wu (1996)).

The real shortcoming of Carey and Koenig (1991)
is that the condition “25 years” has never been used.
In fact, its conclusion is based on the estimated value
of θ, which is the value of y at t→∞.  Therefore, if
their conclusion is valid for 25 years, then it also
applies to 10000, and the same logical conclusion is
also obtained.

When used in extrapolation, the final inference
from this type of model is sensitive to the functional
forms employed.  Its intermediate behavior is usually
explained by the differential equation and its implied
movement.  Unless there are good reasons to believe
that the same physical law applies to the far end of time,
the conclusion, when far stretched, is relatively thin.
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In the old days when computer use was not very
popular, various techniques were used to facilitate
estimation of an S-curve. But these usually caused
confusion in the meaning of residuals.  The comment
by Oliver (1964) that “there is no substitute for full
least squares in estimating the logistic function” is
perhaps correct, and the same comment may be applied
to other S-curves.  For related software, see Ross (1980).

VI. Design of Experiment

Only a limited number of works have utilized the
concept of experimental design in the analysis of
degradation data.  One report is that of Cullis and
McGilchrist (1990).  Although the model considered
is a little bit complicated, basically it still is one of
the growth models with the assumption of normality.
Another work is that of Tseng et al. (1995), where a
24−1 fractional factorial design was used.  For some
similar works, see Yu and Tseng (1999).  These works
start with the boundary crossing of the degradation
path, and from this it is concluded that the respective
life times follow a lognormal distribution.  Then analy-
sis of design data from this design is carried out under
(transformed) normality.  In this type of degradation
study, however, little attention is paid to prediction.
Rao (1987), when dealing with the prediction problem
in growth curve models, found that when making a
prediction, the weights of the “last few data points”
play a more important role than do the other ones.
Therefore, for a reasonable design where prediction
(or extrapolation) is the main concern, one should
consider the unbalanced version.  A basic concept
here is so-called c-optimality, and the proper paper to
start with is Hoel and Levine (1964) (see also Chao
(1995)).

Optimal designs are statistical methods seeking
the proper locations of various settings that can be used
to take observations in scientific experiments.  Most
traditional optimal designs are based on the invariance
property of the respective design matrix X, typically
characterized by its eigenvalues.  The c-optimal design,
on the other hand, looks for settings that maximize the
variance of Σiciθ i, where ci ’s are constants and θ i ’s
denote generic estimates.  For degradation analysis, our
main interest lies in the upper quantiles of the under-
lying distribution, which is usually of form Σiciθ i.  A
typical example is the normal quantile which is esti-
mated by µ+zασ , where zα=Φ−1(1−α).  It is natural to
expect that positive effects will result when the design
concept is incorporated into growth curve analysis.  But
I haven’t seen any work that uses the concept of
experimental design in the study of growth curves with
prediction.

VII. Stochastic Process

There are two basic approaches used to describe
the degradation process: the direct approach and the
indirect approach. In the direct approach, equations are
set up first, and data fitting is the basic means of
analysis. No, or little, attention has been paid to the
question of why the model works.  The indirect approach,
on the other hand, starts from theoretical justification
and then tries to derive more theory.  Once in a while,
we see something in between; the logistic growth curve,
for example, is supported by both data and theory (Tan,
1986, 1992; Tan and Piantadosi, 1991).

Degradation is caused by enduring stress.  The
model based on this logic is the cumulative damage
(CD) model. The earliest CD model was perhaps Miner’s
Law, which is deterministic, and we shall not discuss
it further. Most of the CD models nowadays are related
to the compound Poisson process (see Sanders (1982)).

The system fails when a certain amount of cumu-
lative damage is inflicted.  Let X(t) denote a CD process,
and let T be the life time of this system; then,

T=inf{ t: X(t)≥d}

In principle, when the distribution of X(t) is known,
we can find the distribution of T.

Use of this technique is not limited to the CD
models.  Let

X(t)=a+bt+W(t)

(where W(t) is a Brownian motion); then, T has a
distribution which is inverse Gaussian.  This is one of
the few cases where we can find the exact solution (see
Bhattacharyya and Fries (1982)).  Using this relation,
Doksum (1991) and Doksum and Normand (1995)
performed analysis on degradation data (also see
Whitmore (1995)).  Work in this direction seems to
have concentrated on finding the distribution or asymp-
totic distribution of T (see for example, Sethuraman and
Young (1986), Desmond (1985), Berman (1970) and
Whitmore et al. (1998)).  All these works were essen-
tially motivated by the classical work of Cramér and
Leadbetter (1965).

It is natural to extend this work into the framework
of Itô integral and related stochastic differential
equations.  This approach has been well studied in other
fields, such as economics and finance.  A good review
paper is that of Bollerslev et al. (1994).  I know of very
little work in this direction using degradation data
except for the initial report by Ueng (1988).  Another
approach is to study the fatigue of metal under stress
and the growth of the crack length therein.  A related
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physical law is the Paris Law (see Cinlar (1996) and
Palettas and Goel (1996)).  More recent works are those
of Lu and Meeker (1993) and Meeker et al. (1998).

VIII. Step Stress Models

When the subject under inspection is too good to
fail, one way to study its life time distribution is to
employ accelerated life testing (ALT); when failure is
even more difficult, we employ degradation analysis.
In doing so, acceleration factors with increasing stress
levels may also be applied.  But there is no reason to
restrict study to one constant level of stress; we may
even increase the stress level on the same testing item
as time goes on.  This idea is emphasized in the step
stress models.

Let { I i, i=1, 2, ...} be disjoint time intervals that
sum to [0,T].  For t∈I i, stress level Vi is applied to the
testing item, and the amount of degradation L(t;θ) is
observed.  Here we assume that the I ’s have increasing
end points, and that Vi increases with i.  The parameter
θ is of finite dimension, say θ=(θ1, θ2, ..., θp).

The process L(t,θ) is observed and modeled
piecewisely in each interval, with continuity assumed
at the junctions of intervals.  The key part of this model
is that the model for V=V0, the level of stress at the
use condition, depends on only part of θ, say θ1, θ2.
For t∈I i, all θj’s (j≥3) are treated as nuisance parameters,
and the main problem is to estimate the important part
of θ, i.e., (θ1, θ2).

Most of the step stress studies have been done by
Tseng and his group (see Tseng and Wen (1996), Tseng
and Yu (1997), Yu and Tseng (1998) and Tseng and
Chiao (1998)).

IX. Conclusion

In this paper, we first described the general sce-
nario of degradation analysis, and then examined the
problem from various viewpoints. Almost all related
works are motivated by the need for extrapolation.
These methods are, by nature, inaccurate.

There has been no intention for this paper to do
a thorough search.  Rather, topics have been clustered
to show the type of work that applied researchers have
done based on their perspectives.  There are various
ways to describe the degradation phenomenon, and for
solution there is no panacea.  Among other things, the
view we take is that we start from a probabilistic/
statistical model to describe the basic degradation
process and hope to capture some essence of the
underlying life distribution.  Very little attention has
been paid to methods based on physical laws in order
to build a differential equation-based model.  This does

not imply, of course, that this approach is unimportant
(see, for example, Wu (1993)).  A good starting point
in this direction is a book by Crandall and Mark (1963).
Another related topic we have ignored is that of sta-
tistical methods related to nondestructive evaluation
(see Olin and Meeker (1996)).
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