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Abstract
Fht1p is involved in the flocculation and heat tolerance
machinery of budding yeast Saccharomyces cerevisiae.
Despite knowledge of its involvement in those pheno-
types, a precise mechanism has yet to be discovered. To
this end, we monitored the relationship between subcel-
lular localization of Fht1p and its flocculation or heat tol-
erance function using newly developed expression vec-
tors with a recombinant green fluorescent protein (GFP;
S65T/S147P) of Aequorea victoria added at both the N-
and C-terminus of Fht1p. The main fluorescent signal of
the GFP tagged with either a wild-type Fht1p or mutants
which preserve their flocculation function was detected
in the nucleus, whereas signals of functionless mutants
were dispersed to the cytoplasm.

Copyright © 2001 National Science Council, ROC and S. Karger AG, Base!

Introduction

Flocculation of the budding yeast Saccharomyces cere-
visiae is a mannose-sensitive, asexual, cell- to-cell interac-
tion which is carried by the noncovalent Ca2*-dependent
interaction of a lectin-like protein and an outer-chain
mannan side branch on the cellular surface [20, 21].
Genes controlling flocculation display two kinds of ac-
tion, 1.e. the suppression of flocculation and its activation.
Examples of the former are shown in the recessive muta-
tions of sfl1[3], sf12/tupl [4, 24] and cyc8 [22], and exam-
ples of the latter are dominant FLOI, FLO35, FLOS and
FLOI11]9, 12,19, 23].

Fhtlp, a protein which was originally called Gtslp [2,
13], is also involved in flocculation machinery via floccu-
lation formation and heat tolerance when overexpressed
[2]. Unlike other flocculation activators, except for Flo8p
[9], Fhtlp has no obvious sequence similarity with a lec-
tin-like cell surface protein Flolp [1]. Fhtlp is predicted
to localize in the nucleus due to its characteristic zinc fin-
ger and polyglutamine stretch [5], but no evidence for its
subcellular localization has been provided so far. To
investigate the functional relationship between the subcel-
lular localization of Fhtlp and the Fhtlp-dependent floc-
culation phenotype, we constructed green fluorescent pro-
tein (GFP)-tagging vectors which express the engineered
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protein GFP (S65T/S147P) [14], which emits fluores-
cence about four times brighter than that of GFP (S65T)
at 37°C {7, 8], and monitored microscopically the subcel-
lular localization of the Fht1p-GFP (S65T/S147P) fusion
protein (GFP-Fhtlp) in S. cerevisiae. The overexpressed
GFP-Fhtlp confers the flocculation and heat tolerance
phenotype to cells as a wild-type protein dose. GFP-Fhtip
was localized mainly in the nucleus, whereas functionless
mutant proteins are dispersed to the cytoplasm.

Materials and Methods

Strains and Media

Escherichia coli strain ER2267 [F' proAB lacl? A(lacZ)M15
zzfomini-Tnl0  (Kan')/el4-A-endAl supE44 thi-1 reldl spoTl
AlmerC-mrr)114.::1S10 AlargF-lac)UI169 recAl] was provided by
New England Biolabs. S. cerevisiae strain YPH500 (MAT o ura3-52
leu2-1 his3-200 trpl1-63 ade2-101 lys2-801) was used throughout this
experiment [17]. 2YT (1.6% Bacto-peptone, 1% yeast extract and
0.5% NaCl, with or without 1.5% agar) was used for E. coli cell prop-
agation. Yeast cells were grown in YPD (2% Bacto-peptone, 1% yeast
extract and 2% glucose, with or without 1.5% agar), SD (0.67% Bac-
to-yeast nitrogen base without amino acids, 20-400 pg/ml amino
acid mixture and adenine sulfate and uracil, and 2% glucose, with or
without 1.5% agar) or SG (same as SD except that 2% galactose was
added instead of glucose).

Plasmid Construction

pGGNI1 containing the GALI-10 promoter followed by the GFP
open reading frame (ORF) with the Ser®? to Thr mutation, GFP
(S65T), without a termination codon [10], was digested with EcoRI,
blunted with T4 DNA polymerase, digested with Spil and cloned
into the Hincll-Sphl site of pUC119 with a disrupted HindIII site
(pGAL-GFPN119dHd). pGAL-GFPN119dHd was digested with
Pstl, blunted and self-ligated to generate pGAL-GFPN119dPst.
pGAL-GFPN119dPst was digested with HindIII, blunted and self-
ligated to generate pGGN119. The Ncol-Hpal fragment of
pGGN119 was substituted with the same fragment from pQB2, hav-
ing the additional Ser!4” to Pro mutation GFP (S65T/8147P) to emit
four times or more intense fluorescent light at 37 °C compared to that
of GFP (S65T) [7, 8], to generate pGGNel19. The Sphl-EcoR1 frag-
ments of pGGNel19 were used to construct pGN series of GFP N-
terminal tagging vectors.

The Sphl-HindIIl (blunted) fragment of GAL I-10 promoter from
pGAL-GFPN119dHd was cloned into the Sphl-Hincll site of
pUCI118 (pGALs118), and the Sphl-EcoR1 fragment of pGALsI18
was used to replace the same promoter regions of the original pGM
series [6]. These new pGM series (259 bp smaller than those of origi-
nal ones) were used to generate pGC series. The blunted Kpnl-Kpnl
fragment of pQB2 was cloned into the blunted Sacl-Sall site of
pUCI119 (pGFPCe119). The EcoRI-Sall fragment of pGFPCel 19
was used to construct pGC series of GFP C-terminal tagging vectors.
The characteristics of the constructed vectors are shown in table 1.

The FHTI ORF was amplified by standard PCR method with
primers GLN [5-TCATCTAGATGAGGTTTAGGAGTTCTTCC-
C-3’ (containing the Xbal site)] and LC [5-ATTGAATTCAAT-
TGTGTGTAGAAATAACCTTG-3 (containing the EcoR1 site)], di-
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Table 1. Characteristics of the vectors

Marker Name Size,kb GFP! myctag Restriction
sites?
HIS3 pGNH20 6.1 N yes 6
pGCH20 6.0 C no 6
LEU2 pGNL20 6.7 N yes 6
pGCL20 6.7 C no 6
TRPI pGNT20 5.9 N yes S
pGCT20 5.9 C no 5
URA3  pGNU20 6.2 N yes 6
pGCU20 6.1 C no 6

1 GFP was connected at the N-terminus (N) or C-terminus (C) of
the cloned gene products.

2 Unique restriction sites in multiple cloning sites in each vector
are indicated.

gested with BamHI and EcoRI and cloned into pGCU20 [6]
(pGCU20-FHTI1BE). The EcoRI (blunt-ended)-Kpnl fragment of
FHTI from pGAD424-FHT1, which contains the whole FHTI ORF
within its EcoRI-Sall sites, beginning with 5-GAATTCATGAGG
and ending with AATTAAGTCGAC-3', was cloned into the Xbal
(blunt-ended)-Kpnl site of pGCU20-FHTIBE to obtain pGCL20-
FHTI1. pGNL20-FHT1 was constructed by subcloning the EcoRI-
Sall fragment of pGAD424-FHT]1 into the same sites of pGNL20.
Deletion mutants of GFP-Fhtlp were constructed by proper restric-
tion endonuclease digestion of pPGNL20-FHTI.

Microscopic Observation of the GFP-Tagged Proteins

After 9-12 h of incubation in SG medium at 28°C, cells carrying
GFP fusion vectors were washed once with distilled water, resus-
pended in phosphate-buffered saline with or without 1 mg/ml of
Hoechst 33342 for 15 min and viewed with a No. 9 or No. 13 filter
for GFP fluorescence observation or Nomarski optics for differential
interference contrast microscopy on a Zeiss Axiophoto microscope
(Carl Zeiss Ltd., Tokyo, Japan). Cells were photographed with a
x 100 objective and microscopy pictures were processed using Ad-
obe Photoshop (Adobe Systems Inc., San Jose, Calif., USA).

Results

The GFP-Fht1p expression vectors are represented in
figure 1. The Sphl-EcoRI fragment of the pGML20 myc-
tagging yeast shuttle vector [6] was replaced with the Sphl-
EcoRI fragment of pGGNel19 encoding the GFP (S65T/
S147P) gene (see Materials and Methods) to generate the
N-terminal tagging vector (fig. 1A). The EcoRI-Sall frag-
ment of the myc-tagging sequence of pGMU20 [6] was
replaced with the GFP (S65T/S147P) EcoRI-Sall frag-
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Fig. 1. Schematic representation of the GFP-Fhtlp expression vectors. Genetically engineered GFP protein, GFP
(S65T/S147P), was fused to the N-terminus (A) and the C-terminus (B) of Fhtlp. The GFP (S65T/S147P) gene
cassette for both vectors is indicated by Sphl-EcoRI and EcoRI-Sall in bold (see Materials and Methods for details).

ment of pGFPCe119 (see Materials and Methods) to gen-
erate the GFP (S65T/S8147P) C-terminal tagging vector
(fig. 1B). The characteristics of each vector constructed
for this experiment are shown in table 1.

To investigate the relationship between flocculation
function and subcellular localization of Fhtlp, we gener-
ated GFP-Fht1p expression vectors (fig. 1) and observed
this microscopically (fig. 2). Since the main signal of GFP-
Fht1p was colocalized with Hoechst 33342 emission (data
not shown), Fht1p could be a nuclear protein as predicted
by PSORT analysis [5]. We then made various deletion
mutants of GFP-Fht1p to verify whether nuclear localiza-
tion of GFP-Fhtlp is necessary for the flocculation phe-
notype or not (fig. 2). The wild-type and deleted mutants
which have flocculation activities showed their intense
fluorescence in the nucleus, but flocculation-negative mu-
tants were dispersed to the cytoplasm (fig. 2). The C-ter-
minal Gln-Ala repeats (331-360 amino acids, indicated
by shaded boxes, fig. 2) turned out to be indispensable for
those functions. The flocculation-positive GFP-Fhtlp
also conferred a heat tolerance phenotype against 55°C
for 10 min of treatment (data not shown). These results
indicate that localization to the nucleus is necessary for
the flocculation and heat tolerance function of Fhtlp.
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Discussion

In this report, we described the clear correlation be-
tween nuclear localization and the flocculation function
of Fht1p with the help of a newly developed GFP-tagging
vector system. The FHTI gene was originally cloned with
the oligonucleotide probe of highly conserved -GGCACA-
repeats, which potentially codes for amino acid repeats of
Gly and Thr, found in some biological clock genes such as
PERIOD of fruit fly Drosophila melanogaster [16] and
thus called GTS1, which means poly Gly-Thr or Gly-Ser
(GT/S) repeats [13]. However, structural analysis of this
protein has indicated that Gts1p/Fhtlp codes for the poly
Gln-Ala repeats instead of GT/S repeats (fig. 2) in its C-
terminus [2, 6]. Fhtip functions to confer flocculation
and heat tolerance (i.e. FHT) phenotypes to cells when
overexpressed [2, 25], thus we strongly propose to call this
gene FHT I instead of GTS1.

Recently, the involvement of the flocculation gene
SFL1 in pseudohyphal development of S. cerevisiae was
shown [15], and this morphological change is highly relat-
ed to hyphal growth of pathogenic fungi Candida albicans
[11, 15]. Interestingly, we identified a physical interaction
between Fhtlp and Sfllp by two-hybrid assay (data not
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Fig. 2. Relationship between subcellular lo-
calization and flocculation function of GFP-
Fhtlp and its deletion mutants. Amino acid
sequences of wild-type Fhtlp (396 amino
acids) and mutants are indicated on the left.
The poly-QA repeats (331-360 amino acids)
are indicated as shaded boxes. The floccula-
tion activity comparable to wild-type Fhtlp
1s indicated as ++, weak but perceivable floc-
culation activity is indicated as + and no
flocculation is indicated as -. Intense fluo-
rescence of GFP-Fhtlp in the nucleus is
indicated as Nuc > Cyt and dispersed fluo-
rescence in the cytoplasm is indicated as
Cyt.

shown). Sfllp is also a nuclearprotein and acts as a tran-
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scription suppressor for several genes [15, 18]. It is

intriguing to know how these two proteins interact with
cach other physically and genetically and also interesting

Japan.

to know whether Fhtlp is involved in pseudohyphal
development or not. Our ongoing studies will be pub-

lished elsewhere.
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