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ABSTRACT

The motivation of this work was to synthesize a smooth and energy-optimized walking pattern for
a seven degrees-of-freedom biped robot walking on an even floor. The biped’s walk is realized by tracking
control of the planned trajectory. The biped robot achieved walk initiation and continuous walking back
and forth, and the biped can walk with a speed of 20 cm/second on even floors. The contributions of
this work are: (1) the results of experiments on a seven degrees-of-freedom prototype biped, which is
capable of walking in a dynamically stable manner, are presented, (2) the synthesis of an energy-optimized
walking gait is proposed, and (3) the reasoning behind the local PD feedback loop justifies satisfactory

performance.
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l. Introduction

For statically stable locomotion, the walking
trajectory of a legged robot is characterized by a
center-of-gravity (cg) which is within its support re-
gion, that is, the convex hull consisting of its support-
ing foot or feet. Moreover, the robot must move
slowly so that inertial effects from reciprocating
legs do not disturb its balance. Statically stable walk-
ing has been widely studied in walikng robots,
with four or more legs, in which at least three feet
are in contact with the ground at any time. The sta-
bility of such slow-moving, multilegged walkers
can be adequately quantified by using static analysis.
On the other hand, for dynamically stable locomo-
tion, the center of gravity may lie outside of the
support region. In this case, the legged robot re-
quires a higher speed to recover itself from an un-
stable state; otherwise, it may fall down. Most biped
research has focused on building a robot capable of
dynamic walking on an even floor. In particular, several
prototype biped robots that walk in a dynamically
stable manner have been developed at Japanese uni-
versities. The control of biped walking machines
remains a challenge due to the high degree of complex-
ity, organization, and efficiency needed to maintain
balance.

The following is a review of the.biped research
in dynamic walking. Miyazaki and Arimoto (1980)

proposed original reduced-order models that have
quantitative relations with the original equations of
motion. By setting a simple reference signal function
for each controller and using the function repeatedly
for each step, stable walking was achieved. Miura
and Shimoyama (1984) conducted stability analysis
by using an inverted pendulum and developed
two biped robots that could walk in a dynamically
stable mode. Mita et al. (1984) aimed to realize dy-
namic biped locomotion by using modern control
theory, especially optimal regulator theory, and con-
ducted plane walking experiments. Furusho and
Masubuchi (1986) experimented with a walking
biped, in which each joint was provided with a local
high-gain position feedback control. Zheng and
Sias (1988) discussed the design of two biped ro-
bots, SD-1 and SD-2, and showed that stable dynamic
walk could be realized as long as the landing foot
was properly positioned. Furusho and Sano (1990)
achieved smooth 3D walking by using a sensor-
based control on a biped with nine links. They em-
ployed a method to control walking by dividing it
into motions in the sagittal plane and the lateral
plane. The motion in the lateral plane had a regulator
problem with two equilibrium states. For motion in
the sagittal plane, they adjusted the body speed so
that it was close to the smooth speed function given
in advance by controlling the ankle torque. The sole
and ankle driving actuators underwent force/torque
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feedback control that was based on the sensor infor-
mation.

Li et al. (1991) used the zero-moment-point
(Vukobratovic, 1973) as a criterion in order to distin-
guish the stability of walking for the biped robot WL-
12RIII. The assignment of degrees of freedom for their
robot was as follows: each of the two hips, the two
knees, and the two ankles had one rotational degree
of freedom on the pitch axis. The body had three
degrees of freedom in the pitch, roll, and yaw axes.
Walking was realized by controlling the body’s motion
to compensate for the biped walking according to the
measured zero-moment-point. Kajita et al. (1992)
used the term “potential energy conserving orbit”
to describe a particular class of trajectories of an
ideal biped model. Based on these properties, control
laws were formulated for walk initiation, walk continu-
ation, and walk termination. To make their robot
legs lighter, four dc motors were mounted on the
body, and the legs had parallel link structures which
helped the biped walk at an average speed of 20
cm/s. Grishin et al. (1994) designed a light walking
vehicle with two telescopic legs, driven by two dc
motors. The robot’s feet extended beyond the center
of the body in the frontal plane, and an adaptive al-
gorithm was used to control the vehicle locomotion.
Shih (1996a) built a biped robot (named BR-1) capable
of statically and dynamically stable walking on an even
floor. Because the body and swing leg speeds were
not small at the end of a walking cycle and the impact
effect was not considered, the biped’s walking was not
smooth enough. This was because the planned trajec-
tories for the body and swing foot were hyperbolic
functions.

To implement a controller for a biped robot, it is
necessary to generate an admissible and optimal
trajectory for use as a reference input. Previous
methods for synthesizing biped walking trajectories
have included recording human kinematic data,
using finite state machines, merging trajectory control
with feedback control laws, and generating gaits
from the passive interaction of gravity and inertia.
This article describes the design of a biped robot,
its kinematics, dynamics, energy-optimized gait
synthesis, and its implementation. This study is
based on a practical biped robot BR-1, and the goal
is to synthesize efficient and energy-optimized walk-
ing patterns for floor walking by means of proper
positioning of the biped’s body and its two feet. The
assumptions of this study are (1) the feet are rigid, (2)
each supporting foot is in flat contact with a hard
surface terrain, and (3) there is enough frictional force
to prevent slippage between the foot and the floor
during walking.

The outline of the paper is as follows. The
mathematic models of the Qiped robot, including the
design concepts, dynamics, static balance conditions,
energy-consumption, and impact effects, are derived
in Section II. The plan for the dynamic walking gait
of the biped BR-1 on an even floor is discussed in
Section III. The PD motion control law of the biped
walking is proposed in Section IV. The implementation
of the biped’s control system and its experimental
walking results are simmarized in Section V.

Il. Biped Robot and Model

The biped robot has two rotational joints on the
hip and the ankle joint as well as one variable-length
knee on each leg. In addition, one actuator is associated
with the body to translate a balance weight in the lateral
motion. Seven DC servo motors are employed as
actuators. The biped structure is both back-and-forth
and left-and-right symmetric. Therefore, the backward
motion can be planned by reversing the sequence of
the forward motion. Compared to anthropomorphic
biped robots, the biped robot has simpler kinematics
and dynamics.

The biped robot consists of the moving weight
body, two legs, and two feet. The feet are designed
to be lighter than the other parts of the biped robot;
therefore, the weight of the robot feet is negligible. To
simplify the analysis of the dynamics of the biped
system, each leg is replaced by two point masses at the
ankle joint and the hip joint. The idea here is to
represent the leg with two point masses which are
placed where the position, velocity, and accelerations
can easily be determined. Physically, the speed reduc-
ers and DC servo motors are considerably heavier than
the links of the leg; thus, the mass of the leg can be
simplified as two point masses at the ankle joint and
the hip joint.

The balance weight is designed to maintain the
projection of the center of gravity within the supporting
foot during the single-support phase for statically stable
walking. With the moving weight, we do not need to
have the feet cross the center line and do not need to
have a supporting mechanism to prevent the robot from
falling over laterally. Moreover, the heavier the moving
weight is, the smaller is the foot needed. Thus, the
moving weight plays an important role in maintaining
balance and improving the speed of the biped robot
because a large foot may cause interference between
the two feet, and a large foot will force the biped to
walk at a slow speed.

The variable-length leg is designed to replace the
function of the knee joint. With the variable-length
leg, the biped can travel on a rough terrain, such as
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stairs. To climb stairs, the biped’s body and its one leg
can move upwards by simply utilizing the variable-
length knees. After that, the walking cycle can be
treated as level walking.

Now, we shall model the seven degrees-of-free-
dom biped robot BR-1 based on the single-support
case in which one leg is stationary on the floor. Figure
1 shows a schematic representation of the biped

(a) sagittal plane

m, =12Kg

%=d | m,=31Kg

@

Leg2 (v,-2,)|Leg 1

m,=m,g ¢ M= 5Kg

y=w o yEw X y

(b) frontal plane

Fig. 1. The kinematic model of the biped BR-1 in (a) the sagittal
plane and (b} the frontal plane, where (x,, Yg» Zg) denotes the
center of gravity of the biped robot. The angle is positive
if ccw and negative if cw.

model in the sagittal plane (x-z plane) and in the frontal
plane (y-z plane). The origin of the base reference
coordinate is located at the vertical projection of the
center of the body in the ground plane when the biped
is in its initial configuration. Because the legs are
constrained to swing in the sagittal plane, rotational
motion of the biped BR-1 is allowed only in the sagittal
plane.

The position of the biped relative to the support-
ing foot can be uniquely specified by the joint space
vector q (see Fig. 1),

9=190, q1, --» g61'=ldo, 61, da, 03, 64, ds, 661",
where

dy: location of the balance weight,

0,: angle of the hip joint of Leg 1,

dy: length of Leg 1 from the hip joint to the ankle
joint,

0;: angle of the ankle joint of Leg 1,

04: angle of the hip joint of Leg 2,

ds: length of Leg 2 from the hip joint to the ankle
joint,

Os: angle of the ankle joint of Leg 2,

and by the joint torque/force vector given by 7:

T=[To, Tly eens TG]T.

The dynamic equation in the single support phase can
be derived by using the Lagrangian formulation and can
be written as

H@)qg+C@q,q)q +g@)=". 1)

Here, H(q) is a 7X7 symmetric positive-definite matrix
containing mass and inertia elements, C(g, ¢)q is a 7x1
vector containing centrifugal and Coriolis terms, and
g(q) is a 7x1 vector of gravity terms.

Analysis of the biped motion in terms of the body
and both feet makes it possible to ease the formulation
and interpretation. The operation space position vector

D,
p=[p0v P - P6]T=[)’0, X0, 20, ¢O’ X2, 225 ¢2]T9

is defined by
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-yo. yi—w+d,

Xo x,+d,sin(@, + 6y
Zp z,+d,cos(p; +0,)
p=|%|=|01+6,+6; 2)
Xy xo—ds sin(@g + 0,)
2y 2o —ds cos(Po + 6y)
h¢2 Po+ 04+ 0

where
xo=[x0, Yo, 20]": the location of the balance weight,
x1=[x1, y1, z;1": the location of Foot 1,
X,=[x,, ¥2, z,]%: the location of Foot 2,

¢o0. 91, 92 : the pitch angle of the body, Foot 1 and
Foot 2,
and

w: half of the width of the biped.

It is noted that the mapping between p and ¢ is a one-
to-one mapping, and that the Jacobian matrix J,

_9p
-5 3)

is non-singular (Shih, 1996a).

Because the speed reducers and DC servo mo-
tors are considerably heavier than the links of the
leg and the frame of the body platform, we assume
that the mass of the biped is distributed as four units:
the balance weight, the body platform, and two feet.
The dynamic equation of the biped in Eq. (1) can be
written in the operation space (Shih, 1996a) as:

Mp +G=f=J""1, 4@
where

M=diag{m, mgy, mg, Iy, my, my, I},

G=[0 0 m;g 0 0 mog 01",

my: the mass of the balance weight,

mg: the mass of the body including the balance
weight,

my, my: the masses of Foot 1 and Foot 2,

Iy, I, I5: the moment of inertia (in y-axis) of the

biped body, Foot 1 and Foot 2,
and

., fe]™: the operation space generalized
torque/force vector.

f=[f0’ f19 ..

The conditions for balancing is an important
factor in designing a feasible gait pattern, especially
for high speed locomotion. Aside from the frictional
force, the forces acting on the biped include the gravity
force, the inertial force, the inertial moment, and the
ground reaction force. Actually, the biped interacts
with the ground through a planar surface. Most of the
time, the ankle joint motor has to generate a torque to
support biped locomotion. This torque must be resisted
by the ground and the supporting foot.

The vertical reaction force, N,, must be positive
during the whole walking cycle so that the foot remains
on the floor, i.e.,

N>0.

The absolute horizontal reaction force, / N i +N ; , must
not be so large that the foot slides; therefore, it is
required that

/ N2+N} <uN,. (5)

The reaction moments T, and T, must be resisted by
the normal ground reaction force N, of the supporting
foot to prevent the biped from falling down (Fig. 2).
Hence,

N (y1—d)ST SN, (y,+d) (6)

Fig. 2. The static balance condition in the single-support phase.

38—



Dynamic Walking of a 7 DOF Biped Robot

and

—Nx1+DSTy<=N,(x1-1), (7
where

T, =ymg +y,myGo+8)+ymy@yt )= 29mp¥s

T, =ZgMoXg + ZoMpX o= XgMoZo + 8) — X,M,@5 +8)

+1y $ot 1, 6,

and

21x2d is the foot size.

In other words, the reaction moments T, and T,
must not be so large that the foot lifts up from the floor.

The energy consumption or efficiency should also
be considered an essential factor in designing a biped
gait pattern. The average-energy-consumption func-
tion E, defined by

T
fo | 274 |at
E=Tg ®)

is a division of the sum of the energy-consumption
of all the joint actuators by the step distance S during
one walking cycle. Note that the absolute value of the
instantaneous power loss is used. The absolute value
indicates that the power is actively consumed in dis-
sipating this energy while the division of the step length
in the function E allows gaits of different step lengths
to be compared. The average-energy-consumption
function E can also be evaluated in the operation space
below:

[ ol [0t +67 a

S S ©)

Now, consider the impact phase that occurs at
the end of the walking cycle at time ¢r=7. This is
assumed to be instantaneous, resulting in an abrupt
change in the joint velocity due to the collision bet-
ween the swing foot and the floor. Let the impact point
between the swing foot and the floor be defined as
below:

Xy—x,—=8
cp)= 25 =0.
2

(10)

The dynamic equation of the biped under impact can
be modeled as
. .. 0dcT p)
MP+G—f“’—ap , (11)
where A is the vector of the constraint forces applied
to the new landing foot during impact. Integrating Eq.
(11) in an infinitesimally short time interval [T_, T,],
we can derive the relation between the instantaneous
velocity changes and the constraint forces 4. The

positions and generalized forces f remain finite; there-
fore, we obtain

Ap = e - _IM T,
p=pT)-pT)H=M 37 fT_ Adt 12)
and
T T -1
6= *2gr=(9¢c -19¢” de Ay,
L_ Adr (3p ap) op 2P 13)

The vectors p(T_) and p(T,) represent the velocities
immediately before and after impact, and the vector &
represents the magnitude of the external impulsive
force. The instant joint velocity changes can then be
obtained from

-19¢T)"de a4 -,

Jp ap 4)

de
(3 D
where Ag=q(T)—-q(T).
Specifically, the magnitude of the external impact
forces is

0, myAx,
=| 6, |=| m,Az, (15)
Ty 12A¢2

If |8,|>18,, then sliding occurs; therefore, it is required
that

>0
and

|8.<ud,.
One simple way to satisfy the above inequality is to
have a zero-forward-velocity (i.e. x,(7_)=0) when the
swing leg touches the floor. The impulsive moment

7, must also not be so large that the heel or the toe
lifts up from the floor, i.e.,

~0,I<7,<0,1.
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foot
4=
alance
weight B
(2) Phase 1 (b) Phase 2 (c) Phase 3

Fig. 3. The dynamic walking cycle of the biped BR-1 in three phases.

By constraining the swing foot in a fixed orientation
(i.e. ¢=0) and parallel to the walking floor, the above
inequality is satisfied.

I1l. Walking Trajectory

In the following analysis, a walking cycle will be
regarded as a period of continuous motion in which
the biped is supported by one foot, followed by an
instantaneous impact of the swing foot at the end of
the cycle. After impact, the motion is the same as the
start of the cycle except that the supporting foot be-
comes the swing foot and vice versa. For dynamic
walking on an even plane, the walking cycle of the
biped can be modeled in three phases, as shown in Fig.
3. During Phase 1, the swing leg lifts up above the
ground. The swing foot moves forward above the
ground in Phase 2. Finally, the body moves forward
and the swing foot comes back to the ground in Phase
3. During Phase 3, the center of gravity leaves the
supporting foot; this shift in the center of gravity actually
is characteristic of a biped walking dynamically.
Letting Ty, T,, and T3 be the time intervals for Phases
1, 2, and 3, respectively, the dynamic walking cycle
T then consists of Ty, T5, and T3. The above walking
pattern can be determined from a set of walking
pattern parameters - they are the step size S, the body
height H, the swing leg height k, the balance weight
traveling distance 2W, and the time intervals T;, 7>,
and T;.

In fact, the motions of the biped body and the
two feet follow an alternating move-and-rest pattern.
Thus, piecewise cubic polynomials with zero velocity
at both ends of the moving time interval are quite
adequate for modeling the variations of the work space
variables. Polynomials of third order are chosen so as
to have minimum complexity to allow the positions and

velocities at the two ends of a time interval to be freely
allocated. The cubic trajectory for a variable p(¢)
satisfying initial and final values, with rest at both ends
of time interval Tp ( i.e. p(0)=p,, p(T,)=pr, and
p0)=p(T,)=0), is

3 2
P(t)=2(Ps_PT)t_3+ 3(pT_Ps)‘t'2‘ +Ps >
TP Tp

0<I<T,. (16)

The acceleration of p(¢) is a linear function, and its end
values are

=62 and 5,)=-p0)=6 2T
T T
p p

At the middle of the time interval T,, we have

pPs*tPr 3pr-py
= 2 =
pT,12) 7 pT,12) o, ,

and j)'(Tp 2)=0,

where p(#) reaches the half-way point and has maximum
speed and zero acceleration. This particular type of
trajectory is used as the basic trajectory for the work
space position vector p to plan the biped’s walking
pattern. Also, note that

Tp
f |\pp | dt=pT, 22", a7
0

and
TP Tp
[1G+op|d=] o] di=glpr-p.|. a8
0 0

and that these equalities will be utilized later to
compute the average-energy-consumption function
E.

It is assumed that the biped’s body maintains a
constant upright posture during motion, and that both
feet stay parallel with the walking plane; therefore,
Go=01=0,=0, and 6,+6;=04+6¢=0. By default, Leg 1
is the supporting leg in the walking cycle; therefore,
Leg 1 is stationary during the walking time interval T.
Hence, x1=0, y;=0, and z,=0 for simplicity. It is also
desired that the body maintains a constant height, zo=H,
during walking. Foot 2 first lifts itself above the ground
during Phase 1, moves forward at a constant height A
in Phase 2, and then finally comes back to the ground
at Phase 3. Thus, the trajectory of Foot 2 can be
modeled as follows:
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_S 0<1<T,

x0)= (19)
3 2

C-T) o €-T)

(T, +T,- 8T (T, +T,— 8T

- 48 -8 T,<t<T-8r

and

£ £
—on L3 £ O=t=T,
CRRY
=L b Ty <t=T+T, 0
3 2
2h (I—T‘QTZ) ~3h (t_T‘;TZ) +h Ty +T,<t<T
T T
3 3

By using a small time interval & T, we can ensure that

2 2 2
the swing leg has near zero-forward-velocity when it E =% [9’1172'5‘2 + % S_2 + 9mbm2 +2m,gh].(23)
returns to the floor. Therefore, the effect of impact T,+Ty T3 T3

can be largely reduced. The biped body and the balance -
weight start to move at the beginning of Phase 3 by
the following trajectories:

To determine a feasible walking pattern, several

0 0<t<T +T,
xot)= (21)
t-T-T,) ~T-T,)
ST AL AN T VY YRS
T T
3 3
and
W-w 0<t<T,+T,
Yolt)= (22)
~T-T) t—T-T,)
aw It e CTe T Ly o ar,<rsT
T T
3 3
After a series of manipulations, the average-energy-  factors should be considered: they are the position and
consumption function E can be derived as velocity constraints for work space vector p, the static
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balance conditions for the supporting foot, and the
not-falling-down condition for the swing leg. The
position constraints for the swing foot can only be
checked at both ends of Phase 1. Recalling that the
operation space trajectory reaches its highest speed at
the middle of the move time interval, the speed con-
straints can only be checked at the middle of each
phase. The static balance constraints in Inequalities
(6) and (7) need to be checked at every transition of
the three phases.

During Phase 3, the projection of the center of

gravity moves out of the supporting foot, the
body starts to fall, and the swing foot must reach
the ground before the biped falls over. Therefore,
the high speed of the biped must be maintained
during Phase 3. The not-falling-down condition
is complicated and not easily obtained. The joint
motions in the supporting leg are very limited and
may be considered to be zero. We may, therefore,
consider the biped body as a 3D inverted pendulum
during Phase 3. The increment of the potential
energy, because the biped body maintains a constant
height H, is

mogH(1 - H ).

The total kinetic energy of the biped motion during
Phase 3 should equal the increment of the potential
energy of the biped body; therefore, we obtain

(24)

H =9M52+9mbW2
VH*+s? 4T TS

mygH (1 - (25)

This equality should be satisfied when the biped’s
pattern parameters are searched.

By minimizing the average-energy-consumption
function E, subject to the position, velocity, and bal-
ance inequality constraints as well as the equality
constraint Eq. (25) and an input speed constraint,
S/Ts=Constant, we can obtain parameters for an
energy-optimized biped walking pattern. Among
the biped’s walking parameters, the choice of the
step size S and of the time interval 73 are most
critical to the success of the biped walk. The walking
parameters H, h, and W can be chosen easily, and
we let 2T=T,=T5. We can then obtain the optimal
values of the step size S and the time interval T;
by using the graph method to impose the constraints
on the contour plot of the average-energy-consumption
function E in the S§-T73 plane. Taking the BR-1
biped robot as an example, and letting H=0.54 m,
h=0.03 m, W=0.15 m, 2T,=T,=T;, 6T=0.05 seconds,
and §/T3=0.25, the step size S and the time interval

0.3
bW -
02
§ (m) L PN : ; ] :

0.1

0.05

T, (seconds)

Fig. 4. A contour plot of the average-consumption function E in the
S-T3 plane. The solid line segment AB represents the input
speed constraint, and the dashed line represents the equality
constraint of Eq. (25). The energy-optimizing parameters
are $=0.20 m and 73=0.80 seconds.

Fig. 5. Biped BR-1’s motion sequence in.the dynamic walking
simulation. The small circles denote the center of gravity
trajectory.

T3 are determined by the following minimization
problem:

Minimize
E= 2.0% + 83.225S
ST; Ts
subject to equalities

2
94.58 -12-29.16 = 169.344 (1 — 0.54

——)
T, V02916 + §*

S _025
T3
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and inequalities

0<5<0.3,  5.<0.405,  T320.18.
T

From the contour plot of the average-energy-
consumption function E in Fig. 4, we obtain the energy-
optimized step size $=0.20 m and time interval 75=0.8
seconds, where the average-energy-consumption is 42
Nt. Figure 5 shows a sequence of the resulting stick
diagrams (simulation) in the sagittal plane. The same
walking parameters are used to experiment with the
walking motions of the biped BR-1 as described in

Section V.

IV. Motion Control

The servo control of the biped BR-1 consists of
the computed gravity plus the PD compensator in the
following form:

T=g(q)+K,e-K.q, (26)
where e=q,—¢q, and ¢, is the desired joint command.
The asymptotic stability of dynamic equation Eq. (1)
with control law Eq. (26) is based on fact that the matrix

(H-2C) is skew-symmetric. The theorem (Lewis et
al., 1993) states the following: 7

Suppose that the PD-gravity control law Eq. (26) is used
in dynamic equation Eq. (1) and ¢ ,=0. The steady-state error
e=g,q is, then, zero.

In particular, the proof is based on the positive-definite
Lyapunov function

_1.7 - 1,7
V(t)—zq H@)q toe K,e 27
and its differentiation (Lewis et al., 1993: 142)
¥0=-1d"K,q . (28)

In the following, we shall show that diagonal gain
matrices K, and K, provide satisfactory performance.
For a symmetric positive-definite matrix A, the
Rayleigh-Ritz Theorem states that

2'min(A )xszxTAxSlmax(A )xTx’

where Apn;n(4) and A,.,(A) denote the minimum and
maximum eigenvalues of\matrix A, respectively. By
the Rayleigh-Ritz Theorem, we have

OS2 K1) 4" (29)

1, .7: .1
VO IhG"q 47 A, b (30)

where %2 and b are constant bounds such that
h2An.<(H(q)) and b>e’e in the region of interest.
Rearranging (30), we obtain

A&},
—n

Substituting the above inequality into Inequality (29),
we obtain

~§" 220 &)

V()< — V() + b. (32

22’mm(K d) 2 mm(K d )ﬂ'max(K P )
h h

Therefore, v(¢) is bounded by

V()< c exp(— &“‘hﬁd—) 1)+ % Aax®,) b (33)
and

vO)<c + % Ape®,)b (34)
where ¢ is a constant to be determined later. From
Inequality (30), we have

v(0) s% hg©0)'§0)+ % A ®,) b . (35)

Comparing Inequalities (34) and (35), we can choose
¢ =1 h0) §0).
Therefore, v(¢) is bounded by
. ) 24 . (K
V<L hg 0§ exp(- LD 1y 13 )b .
2 h 2 "(36)

Now, assume that K,=diag{k,o, ..., kp¢} and

K =diag{ka, ..., kss}, and that K, and K, are symmetric
positive-definite matrices such that their diagonal el-
ements are identical to K, and K, but contain non-zero
off-diagonal elements. It is, then, not difficult to show
that

Al ,) 2 A& ) >0
and
0 < Aeyin® 1) S Arin )

If one chooses PD gain matrices pr and K 4 » the control
law becomes

T=glg)+K,e K4,
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Fig. 6. Three Lyapunov functions with different gain matrices, in
which K, and K, are diagonal matrices, Kp and K, contain
off-diagonal elements. (a) phase plane plots, (b) evolution
of the Lyapunov functions.

and the corresponding Lyapunov function
7©)=1 §TH@) G +LeTK e
2 2 °F

is bounded by
501 hg 7§ exp(— Zm®D 13 & yp.
2 h 2 ?37)

Comparing Inequalities (36) and (37), we can conclude
that the closed-loop system with diagonal PD gain
matrices has a faster convergent rate and is less error
bound. Therefore, to control a dynamic system in Eq.
(1), local feedback at each joint may be used. Figure
6 displays simulation results of three evaluations of
Lyapunov functions with different gain matrices. If
the command is either a piecewise-constant trajectory

Table 1. Biped BR-1’s Physical Data

Joint Initial Joint Actuator Gear Maximum
Value Range Ratio Torque/Force .

do 0 cm +13.5 cm 1/14n 291.6 Kgf

6, 0° +28° 1/160 1.06x10* Kgf-cm

dy 540 cm £6.5 cm 1/200m 4166.0 Kgf

6; 0° 136° 1/160 1.06x10% Kgf—cm

64 0° +28° 1/160 1.06x10° Kgf-cm

ds 540 cm 6.5 cm, 1/200m 4166.0 Kgf

6 0° +36° 1/160 1.06x10% Kgf—cm

or a continuous trajectory, the local PD-gravity feed-
back loop also can track well, provided that the velocity
feedback gains are sufficiently large (Kawamura et al.,
1988).

V. Experimental Walking

The prototype biped BR-1 has been designed and
build at the National Taiwan Institute of Technology.
The total height of the biped is 80 cm, and the total
weight is about 42 kg. The foot size is 20 cmx15 cm.
The two feet are separated by 5 ¢cm. Each motor
translates torque or force to the biped through a speed
reducer. The physical data of the prototype biped are
listed in Table 1. It is assumed that the frictional
coefficient y is large enough to prevent slippage
between the supporting foot and the floor during
walking.

The biped’s motion control is designed to track
a commanded path which is calculated in advance. The
biped’s motion control is realized by means of a hi-
erarchical control structure, in which trajectory plan-
ning for the walking pattern is executed at the upper
level, and the servo control for the planned trajectory
is executed at the lower level. The servo control part
is set up so as to follow the planned trajectory so that
a stable walking motion is realized. The commanded
joint trajectory for biped BR-1 is obtained by using a
cubic B-spline data interpolation technique. First, each
operation space command point is converted to a knot
point in the joint space. Then, cubic B-spline trajec-
tories which blend together the series of knots serve
as the commanded joint position trajectories. The
feedback gains are selected uniformly: k,=100 and
k4,=9.23, for i=0, 1, ..., 6.

In dynamic walking experiments, the biped BR-
1 moved forward and backward, including walk initia-
tion, two continuous walking cycles, and walk termi-
nation, which were all recorded successfully on the
video tape (Shih, 1996b). The limits on the travel
distance were constrained by the length of the tether
line connected to the off-board computer and drivers
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0.00 2,00 4.00 8.00 8.00 10.00
time (seconds)

Fig. 7. The trajectory of the biped’s body and two feet during

experimental walking. Fig. 8. Biped stick diagrams in the dynamic walking experiment.
: The small circles denote the center of gravity trajectory.

Fig. 9. Four pictures (a)-(d) taken during one walking cycle in the biped dynamic walking experiment.
)

rather than by the methodology itself. The main func-  walking pattern parameters were previously derived in
tion of the balance weight was to lift up the swing foot  Section III, where the step size $=0.20 m, £=0.03 m,
at the beginning of the dynamic walking cycle. The  W=0.15 m, T;=0.4 seconds, 67=0.05 seconds and
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T,=T5=0.8 seconds. Figure 7 shows the experimental
operation trajectories during the dynamic walking
experiment. Figure 8 shows a sequence of experimen-
tal stick diagrams in the sagittal plane. Except for the
variations of the height of the swing feet, the experi-
mental results are almost the same as the simulation
result obtained previously. The downshift of the swing
foot was mainly due to the gravity of the biped body,
which contributed most of the weight of the biped.
Figure 9 (a)-(d) shows a sequence of 4 pictures of the
biped BR-1 during one complete walking cycle of the
experiment.

During the dynamic walking experiment, the final
speed and acceleration of the swing foot may not be
zero; therefore, impact with the ground will occur. To
overcome this problem, the speed of motion should not
exceed a limit (e.g., 25 cm/s in our experiment), and
it is required that the biped pause for a finite time
interval before starting the next walking cycle. It has
been shown that the main task of a biped is to slow
down its motion at the end of a walking cycle and to
finally reach a statically stable posture. To slow down
the biped, a short pause between two continuous cycles
is very effective, as occurred during the experiment.
This short pause adds an additional impact phase to the
walking cycle. Thus, as the biped walks, it still suffers
from unsmooth motion (moving-and-resting motion) of
the cg in the dynamic walking experiment. It is noted
that zero velocity of the landing foot immediately
after contact can be achieved by a shock-absorbing foot
such as one with a rubber mat or an ankle that has
flexibility for impact dumping with torque feedback
Sensors.

The proposed biped gait patterns are not optimal
in the sense of speed and smoothness of trajectory;
however, they are easy to implement. The proposed
walking gaits can be transferred to the statically stable
mode by placing the swing foot on the floor before the
biped’s body moves forward in Phase 3. Although the
speed is slower when biped BR-1 walks in a statically
stable manner, safer and less impact motion can be
expected.

VI. Conclusions

In this study, we conducted a walking experiment
on even floors with a biped robot BR-1 having seven
degrees of freedom. The advantages of the biped BR-
1 are: (1) it has simple kinematics and dynamics, and
can be controlled by a local PD feedback loop; (2) its
balance weight can effectively maintain balance of the
center of gravity; and (3) a smooth and energy-opti-

mized walking gait can be synthesized. The effective-
ness of the proposed walking patterns for a biped walking
on floors has been experimentally demonstrated. Future
topics that need to be investigated include the dynamic
walk of BR-1 on uneven terrain, such as stairs and
sloping surfaces.
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