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Abstract 

Trauma represents the leading cause of death among young people in industrialized 

countries. Recent clinical and experimental studies have brought increasing evidence for 

activation of the innate immune system in contributing to the pathogenesis of trauma-

induced sequelae and adverse outcome. As the “first line of defense”, the complement 

system represents a potent effector arm of innate immunity, and has been implicated in 

mediating the early posttraumatic inflammatory response. Despite its generic beneficial 

functions, including pathogen elimination and immediate response to danger signals, 

complement activation may exert detrimental effects after trauma, in terms of mounting an 

“innocent bystander” attack on host tissue. Posttraumatic ischemia/reperfusion injuries 

represent the classic entity of complement-mediated tissue damage, adding to the 

“antigenic load” by exacerbation of local and systemic inflammation and release of toxic 

mediators. These pathophysiological sequelae have been shown to sustain the systemic 

inflammatory response syndrome after major trauma, and can ultimately contribute to 

remote organ injury and death. Numerous experimental models have been designed in 

recent years with the aim of mimicking the inflammatory reaction after trauma and to allow 

the testing of new pharmacological approaches, including the emergent concept of site-

targeted complement inhibition. The present review provides an overview on the current 

understanding of the cellular and molecular mechanisms of complement activation after 

major trauma, with an emphasis of emerging therapeutic concepts which may provide the 

rationale for a “bench-to-bedside” approach in the design of future pharmacological 

strategies. 
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Introduction 

Despite significant advances in injury prevention, prehospital resuscitation strategies, and 

modern intensive care, trauma remains the main cause of death in young people in the 

United States, resulting in more years of potential life lost before the age of 75 years than 

any other disease [1-4]. Until present, the pathophysiology of major trauma remains poorly 

understood [5, 6]. In principle, the pathophysiological sequelae of major injuries are 

characterized by the initial traumatic impact (so-called “first hit”), followed by a cascade of 

subsequent immunological reactions, which render the patient susceptible to a potentially 

detrimental “second hit” insult [7]. The activation of innate immune response mechanisms 

has been characterized as a crucial event initiating the early phase of hyperinflammation 

within hours to days after major trauma [6-8]. While innate immunity is classically 

considered to be the immediate “first line of defense” against non-self antigens (e.g. 

infectious pathogens), a traumatic insult can induce a similarly potent acute inflammatory 

response [9-13]. The trauma-induced immune response may be limited locally, as in 

isolated injuries, or result in a massive systemic immune activation, as in patients with 

multiple injuries [1]. The endogenous triggers of trauma-associated inflammation have been 

thoroughly investigated and characterized in recent years [7, 14]. The so-called “first hit” 

induced by a traumatic impact leads to the appearance of an arsenal of “damage-

associated molecular patterns” (DAMPs) that are recognized by receptors of immune cells 

[15]. DAMPs represent a recently characterized large superfamily of danger signals which 

can activate innate immune responses after trauma or trauma-induced complications, such 

as infection and sepsis [7, 16]. The DAMP family of danger signals includes the so-called 

“pathogen-associated molecular patterns” (PAMPs) and molecules termed “alarmins” [17]. 

The list of molecules belonging to the DAMP family has been increasing dramatically in 

recent years, and their pathophysiological function in mediating trauma-induced 
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inflammation is far from being fully understood [18]. PAMPs represent a heterogenic entity 

of recently described inflammatory molecules related to the innate immune system [17, 19]. 

These microbial molecules are recognized by the immune system as foreign due to their 

characteristic molecular patterns. In contrast, the so-called “alarmins” represent the 

correlate of PAMPs for all non-pathogen-derived danger signals which originate from tissue 

injury [17]. This heterogeneic group of danger molecules is capable of activating innate 

immune responses in response to tissue damage and cell injury. The alarmins comprise the 

“heat-shock proteins” (HSPs), annexins, defensins, as well as “classical” markers of tissue 

injury, such as the S100 protein and the high mobility group box 1 (HMGB1) protein [17, 

20]. Immunologically competent cells recognize both PAMPs and DAMPs through 

multiligand receptors expressed on their surfaces, such as Toll-like receptors (TLRs) [21, 

22].  

The very early stage after tissue trauma is characterized by activation of cellular and 

molecular effectors of the innate immune system, including complement activation and 

recruitment and activation of neutrophils (polymorphonuclear leukocytes; PMNL) [6, 7]. The 

complement system appears to represent the crucial effector of innate immune responses 

in the early phase after major trauma [23-25]. Once the cascade is activated through one of 

three (five) established pathways (Figure 1), complement plays a critical role in the 

elimination of invading pathogens by opsonization for phagocytosis (C3b, C4b), chemotaxis 

of leukocytes (C3a, C5a), and by direct lysis of pathogens through the membrane attack 

complex (MAC, C5b-9) [23, 26, 27]. The generation of anaphylatoxins C3a and C5a 

provides potent chemoattractants for phagocytes and neutrophils, and recruit these immune 

cells to the site of injury [24, 28, 29]. The anaphylatoxins further induce degranulation of 

mast cells, basophils and eosinophils and mediate the hepatic acute-phase response [30, 

31]. Finally, the generation of C5b by cleavage of C5 initiates the terminal complement 
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pathway with MAC formation. The MAC forms through the self-association of C5b along 

with C6 through C9 and leads to the formation of a large membranolytic complex capable of 

lysing prokaryotic and eukaryotic cells [32]. Multiple previous studies have unequivocally 

shown that trauma activates complement, both locally at the site of injury, and systemically. 

Early studies in the 1980s revealed that the complement cascade is activated at the level of 

C3 in serum of trauma patients, and the extent of activation correlates with the severity of 

injury [33, 34].  

The neutrophil (or PMNL) has been established as the cellular counterpart to the humoral 

immune response mediated by complement activation, and represents a “key effector” cell 

of the early posttraumatic immune response. Within minutes, and up to several days after 

injury, neutrophils play an important role in mounting the immunological defense and the 

debridement of injured tissue. Primed neutrophils are capable of mediating an inflammatory 

response, characterized by release of cytokines, chemokines, reactive oxygen species, and 

tissue-toxic enzymes, such as myeloperoxidase and elastase [20, 35]. Aside from the 

beneficial role of neutrophils in host-defense and clearance of damaged tissue after trauma, 

excessive priming and cellular PMNL activation may lead to an overwhelming inflammatory 

response and “innocent bystander” injury to host tissue [35, 36]. Uninjured tissue may 

become damaged by the local release of toxic metabolites and enzymes, thus contributing 

to remote organ injury (e.g. to brain and lungs), by contributing to tissue edema and 

secondary tissue damage [12, 35, 37-39].  

Based on the delicate balance between protection and harm, the posttraumatic 

inflammatory response has been rightfully termed a “double-edged sword” [40-42]. The 

present review will outline the current understanding of complement activation and 

regulation after major trauma, with a focus on specific injury patterns, including 

musculoskeletal trauma, ischemia/reperfusion, chest and brain injuries. We will furthermore 
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discuss potential new pharmacological strategies related to the targeted inhibition of 

complement, which may shed some hope into the design of new immunomodulatory 

treatment modalities for severely injured patients in the future. 

 

Complement activation and effector functions 

The complement system represents one of the phylogenetically oldest cascade systems of 

the body, consisting of a proteolytic cascade of more than 30 soluble and surface-bound 

proteins that can be activated by the classical, the lectin and the alternative pathway [32, 

43, 44]. Recently, two additional complement activation pathways have been described, i.e. 

the properdin and the thrombin pathways, both of which will be discussed in more detail 

below. Figure 1 depicts a rough schematic of the so far known complement activation 

pathways and of the biological functions of activated complement components. In brief, the 

three main activation pathways converge in the formation of enzymatic complexes termed 

the C3 convertases and C5 convertases, which cleave the two main components of the 

complement system, C3 and C5. The two proteolytic fragments generated by the action of 

the convertases are the anaphylatoxins C3a and C5a. Both can trigger proinflammatory 

signaling through binding to their corresponding receptors, the C3a receptor (C3aR) and 

C5a receptor (C5aR and C5L2), on various myeloid and non-myeloid cells [28, 29, 45, 46]. 

C5a is a powerful chemoattractant for neutrophils that recruits immune cells to the site of 

injury and activates cellular attack mechanisms like oxidative burst and lysosomal enzyme 

release [47, 48]. Furthermore, the anaphylatoxins contribute to the degranulation of mast 

cells and basophils, induce the expression of adhesion molecules on endothelial cells, 

cause smooth-muscle contraction and enhance the acute phase response of the liver [48]. 

The cleavage of C3 by C3 convertases leads to the generation of a second major fragment, 

C3b, which acts as an opsonin facilitating the removal of bacteria and cell detritus by 



 

7 

 

phagocytic cells [49]. Finally, the formation of C5b by cleavage of C5 initiates the assembly 

of a multimolecular complex, the MAC (C5b-9), that perforates membranes of bacteria and 

nucleated cells and causes rapid cell lysis and death [45, 50, 51].  

Recently, a second initiation mechanism of the alternative activation pathway was 

described, termed the properdin pathway [52]. Properdin is capable of recognizing several 

DAMPs and PAMPs on foreign and apoptotic cells, thus allowing C3 convertase assembly 

on the target surface [32, 52]. Properdin also functions as a stabilizer for C3 convertase 

complexes of the alternative pathway. In addition to properdin, a fifth complement activation 

pathway has been described, which identified the clotting factor thrombin as a C5 

convertase. This notion was supported by the observation that thrombin is capable of 

generating C5a in the absence of C3, thus providing a direct link between the complement 

and coagulation system [53, 54]. 

 

Traumatic brain injury 

Traumatic brain injury (TBI) induces a profound inflammatory response that contributes to 

brain edema, neuronal cell death, and adverse outcome [55-57]. Posttraumatic activation of 

the complement cascade has been shown to play a pivotal role in the development of 

secondary brain injury (Table 1) [10, 12, 23, 24, 58, 59]. Multiple experimental and clinical 

studies have revealed elevated levels of complement components and complement 

activation fragments in serum, cerebrospinal fluid (CSF), and brain parenchyma after head 

injury [12, 23, 60, 61]. Intracerebral complement deposition after TBI derives either from an 

altered permeability of a dysfunctional blood-brain barrier (BBB), or from posttraumatic 

biosynthesis of complement components by resident and infiltrating cells of the central 

nervous system (CNS) [12, 62-64]. Most studies have focused on the central complement 

component C3, and on the potential neuroprotective effects of inhibiting C3 convertases, 
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the level at which the three main activation pathways merge, thus inhibiting downstream 

complement activation. Clinical studies revealed elevated C3 levels in the CSF of patients 

with severe TBI [65]. Experimental brain injury models described intracerebral PMNL 

infiltration and concomitant accumulation of complement C3 in cortical and hippocampal 

brain sections after experimental TBI in rats [66]. In those studies, C3 accumulation was 

significantly related to places of intracerebral cell death and to increased intracerebral 

myeloperoxidase activity [66]. In accordance with these findings, C3-deficient mice were 

found to have lower neutrophil extravasation and cerebral lesion volumes in a freeze model 

of brain injury [67]. In light of the central role of C3 and downstream complement activation 

fragments in the pathophysiology of TBI, much emphasis has been recently devoted to 

elucidating therapeutic aspects of C3 convertase inhibition, in various experimental model 

systems [68-72]. Genetically engineered mice, either deficient in the C3 gene, or with 

transgenic CNS-restricted overexpression of Crry – a soluble inhibitor of C3 convertases in 

mice – showed a significant extent of neuroprotection after brain injury, compared to wild-

type animals [67, 70]. The GFAP-sCrry transgenic mice showed a significantly improved 

neurological outcome and an attenuated extent of posttraumatic BBB dysfunction in a 

model of closed head injury [70]. Based on these insights, the concept of Crry-mediated 

neuroprotection was extrapolated to a pharmacological approach, by posttraumatic injection 

of a recombinant chimeric Crry-Ig molecule in the same model of closed head injury [71]. 

The systemic injection of Crry-Ig during an early therapeutic “window of opportunity” within 

one hour to 24 hours after trauma resulted in a significant neurological improvement and 

reduced extent of neuronal cell death, compared to vehicle-injected control mice [71]. A 

similar therapeutic approach was tested in a fluid percussion model of brain injury, using 

recombinant Vaccinia virus complement control protein (VCP), a potent inhibitor of 

alternative and classical pathway C3 convertases [69, 72]. In these studies, the intracranial 
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administration of VCP mediated neuroprotective effects related to posttraumatic 

preservation of spatial memory, as compared to vehicle-injected controls [69, 72]. 

Further therapeutic approaches were designed to more specifically target “key” effector 

components of complement activation, such as the anaphylatoxin C5a and its receptor 

(C5aR, CD88) [29, 67, 73, 74]. In addition, more attention was recently devoted to target 

specific pathways of complement activation exclusively, in order to overcome the potentially 

deleterious effects of a complete “shut-down” of complement activation at the central C3 

level. This notion is based on the fact that complement also mediates neuroprotective 

effects in the injured brain, as e.g. shown by a dose-dependent protection of glutamate-

induced excitotoxicity against neurons by the C3-derived proteolytic fragment, 

anaphylatoxin C3a [75], and by C3a-mediated induction of nerve growth factor (NGF) by 

microglia [76]. Based on the recent concept of a “dual role” for complement in the 

pathophysiology of brain injury, by promoting both early neurotoxic and late neuroreparative 

mechanisms after TBI [12, 77, 78], the exclusive targeting of selected complement 

pathways was given more consideration, as opposed to the “pan” inhibition at the C3 

convertase level [79-82]. Among these, the targeted inhibition of the alternative pathway 

has drawn particular attention in recent years [79, 80, 83]. Factor B, the “key” component of 

the alternative pathway, was previously reported to be significantly elevated in the 

intrathecal compartment of patients with severe TBI [65]. Experimental studies on factor B-

deficient mice (fB-/-), which are devoid of a functional alternative pathway, revealed 

significant neuroprotection after closed head injury, in conjunction with a decreased extent 

of posttraumatic complement activation [79]. These positive findings derived from studies in 

gene knockout mice were extrapolated into a pharmacological approach, using a 

neutralizing monoclonal anti-factor B antibody (mAb1379) in the same model system [80]. 

The post-injury injection of mAb1379 led to significantly attenuated extent of complement 
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activation and anaphylatoxin C5a generation, and was associated with an improved 

neurological recovery and reduced neuronal cell death after experimental closed head 

injury [80]. These data imply an important role of the alternative complement pathway in 

contributing to the delayed neuropathology after TBI, and provide strategic opportunities for 

therapeutic targeting of alternative pathway molecules as a potential future pharmacological 

strategy. 

An additional avenue of research has been focusing on the terminal complement pathway, 

or “membrane attack” pathway, which results in cellular lysis by the MAC/C5b-9 [51, 84, 

85]. In clinical studies, elevated levels of activated soluble MAC/C5b-9 were detected in the 

CSF of severely head-injured patients [62]. Moreover, the extent of intrathecal complement 

activation was associated with secondary cerebral insults in TBI patients, including post-

injury BBB dysfunction [10, 62, 64]. Experimental studies have revealed that the 

intracerebroventricular injection of MAC induced a marked upregulation of adhesion 

molecule expression and leukocyte infiltration in the subarachnoid space and cerebral 

parenchyma [84]. In addition, MAC injection into hippocampus evoked seizures and 

neurocytoxic effects in rats [85]. Local MAC deposition in the injured brain was 

demonstrated in experimental models [86] and in injured human brains [87]. The 

complement regulatory molecule CD59 represents the main controlling molecule of MAC 

formation and an essential protector from neuronal cell injury after complement activation 

[51, 88]. Neurons express CD59 constitutively, as a protective mechanism from autologous 

“innocent bystander” cell lysis after complement activation in the brain [51, 89]. However, 

the posttraumatic activation of phosphatidyl-inositol-specific phospholipase C (PI-PLC) after 

traumatic brain injury renders neurons vulnerable to MAC-mediated lysis by shedding of the 

glycosyl-phosphatidyl-inositol (GPI)-anchored glycoprotein CD59 from neuronal 

membranes [88, 90]. A recent experimental study on closed head injury in mice lacking the 
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gene for Cd59a (CD59a-/-) revealed increased susceptibility to brain injury in CD59a-/- mice, 

compared to wild-type littermates [88]. In fact, head-injured CD59a-/- mice showed 

increased neuronal cell death in tissue sections assessed by TUNEL histochemistry, in 

conjunction with elevated serum levels of neuron specific enolase (NSE), an indirect marker 

of neuronal injury [88]. These data corroborate the crucial role of the complement regulatory 

molecule CD59 in protecting neurons from complement-mediated lysis, and emphasize the 

impact of the terminal complement pathway in contributing to the pathophysiology of 

delayed neuronal cell death after TBI. 

Until present, there is a lack of specific pharmacological therapy designed to avoid 

induction of secondary brain injuries and delayed neuronal cell death [91]. There have been 

some significant advances in the field of therapeutic complement inhibitor development, in 

recent years [43, 74, 92-94]. While some of these inhibitors have been successfully tested 

in experimental head injury models (Table 1) [67, 68, 71, 80], the “bench-to-bedside” 

extrapolation to clinical applications in head-injured patients has yet to be accomplished 

[91].  

 

Chest trauma and acute lung injury 

Severe blunt chest trauma with associated pulmonary contusions is characterized by a 

robust inflammatory reaction which can result in exacerbated lung injury, acute respiratory 

distress syndrome (ARDS), multiple organ failure, and death  [95-99]. Activation of alveolar 

macrophages and recruitment of neutrophils into the interstitial and alveolar compartments 

are followed by the release of an arsenal of proteinases and oxidants causing leakage of 

the pulmonary microvasculature and destruction of the alveolar epithelium [100-103]. 

Various experimental models of lung injury could yield important insights into the critical role 

of complement activation products, particularly anaphylatoxin C5a, in the pathophysiology 
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of trauma-induced lung inflammation and progressive alveolar injury [28, 104-106]. 

Elevated levels of C5a have been described in broncheoalveolar fluid samples from 

patients with acute lung injury [28, 107, 108]. When C5a was applied intratracheally in rats 

exposed to an IgG immune complex model, increased intrapulmonary generation of 

chemokines, accumulation of neutrophils and changes in vascular permeability could be 

detected [106]. The protective effects of anti-C5a were further corroborated by the 

observation that the antibody also suppressed release of tumor necrosis factor (TNF) into 

bronchoalveolar lavage [109]. Furthermore, C5a was shown to be required for TNF-

dependent upregulation of intercellular adhesion molecule-1 (ICAM-1), an essential 

endothelial adhesion molecule required for neutrophil migration [109]. Czermak and 

colleagues demonstrated that both the in vitro and in vivo blockade of C5a led to 

significantly reduced production of CXC and CC chemokines [110, 111].  

A proposed model for the current understanding of C5a-mediated inflammatory 

pathophysiology of acute lung injury is depicted in Figure 2. Anaphylatoxin C5a has been 

shown to induce the early release of pro-inflammatory cytokines by alveolar macrophages, 

such as TNF and interleukin (IL)-1β [104]. Interaction of endothelial adhesion molecules 

(e.g. ICAM-1) with their corresponding receptors on neutrophils (e.g. CD11b/CD18) leads to 

adhesion and transmigration of neutrophils into the alveoli [104]. Furthermore, release of 

TNF and IL-1β can also function in an autocrine way and activate alveolar macrophages to 

generate chemokines [112]. Among these, the different chemokines have been shown to 

further mediate neutrophil infiltration [113]. Activated neutrophils, alveolar macrophages 

and epithelial cells release reactive oxygen species and proteinases that cause diffuse 

alveolar and microvascular damage, thus exacerbating acute lung injury [111]. 

The interaction of C5a with its receptors, C5aR (CD88) and C5L2, is crucial for mediating 

the pulmonary inflammatory response. Bronchial and alveolar epithelial cells have been 
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shown to express the C5aR [114, 115]. Mice lacking the C5aR gene showed a decreased 

extent of pulmonary inflammation, as characterized by attenuated myeloperoxidase 

production by neutrophils and decreased vascular leakage [116].  

Furthermore, the use of a specific C5aR antagonist led to similar attenuation of 

inflammation signs in immune complex-induced lung injury, indicating the C5aR as a 

predominant effector of the C5a-mediated inflammation in the lung [117]. A recent study 

could point out that the cellular responses induced by C5a/C5aR interaction are potentiated 

by a tight connection between complement and Fcγ receptors [118]. Both C5aR and FcγR 

are known to be expressed on alveolar macrophages [111]. Shushakova et al. found that 

C5a causes induction of the activating FcγRIII and suppression of the inhibitory FcγRII 

during lung injury resulting in a pro-inflammatory reaction. Genetic ablation of C5aR 

expression in mutant mice completely abolished C5a/C5aR-induced regulation of FcγRs 

and led to decreased intrapulmonary generation of TNF and neutrophil accumulation [118]. 

Taken together, C5a seems to have a broader critical function through FcγR regulation, 

thus augmenting inflammation in the lung. In contrast to the C5aR, the effects of C5a are 

limited by C5L2 that is co-expressed with the C5aR on many cells including neutrophils 

[119]. Besides of C5a, C5L2 can also bind C5adesArg and potentially additional complement 

fragments [120]. Gerard et al. could demonstrate a greater influx of inflammatory cells and 

an enhanced release of IL-6 and TNF in C5L2-deficient mice in the model of immune 

complex-induced lung injury [121]. This observation proposes an anti-inflammatory role of 

C5L2 in the lung that seems to counteract C5a/C5aR-mediated inflammation. 

The complement-induced pulmonary response after chest trauma has been suggested to 

depend on a delicate balance between pro- and anti-inflammatory transcription factors 

[111]. Alveolar macrophage activation is characterized by increased nuclear translocation of 

nuclear factor(NF)-κB and activator protein-1 (AP-1) representing an initial event in the 
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genesis of the inflammatory cascade [112, 122]. In contrast to NF-κB and AP-1, the 

transcription factor STAT3 has emerged as a negative regulator of the inflammatory 

response [28]. Interestingly, C5a has been shown to be responsible for STAT3 activation in 

lungs and alveolar macrophages after immune complex-induced lung injury whereas no 

complement-dependence could be found for activation of AP-1 [122, 123]. STAT3 has been 

hypothesized to act as a transcriptional mediator for the anti-inflammatory cytokine IL-10, 

and might contribute to a negative feedback system in acute lung injury [28, 111, 124]. In 

addition to the above described “classic” lung injury models, a recent study has paid more 

attention to the immune response after experimental blunt chest trauma induced by a blast 

wave [104]. Flierl and colleagues reported complement activation after trauma-induced 

bilateral lung contusion in rats with C5a-dependent perturbations in neutrophil functions. 

Treatment with anti-C5a antibody abolished functional deficits in neutrophils and reduced 

intrapulmonary levels of leukocytes and of cytokines [104].  

Taken together, there is evidence from various animal models that support a predominant 

role of C5a in initiating a cascade of inflammatory events during acute lung injury. If lung 

trauma is severe, activation of the innate immune system can lead to a dysregulated 

inflammatory response resulting in ARDS [125]. Elevated levels of C3a and C5a were 

measured in plasma of patients with ARDS [126]. In addition, experimental complement 

inhibition led to attenuated pathology in an animal model of lung injury [126-128]. Thus, it is 

tempting to speculate that C5a might act as a potential target for immunomodulation after 

chest trauma [74], to avoid the deleterious effects of posttraumatic inflammation, which lead 

to ARDS, multiorgan failure, and death [97, 129]. 
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Musculoskeletal trauma  

Experimental models of musculoskeletal trauma demonstrated that the early posttraumatic 

inflammatory response is often accompanied by robust generation of complement activation 

products [66, 104, 105]. However, up to now, the involvement of the complement cascade 

in bone and cartilage trauma has only been marginally investigated [130]. In recent years, 

increased attention has been devoted to the investigation of the role of complement in bone 

biology and fracture healing [131]. Mesenchymal stem cells as progenitor cells of 

osteoblasts were shown to express the complement receptors C3aR and C5aR, and the 

complement regulator molecules, CD55 and CD59 [132-134]. Moreover, osteoblastic 

differentiation as a key aspect of bone formation and remodeling induces upregulation of a 

number of complement-related genes, like C1q, C4, C3aR, properdin, C1-inhibitor (C1-INH) 

and complement factor H [135]. Pobanz and colleagues reported the expression of a 

functional C5aR by a human osteoblast-like cell line and detected increased osteoblast IL-6 

production after stimulation of these cells with C5a [136]. Furthermore, vitamin D3 has been 

described to regulate C3 production by murine osteoblastic cells both in vitro and in vivo 

[137-139]. Complement C3 was postulated to exhibit a modulating influence on the 

differentiation of bone marrow cells into osteoclasts [139, 140]. Additional studies pointed 

out that complement appears to be involved in the transformation of chondral precursors to 

bone tissue during the enchondral ossification process, involving both the classical and 

alternative pathway complement activation [141, 142]. Consequently, complement 

components were hypothesized to be also involved in the inflammatory response after 

musculoskeletal trauma, and in mediating induction of fracture repair processes [131]. A 

recent study revealed that the C5aR is expressed in fracture callus by differentiated 

osteoblast, chondroblast-like cells, and osteoclasts [143]. Since fracture healing is known to 

be delayed in case of additional trauma-induced injuries, it furthermore remains to be 
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examined if systemic complement generation might be the initiator of this delayed recovery 

after musculoskeletal trauma [144]. 

In addition to the role in fracture healing, the effect of complement activation on cartilage 

destruction after joint injuries has been discussed in recent years [130]. Gene expression 

analyses demonstrated that chondrocytes express a broad range of complement 

components and complement regulatory proteins [145-147]. The origin of complement 

components in the synovial fluid remains a topic of debate [130, 148]. Aside from 

chondrocyte-induced biosynthesis, it appears that multiple other non-cartilaginous sources 

contribute to complement release in the inflamed joint, including synovial cells and 

infiltrating leukocytes [130]. We recently hypothesized that chondrocytes may release pro-

inflammatory cytokines, express neoantigens and undergo enhanced apoptosis after 

cartilage injury [130]. However, until present, the involvement of the complement  system in 

posttraumatic joint inflammation and the development of posttraumatic osteoarthritis 

remains poorly understood, and requires further research. 

The pathophysiology of musculoskeletal trauma and of skeletal muscle 

ischemia/reperfusion is summarized in Figure 3. The oxygen deficit in major trauma, in 

conjunction with subsequent reperfusion of ischemic tissues has been recognized as a 

trigger of an intense inflammatory response that may cause damage both locally in the 

affected muscle and also in remote organs primary not involved in the ischemic insult [149-

152]. Complement activation and consumption represents a critical event in the early phase 

of limb ischemia/reperfusion (I/R) injury resulting in the release of potent complement 

fragments like C3a and C5a [150, 153, 154]. It has been suggested that binding of 

preexisting natural IgM antibodies to neoantigen expressed by hypoxic cells after 

interruption of the blood flow is responsible for the activation of the classical complement 

pathway that importantly contributes to skeletal muscle I/R injury [155-157]. This hypothesis 
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is strengthened by the fact that mice genetically deficient of mature B and T cells and 

natural antibodies (Rag1-/- mice) show significant reductions of tissue damage in a model of 

hindlimb ischemia and reperfusion [155, 158]. Furthermore, muscle edema and secondary 

neutrophil accumulation in the lung, as signs of reperfusion injury, were attenuated in C1q-/- 

and C4-/- mice deficient in central components of the classical complement pathway [159, 

160]. Aside from the classical pathway, recent data indicate important involvement of the 

classical and the lectin pathway in skeletal muscle I/R injury [159, 161]. A protective effect 

was attributed to the complement regulatory molecules decay-accelerating factor 

(DAF/CD55), C1-INH, and soluble complement receptor type 1 (sCR1) after skeletal muscle 

reperfusion injury [162-164]. Moreover, a pivotal role of C5a in causing lung damage after 

hindlimb I/R was shown in an experimental study in rats [165]. In accordance with this 

observation, multiple markers of local and remote organ injury were markedly reduced in 

C5-deficient mice, and in mice treated with a neutralizing C5aR antagonist [74, 166-168].  

In summary, complement activation appears to play a significant role in contributing to post-

injury inflammation in musculoskeletal trauma, including fractures, cartilage injury, and 

skeletal muscle I/R injury. 

 

Polytrauma and sepsis 

Polytrauma is characterized as a syndrome of multiple injuries with defined severity  which 

leads to a massive systemic immune activation and to secondary dysfunction and failure of 

remote, initially uninjured, organs [1, 5-7]. Clinical studies have demonstrated that 

complement activation occurs in plasma of patients after major trauma, as early as at the 

time of presentation in the emergency department [169-171]. The extent of complement-

mediated inflammation was correlated with injury severity, tissue hypoperfusion, and 

posttraumatic mortality [171, 172]. Serum levels of C3 and C3a were identified as markers 
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of injury severity and outcome in multiply injured patients [173, 174]. Moreover, expression 

profiles of complement regulatory molecules and of the anaphylatoxin C5a receptor 

(C5aR/CD88) appeared to be significantly altered in leukocytes of multiply injured patients 

during the early phase of polytrauma, compared to blood samples from healthy volunteers 

[175]. The expression profiles of CD46 (membrane cofactor protein; MCP), CD59, and 

C5aR (CD88) on neutrophils correlated inversely with the severity of injury, an observation 

which was attributed to an intriguing trauma-induced "complementopathy" in multiply injured 

patients [175]. 

Sepsis represents a lethal complication of major trauma, characterized by an uncontrolled 

complement activation, as determined by significantly elevated plasma levels of C3a, C4a 

and C5a [176-178]. The anaphylatoxin C5a appears to represent the central molecule in the 

development of the overwhelming inflammatory response in sepsis, and has been 

coherently described as “too much of a good thing” [179-181] (Figure 4). Blockade of C5a 

was linked to improved survival in different experimental models of sepsis [182-185]. 

Persistent elevation of C5a during progressive sepsis was related to a posttraumatic 

immunparalysis with “shutdown” of crucial neutrophil functions, including a loss of 

chemotactic and phagocytotic activity, impairment of the oxidative burst, and disturbances 

in intracellular signaling pathways [48, 186, 187]. Recent studies corroborated an important 

contribution of C5a in modulating apoptosis in different cell types during sepsis. While 

apoptosis rates in neutrophils were shown to be significantly attenuated during sepsis, 

lymphocytes, thymocytes and adrenal medullary cells exhibited increased C5a-dependent 

susceptibility to programmed cell death [188-192]. The latter phenomenon was 

hypothesized to be responsible for impaired adreno-medullary catecholamine release 

predisposing the development of septic shock [191].  Excessive C5a levels during sepsis 

were furthermore associated with reduced myocardial contractility and cardiac output, a 
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phenomenon described as “cardiomyopathy of sepsis” [193]. In general, multiple organs 

seem to be put at increased risk for C5a-mediated damage induced by an abrupt 

upregulation of the C5aR in a variety of tissues (heart, lung, kidney, liver, thymus) in early 

phases of sepsis [194, 195]. A recent study implied that C5a-mediated signaling through 

the two C5a receptors (CD88 and C5L2) contributes to adverse outcome from sepsis [196, 

197]. In experimental models of sepsis, the blockade of C5a and its receptors has been 

shown to protect end-organ function and to improve outcomes, thus providing a future new 

avenue for pharmacological treatment of this detrimental complication of major trauma 

[198-201]. Future studies will have to be designed to validate this promising notion in a 

clinical setting. 

 

Conclusions 

In recent years, multiple experimental and clinical studies have substantiated the notion of 

“key” role of complement activation after major trauma in contributing to the deleterious 

pathophysiological sequelae in the injured brain, lungs, and musculoskeletal system. 

Complement activation furthermore significantly contributes to the mechanisms of systemic 

post-injury complications, such as I/R injury, sepsis, and multiple organ failure. Therapeutic 

options aimed at attenuating the inflammatory complications of major trauma are currently 

unsatisfactory, and research strategies have largely failed in extrapolation from “bench to 

bedside”. Experimental data from recent animal studies highlight the potential for 

complement inhibitors aimed at targeting central complement components and specific 

complement activation products, as promising future pharmacological agents in patients 

with major trauma. In this regard, site-targeted complement inhibition by new generation 

chimeric molecules which link pharmacological inhibitors to the local site of complement 

activation and tissue deposition may represent the future pharmacological “golden bullet”. 
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These chimeric molecules act locally at the site of injury and inflammation, and thus avoid 

the unwanted negative and adverse effects of a systemic complement blockade. Clearly, 

there is a tremendous need for well-designed experimental studies to shed some further 

light into our understanding of the complement-mediated pathology of major trauma, with 

the hope of designing and implementing new clinical treatment strategies for severely 

injured patients in the near future. 
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Tables  

Table 1. Insights from experimental complement inhibition based on genetically engineered 
mice and pharmacological approaches in models of traumatic brain injury (TBI). See text for 
details and explanations. 

Complement 

inhibitor/  

mouse strain 

Inhibited 

complement  

molecule  

Affected 

complement  

pathway 

Inhibition-induced effects Reference 

C3
-/-

 mice C3 Classical, 

alternative, lectin 

Reduction of neutrophil 

extravasation, injury sizes 

and chemokine 

expression.  

Sewell et al., 2004 

[67] 

C4
-/-

 mice C4 Classical, lectin Decrease of motor deficits 

and brain lesion size. 

You et al., 2007 [81] 

Factor B
-/-

 

mice,  

anti-factor B 

monoclonal 

Ab 

Factor B Alternative Attenuation of cerebral 

tissue damage and 

neuronal apoptosis, 

upregulation  

of anti-apoptotic 

mediators, down-

regulation of pro-apoptotic 

markers. 

Leinhase et al., 

2006, 2007 [79, 80] 

CD59a
-/-

 mice CD59a Terminal Exacerbated tissue injury 

in CD59a-deficient mice, 

implying MAC-mediated 

secondary neuronal cell 

death. 

Stahel et al., 2009 

[88] 

C1-INH C1r/s, MASPs, C3b Classical Reduction of motor 

deficits, cognitive  

dysfunction and contusion 

volume. 

Longhi et al., 2009 

[59] 

sCR1 C3 convertases Classical, 

alternative, lectin 

Reduction of neutrophil 

accumulation  

in the brain. 

Kaczorowski et al.,  

1995 [68] 

Crry-Ig,                             

GFAP-sCrry 

mice  

C3 convertases Classical, altenative, 

lectin 

Neuroprotection with 

improved neurological 

scores and decreased 

tissue injury and blood-

brain barrier dysfunction. 

Leinhase et al., 2006 

[71] 

Rancan et al. , 2003 

[70]  

VCP  C3b, C4b, C3 

convertases 

Classical, 

alternative, lectin 

Improvement of 

sensorimotor outcome and 

spatial memory. 

Pillay et al., 2007 

[72] 

Hicks et al., 2002 

[69] 

C5aR 

antagonist 

C5aR C5a anaphylatoxin Decreased neutrophil 

extravasation in the brain. 

Sewell et al., 2004 

[67] 
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Figure legends  
 

Figure 1. 

Overview on the complement activation pathways and biological effects mediated by 
complement products. See text for details and explanations. 

 

Figure 2. 

Schematic understanding of complement anaphylatoxin C5a-mediated inflammation and 
alveolar injury after blunt chest trauma. See text for details and explanations. 

 

Figure 3. 

Pathophysiology of complement mediated secondary tissue injury after major trauma, and 
potential pharmacological strategies for complement inhibition. See text for details and 
explanations. 

 

Figure 4. 

Role of C5a ligand and receptor interaction in mediating the detrimental sequelae of major 
trauma, leading to secondary remote organ failure and adverse outcomes. See text for 
details and explanations. 
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