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Abstract

The item response theory (IRT) is a well-developed theorem, which can be used to estimate the
unidimensional ability of a student precisely.  Based on this theory, the construction of parallel test forms
can be performed such that the teaching activities can be evaluated precisely.  Unfortunately this test
construction problem is a combinatorial optimization problem, and now there is no polynominal time
algorithm that exists for finding the optimal solution (i.e., minimizing the deviations from the target
(parallel) test information function).  In this paper, an effective method is proposed for constructing
parallel test forms with approximation to the amount of target test information by selecting items from
an item bank.  The experimental results show that the proposed method can be used to obtain very good
results that approximate those obtained using recently proposed approaches.  However, our method is
much simpler than the other methods, thus, our proposed method significantly reduces the computation
time for constructing the parallel test forms.  This method will be very useful to educational measurement.

Key Words: item response theory, test construction, combinatorial optimization problem, educational
measurement

I. Introduction

The item response theory (IRT) (Hambleton &
Swaminathan, 1985; Lord, 1952; Lord & Novick, 1968;
Weiss, 1982) is a well-developed theorem, which can
be used to precisely estimate the unidimensional ability
of a student. This theory has proved to be very useful
in educational assessment. For example, when there
is a close fit between the chosen IRT model and the
test data set of interest, the following merits can be
obtained:
(1) Item parameter estimates are independent of the

group of examinees.
(2) Examinee ability estimates are independent of the

particular choice of test items.
(3) Precision of ability estimates is known (predictable).

Owing to these advantages, IRT has been widely
used in educational assessment (Macro, 1977; Wright
& Douglas, 1977; Wright & Stone, 1979; Yen, 1981),
especially in constructing a desired test for measuring
the ability of a student on the basis of the item infor-
mation (Birnbaum, 1968; Lord, 1980).  The larger the
value of the item information, the more precise the
measurement of ability.  By applying the item infor-

mation function, conventional methods could be used
to construct a desired test efficiently.  The constructed
test information function is the sum of the item in-
formation function Ij(θ) for the items comprising the
test (Birnbaum, 1968):

   I(θ) = I j(θ)Σ
j = 1

m
, (1)

where m is the number of items in the constructed
test.

For example, if a scholarship test for an academic
award were to be constructed, then the items with
greater information at high ability levels would be
selected (Fig. 1) in order to screen students with high
abilities.  For another case, if an educational research
project requires two groups of students with abilities
at the middle-high and the middle-low, then the two-
peak (i.e., a “M” shape) target test information func-
tion would be required.

Lord (1977) outlined a procedure, originally
conceptualized by Birnbaum (1968) for the use of the
item information function in the test building process.
The steps are:
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1. Define the shape of the desired test information
function (or called target information function).

2. Select items with item information functions that
will fill up the hard-to-fill areas under the target
information function.

3. After each item is added to the test, calculate the
test information function for all the selected test
items.

4. Continue selecting test items until the test informa-
tion function approximates the target information
to a satisfactory degree.

The fewer the errors between the target test
information function and the constructed test informa-
tion function, the greater the satisfaction of the test.
Therefore, a test designer would select items such that
the constructed test information function approached
the target test information function.  When the item
bank is small, manual and sequential item selection
and examination of the test information curve against
the target are not difficult.  When the item bank is
large, however, it is very difficult to accomplish this
job without the aid of some heuristic methods.  Since
the item selection problem is a combinatory optimi-
zation problem and the number of combinations in-
creases exponentially with the size of problem,
therefore, only the weak methods (heuristic algorithms)
are used for finding the “good” solutions.  For example,
the linear programming (LP) is the technique used
most often during the test construction (Van der Linden
& Boekkooi-Timminga, 1989; Baker, Cohen &
Barmish, 1988; Boekkooi-Timminga, 1987; Swanson
& Stocking, 1993; Wang & Ackerman, 1997).  Based
on the linear programming, items are selected into a
test to achieve the optimization objectives under the

problem’s constraints.  Some heuristic methods have
also be used to find good solutions, for example, the
branch-and-bound method (Adema, 1989), the revised
simplex method (used the relaxed 0-1 linear program-
ming model (Adema, 1990)), and the weighted devia-
tion model (Swanson & Stocking, 1993).  Test con-
struction problems commonly involve a list of objec-
tive functions with various purposes (Van der Linden
& Boekkooi-Timminga, 1989), but the test informa-
tion function is the common objective of all test design
problems.  Therefore, in this paper, we only considered
how to select items in order to meet the requirements
of the desired test information function.  However, the
difficulty of this problem was not reduced by elimi-
nating some considerations such as the exposure rate
and the content attributes.  For constructing a test
information function approximating the target test in-
formation function, we propose an effective method
based on the concept of energy function of neural
network models (Hopfield & Tank, 1985; Lippmann,
1987; Sun & Fu, 1993a; Sun & Fu, 1993b).  Energy
function approaches have been used successfully to
solve many optimization problems (Papadimitriou &
Steiglitz, 1982; Sun, 1992; Sun & Fu, 1992; Sun &
Fu, 1993a; Sun & Fu, 1993b; Wu, Xia, Li, & Chen,
1996).  However, we transformed the test construction
problem into an energy function and then solved it
using a greedy approach.  The results obtained using
our approach were similar to those obtained using
recently proposed methods.  However, the computa-
tion time of our proposed method was much shorter
than that of their methods.  In Section 2, some recently
proposed methods on test construction problems are
described.  In Section 3, we explain the concept and
the detailed operations of the proposed method.  In
Section 4, experimental results obtained using our
proposed approach and other methods are included.
Finally, a conclusion is given in Section 5.

II. Test Construction Methods

There have been many methods proposed for
automating item selection in test construction (e.g.,
Ackerman, 1989; Adema, 1990; Boekkooi-Timminga,
1989; Theunissen, 1985; Van der Linden, 1987; Yen,
1981; Swanson & Stocking, 1993; Wang & Ackerman,
1997; Sun & Chen, 1999).  The most commonly used
methods for item selection are based on the concept
of binary programming.  This principle offers many
advantages for solving the test construction problems
using classical linear programming algorithms.  Some
methods may apply heuristic techniques (e.g., simu-
lated annealing (Jeng & Shih, 1997), replacement

Fig. 1. The curve of information function for a scholarship test.
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algorithm, neural network (Sun & Chen, 1999), etc.)
to obtain fewer errors when gathering information
between the constructed test and the target test.
Recently, three methods have been proposed that could
construct parallel test forms efficiently and would be
explained.  To simplify the test construction process,
we supposed that all items in the bank contained the
same attributes.  Then, the goal of test construction
problem for parallel test forms was to minimize the
deviations (errors) between the target test information
function and the constructed test information function.
Based on this assumption, previously proposed meth-
ods for constructing parallel tests were simplified as
follows.

A. Swanson and Stocking Method (Swanson &
Stocking, 1993)

 There are two phases, selection phase and re-
placement phase, included in this method.
1. The selection phase consists of the following four

steps:
(1) For every item t not yet included in the test, the

expected error that will be generated as if the
item t were selected into the test. Then, the
expected error at the latent trait (ability) j is
represented by the value of qtj:

   q ij = a ijx i + (m – k)v j + a tjΣ
i = 1

n
,   1≤t≤n,  (2)

where n is the number of items in the item bank,
aij is the information quantity of item i at the
latent trait (ability) level j, xi denotes the status
of item i whether item i is included in (xi = 1)
or excluded from (xi = 0) the test, m is the number
of items required for the test, k is number of
selected items in the test, and vj is the average
item information for all items in the item bank
at the specified ability level j.

(2) Compute the difference across all ability levels
j between the target test information function
and the constructed test information function if
the item t were added to the test.

Dtj = Abs (dj − qtj), 1≤ t ≤ n, (3)

where Abs() is the absolute value function, and
dj is value of the target test information function
at the ability level j.

(3) Select the item t* with the smallest value of Dtj,
and add it to the test.

Dt*j = Min{Dtj, 1 ≤ t ≤ n}. (4)

(4) Repeat Steps 1 to 3 until m items have been
selected.

2. The replacement phase consists of the following
three steps:
(5) Select the (m + 1)th item according to Steps 1

to 3, except eliminate the term “(m − k)vj” in
Equation (2), and then add this additional item
into the test.

(6) Find an item already included in the test whose
removal will most reduce the error between the
target test information function and the con-
structed test information function.

(7) If the removal and replacement process reduced
the error between the target test information
function and the constructed test information
function, then add the replacement item (in Step
5) to the test, delete the removal item (in Step
6), and repeat Steps 5 and 6.  Otherwise, stop
the process (no more errors can be reduced using
the replacement process).

The replacement phase will monotonically im-
prove the error between the target test information
function and the constructed test information function.
If it is not possible to find a pair of items whose
replacement in the test would result in a smaller error,
then the process stops.

B.Wang and Ackerman Method (Wang &
Ackerman, 1997)

Wang and Ackerman proposed two algorithms:
TESTGEN1 and TESTGEN2.  The TESTGEN2 is simi-
lar to TESTGEN1 except when considering multiple
content information functions.  Under our assumption
“items contain the same attributes”, The TESTGEN1
and TESTGEN2 would be the same, thus, only the
TESTGEN1 is introduced in this paper.  The Wang
and Ackerman method consists of the following six
steps:
1. Randomly select the first item into the test.
2. Compute the test information function oj.

   o j = a ijx iΣ
i = 1

n
. (5)

3. Check the number of items included in the test.  If
the number of items is equal to m, then stop.
Otherwise, go to Step 4.

4. Compute the difference, Ej, between the target test
information function and the constructed test infor-
mation function, and then prioritize the order of
items according to the size of difference at each
ability level j.
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Ej = Abs(dj − oj) (6)

5. Select the item t at the ability level j* where
the greatest priority occurs. The item t could mini-
mize the difference Ej* if it were added to the
test.

Ej*  = Max{Ej, j = 1 ~ s}, where s is the number
of ability levels. (7)

Tij*  = Abs(Ej* − aij*), ∀ xi ≠ 1, and i = 1 ~ n.
(8)

Ttj*  = Min{Tij*  , i = 1 ~ n}. (9)

6. Add the item t into the test, and go to Step 2.
Based on the TESTGEN1 algorithm, during each

iteration only the item with the most information will
be selected into the test, thus, the greatest difference
of the information quantities between the target test
and the constructed test are reduced.

C. Neural Network Method (Sun & Chen, 1999)

An artificial neural network technique is pro-
posed and used to solve the test construction problem.
First, the test construction problem is transformed into
an energy function, and then the energy function is
reduced using the neural network technique.  When
the energy function reaches a stable state, the state of
the neurons represents the solution to the problem.
This method can be used to obtain very good results,
while the computation is more complex.  The detailed
steps of this method are stated as follows.
1. Set the initial values of all variables in the energy

function.
Variables dj, j = 1 ~ s, are set to the desired

information of the test, and xi, i = 1 ~ n, are set
to zero (i.e., no items had been selected into the
test from the item bank).  All wij, i = 1~ n and j =
1 ~ s, are equal to the information quantity of the
item i at the ability level j.  The initial time t is set
to zero.
2. Determine the value of the energy function EI at

time t.

   EI(t) = (d j – O j(t))
2Σ

j = 1

s
, (10)

where Oj(t) is constructed test information function
at time t.

3. Determine the updated value of each xi (i.e., ∆xi)
for reducing the energy of function EI(t),

   

∆x i(t) = –

∂EI(t)
∂x i(t)

∂2EI(t)

∂x i
2(t)

= ( (d j – O j(t))w ij)Σ
j = 1

s
/( w ij

2Σ
j = 1

s
) .

(11)

4. Select the most “appropriate” neuron (variable xi)
to update.
Find a neuron xi*(t)with the greatest absolute
value of ∂EI(t)/∂xi(t), for all i, and the value
xi*(t) is not equal to one, and the updated value
of xi*(t) (i.e., ∆xi*(t)) is greater than or equal to
one.

   ∂EI(t)
∂x i *(t)

= Max.{
∂EI(t)
∂x i(t)

, for ∀ x i ≠ 1 and ∆x i ≥ 1} ,

(12)

5. Update the state of neuron xi*(t).
The new value of xi*(t) is set to one (i.e., the item
i* is then selected into the test), and becomes

xi*(t + 1) = 1.   (13)

6. Compute the difference of the energy function EI

between two consecutive iterations.

∆EI(t + 1) = EI(t + 1) − EI(t). (14)

7. Check the stability of the energy function.
If the following equation is true, then the energy
of the function EI(t) is increasing but decreasing.
The updating iteration will stop.

∆EI(t + 1) ≥ 0. (15)

When it is true, go to Step 8.  Otherwise, t = t +1
and go to Step 2 for the next iteration.

8. Stop.
All variables xi, with the value “1” are the items

selected into the constructed test.
This neural network approach represents the test

construction problem using an energy function that
considers the total difference between the target test
information function and the constructed test informa-
tion function.  After applying the converging process,
it can be used to find a good solution.

These proposed methods can be used to effi-
ciently solve test construction problems, and find the
good solutions.  However, the computing processes are
complex. In the following section, an effective method
termed the “greedy approach” was designed to obtain
good results at a much faster pace.
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III. Test Construction by the Greedy
Approach

The proposed greedy approach is similar to the
neural network method.  The errors between the target
test information function and the constructed test
information function are also considered and repre-
sented by an energy function.  When the target test
information function (d(θi), as shown in Table 1) is
specified by the test designer, the information quantity
of the target test di (the simplified representation of
d(θi)) can be obtained.

After a test is constructed, the constructed test
information function O(θi) can also be determined.
Then, the sum of squared error of information between
the target test information function and the constructed
test information function can be calculated using EI

=     (d j – O j)
2Σ

j = 1

s
 (as shown in Equation (10)).

The value of Oj, the constructed test information
function, can be derived from Equation (16).

   O j = w ijx iΣ
ι = 1

n
,   xi ∈  {0, 1} (16)

where n is the total number of items in the item pool,
and wij is the information of item i at the ability-level
index j.  When an item i is selected into the test
(i.e., the status of xi is changed from 0 (excluded from
the test) to 1 (included in the test)), the energy of
function EI, the sum of squared error of information
between the target test information function and the
constructed test information function, would be changed
(either increased or decreased) by a value:

∆EI,i = EI,i − EI, (17)

where

   EI, i = (d j – O j(t))
2Σ

j = 1

s
, (18)

and

   O j, i = w kjxkΣ
k ≠ i
k = 1

n
+ w ij . (19)

Then, the updated value of energy function EI after
selecting the item i is

   ∆EI, i = (d j – O j, i)
2Σ

j = 1

s
– (d j – O j)

2Σ
j = 1

s

   = (d j
2 – 2d jO j, i + O j, i

2 – d j
2 – 2d jO j – O j

2)Σ
j = 1

s

   = ( – 2d jw ij + 2O jw ij + w ij
2)Σ

j = 1

s

   = w ij(w ij + 2O j – 2d j)Σ
j = 1

s
(20)

If the test information function after the item i
added were less than the desired test information
function, then the updated value of energy function
EI (i.e., ∆EI,i) would be less than zero.  Under this
condition, if the item i were selected into the test, then
the energy of the function EI would decrease until the
value of ∆EI,i was greater than or equal to zero.  Based
on this concept, the greedy approach was designed to
select items with the greatest information to fill the
gap between the constructed test information function
and the target test information function.  This method
can be used to efficiently construct a test approximat-
ing the target test information function.

A. The Greedy Approach to Item Selection

In the proposed greedy approach, each variable
xi  (i.e., the state of item) is computed independently
such that the updated value of EI,i, 1 ≤ 1 ≤ n, can be
determined in parallel.  However, not all variables can
be updated simultaneously. Otherwise, the energy
function EI would be over-updated and then oscillate.
It would not converge to a stable state.  So, only one
variable xi is updated at each iteration, and the energy
function EI is reduced monotonically until it reaches
a minimum state.  The detailed operations of the pro-
posed greedy approach are stated as follows.
1. Set the initial values of all variables.

Variables dj, j = 1 ~ s, are set to the target test
information function specified by the test designer,
and xi, i = 1 ~ n, are set to zero initially (i.e., initially,
no item is selected into the test from the item bank).
The value of wij, i = 1~ n and j = 1 ~ s, is equal to
the amount of information of the item i at ability level
j.  The initial time t (iteration index) is set to zero.
2. Determine the constructed test information function

Oj(t) at the iteration t.

   O j(t) = w ijx i(t)Σ
i = 1

n
,  ∀ j = 1 ~ s. (21)

Table 1. An Example of the Target Test Information Function (two
peaks)

Index of Ability Level (i)

1 2 3 4 5

Ability Level (θi) −2.0 −1.0 0.0 1.0 2.0
Test Information (d(θi) 4 12 6 12 4
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3. Determine the value of the energy function EI at
the iteration t.
As shown in Equation (10), we can compute the
value of energy function EI(t).

   EI(t) = (d j – O j(t))
2Σ

j = 1

s
. (22)

4. Determine the updated value of the energy function
EI, (EI, ∆EI,i, after selecting the item i, (∀ i, i = 1
~ n.

   ∆EI, i(t) = w ij(w ij + 2O j(t) – 2d j)Σ
j = 1

s
(23)

5. Find the smallest value ∆EI,i*(t).
Find the smallest value ∆EI,i*(t) from Equation (23)
for all i where xi(t) is not equal to one (i.e., item
i excluded from the test).

∆EI,i*(t) = min{∆EI,i(t), xi(t) ≠ 1, i = 1 ~ n}.
(24)

6. Check the stability of the energy function.
Two cases need to be considered:
(1) The number of test items is not fixed (but limited

by an upper bound m).
The energy function is checked to see whether
the energy function has reached a minimum state
or not.  If the following equation is true, then
the energy function EI(t) is not decreasing but

increasing after the item i* was added.

∆EI,i*(t) ≥ 0. (25)

The iterative operations for reducing the energy
of the function EI(t) will stop.  Otherwise, the
item selection operations continue until a mini-
mum state is reached or the number of test item
reaches the upper bound m.

(2) The number of test items is fixed.
Under this condition, we only need to check the
following equation to see whether it is true or
not.

   ( x iΣ
i = 1

n
) – m = 0 , (26)

where m is the number of items required for the test.
When either Equation (25) or Equation (26) is true,
go to Step 7.  Otherwise, update the state of
variableinto xi*(t) one (i.e., item i* is then selected
into the test), t = t +1, and go to Step 2 for the next
iteration.

7. Stop.
All variables xi with the value one would be the
items included in the test.

By following the steps of the proposed greedy
approach, only one item is selected into the test during
each iteration.  Thus, the maximum number of itera-
tions is equal to m for constructing a test with m items,

Table 2. Item Parameters, Information, and Classical Statistics of Items (the first 20 items of the 320 items in the natural science item
bank)

Item Item Parameters Ability  Level Classical Statistics

a b c -3 -2 -1 0 1 2 3 p r

1 0.763 −3.000 0.270 0.242 0.193 0.078 0.024 0.007 0.002 0.001 0.969 0.584
2 0.435 −0.546 0.200 0.024 0.052 0.083 0.093 0.075 0.049 0.027 0.656 0.331
3 0.803 0.537 0.310 0.000 0.003 0.035 0.171 0.250 0.130 0.041 0.575 0.381
4 1.187 0.080 0.350 0.000 0.002 0.059 0.466 0.293 0.052 0.007 0.684 0.534
5 0.844 −1.176 0.180 0.031 0.191 0.364 0.215 0.068 0.017 0.004 0.816 0.681
6 0.730 0.169 0.290 0.001 0.012 0.075 0.199 0.192 0.090 0.030 0.628 0.444
7 0.732 1.127 0.370 0.000 0.001 0.010 0.062 0.169 0.164 0.076 0.531 0.243
8 0.625 −1.650 0.260 0.062 0.147 0.164 0.101 0.044 0.017 0.006 0.859 0.514
9 1.428 2.831 0.370 0.000 0.000 0.000 0.000 0.001 0.102 0.715 0.384 0.016

10 0.541 0.063 0.280 0.006 0.024 0.069 0.117 0.114 0.072 0.035 0.634 0.347
11 0.983 −1.587 0.310 0.035 0.265 0.342 0.116 0.025 0.005 0.001 0.906 0.694
12 0.661 −1.707 0.250 0.070 0.171 0.182 0.102 0.041 0.014 0.005 0.869 0.529
13 0.538 −1.368 0.230 0.048 0.105 0.134 0.105 0.058 0.027 0.011 0.803 0.436
14 1.183 −0.378 0.290 0.000 0.012 0.247 0.549 0.156 0.024 0.003 0.744 0.669
15 0.400 −0.363 0.350 0.012 0.027 0.047 0.058 0.054 0.039 0.024 0.719 0.150
16 0.558 0.220 0.270 0.004 0.020 0.064 0.122 0.127 0.082 0.040 0.603 0.365
17 0.960 0.378 0.280 0.000 0.003 0.045 0.287 0.340 0.116 0.026 0.575 0.481
18 0.814 1.828 0.300 0.000 0.000 0.002 0.019 0.126 0.267 0.174 0.384 0.230
19 0.891 −0.490 0.310 0.002 0.033 0.205 0.301 0.132 0.035 0.008 0.753 0.570
20 1.083 −1.295 0.240 0.016 0.231 0.526 0.195 0.036 0.006 0.001 0.866 0.739
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and the magnitude of computations (Horowitz & Sahni,
1978) in each iteration is O(n) for computing n op-
erations in functions Oj(t), j = 1 ~ s (s is a constant),
∆EI,i(t), and ∆EI,i*(t).  The total computation complex-
ity of the proposed greedy method is O(mn) (= m ×
O(n)) which is the same as other methods (Sun & Chen,
1999).  However, the computation time of our method
is much less than other methods and the results are
as good as those obtained using them.

IV. Performance Evaluation

The items, used to evaluate the performance of
our method and other methods, were randomly se-
lected from the item pool as part of the project “The
Web-based Natural Science Learning Environment in
Elementary School” supported by the National Sci-
ence Council of Taiwan, ROC, under the grant of NSC
89-2520-S-024-001-.  The item discrimination param-
eter (ai) ranged from 0.40 to 2.50, the item difficulty
parameter (bi) ranged from -3.0 to 3.0, and the pseudo-
chance parameter (ci) ranged from 0.08 to 0.44 (see
Table 2).  The amount of information of the desired
tests varied from the ranges defined in Table 3 (for
one-peak information curve) and Table 4 (for two-
peak information curve).  Based on the limitations of
information quantities defined in these two tables, 100
target test information functions were randomly
generated, respectively.

Figs. 2, 3, 4 and 5 show the simulation results
using the greedy approach and other methods under
the conditions of fixed and not fixed number of items,
respectively.  The averages of sum of squared errors
between the target test information functions and the
constructed test information functions are shown in

Table 5, which can be computed using Equation (27):

   Average_Error = 1
N

(d kj – O kj)
2Σ

j

s

Σ
k = 1

N
(27)

where N is the number of test samples, and s is the
number of ability levels.  Thus, dkj is the desired test
information function for sample k at the ability level
j, and Okj is the constructed test information function
for sample k at the ability level j.  The average value
of errors made using our method were much fewer than
those made using Wang and Ackerman’s method, and
approached the value made using the neural network
method and Swanson & Stocking’s method.  We found
that fewer errors were used using the proposed greedy
approach than those made using the Wang & Ackerman
(1997) method. In addition, they were approximately

Table 3. The Ranges of the Desired Test Information Function with
One Peak

Index of Ability Level

1 2 3 4 5

Ability Level −2.0 −1.0 0.0 1.0 2.0
Test Information 4 ~ 5 6 ~ 8 18 ~ 21 6 ~ 8 4 ~ 5

Table 4. The Ranges of the Desired Test Information Function with
Two Peaks

Index of Ability Level

1 2 3 4 5

Ability Level −2.0 −1.0 0.0 1.0 2.0
Test Information 5 ~ 6 11 ~ 13 7 ~ 9 11 ~ 13 5 ~ 6

Fig. 2. Test information curves (one peak) produced with the greedy
approach and other methods under the condition of fixed
number (= 40) test items.

Fig. 3. Test information curves (one peak) produced with the greedy
approach and other methods under the condition of not fixed
number test items (but limited by an upper bound 40).
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the same as those made using the neural network
approach (Sun & Chen, 1999) and the Swanson &
Stocking’s method, respectively.  The computation
time of our proposed approach was much less than
those of other methods.  The improvement ratio of
computation time is at least 23% faster.  Thus, the
proposed item selection method was more effective
than the other methods, and will be very useful to the
test designers to construct the parallel test forms or
a desired test for educational assessment.

V. Conclusions

In this paper, the greedy approach, based on the
IRT information function, was proposed to construct
a test from an item bank.  The proposed method can
be effectively used to construct parallel test forms or
desired tests such that the constructed test information
function approximates the target test information
function.  A real item pool was used to evaluate the

performance of our method and other methods.  The
experimental results showed that the errors of our
proposed approach were very small and approximated
those obtained using other methods.  However, the
computation time of our method was much less than
theirs.  Our proposed method significantly shortened
the computation time of test construction, while
maintaining the quality (errors between test informa-
tion functions) of parallel test forms.  Thus, our greedy
approach will be a very useful tool for researchers with
test construction problems.
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