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ABSTRACT

The fractal image compression scheme 1s shown to be powertul in image compression In this method,
an image 15 not represented 1n an array of pixels; instead, a relatively compact set of numbers, called
iterated function system (IFS) codes. 15 used to code the segments that compose the image 1In this paper,
a speed improvement in the fractal compression techmque by using the N-step matching algorithm 1s
proposed, and the feasibility of image processing based on IFS codes 1s presented. This scheme includes
noise reduction, edge detection, and edge magnification or demagnification, which are jointly implemented
with the decompression procedure instead of being treated as separate operations. In addition, texture
segmentation can be achieved by using the IFS codes as features. Experimental results are presented to

show the feasibility of the proposed approach.
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l. Introduction

Since the pioneering work of Mandelbrot (1982),
there has been considerable interest in the use of fractals
to model natural phenomena, such as clouds, plants,
landscapes, coastlines, and even whole planets. The
great advantage of such a method is that a small set
of parameters, called iterated function system (IFS)
codes, can be used to specify an apparently complex
image. This led Barnsley to use fractals to compress
images (Barnsley and Hurd, 1993). This new technique
is called fractal image compression (Barnsley and Alan,
1988; Barnsley and Hurd, 1993; Fisher, 1992; Louisa,
1993). It has attracted the attention of resecarchers in
the area of image compression because of its high
compression ratio, which is up to 10,000: 1 for special
fractal images.

For fractal images, such as the Cantor set or
Snowflake, several approaches have been proposed to
compute the corresponding IFS codes. Kawamata et
al. (1992) regarded IFSs as time-variant state-space
digital filters and applied digital signal processing
techniques to systematically determine IFS codes. Pei
etal. (1993) considered the wavelet transform and scale
space filtering as special cases of general scale shift

"To whom all correspondence should be addressed.

mapping (SSM). The SSM was used as a tool to
characterize the geometrical complexity of fractals.
The results obtained from scale shift mapping were
then used to estimate the IFS codes of a class of fractal
images. To reduce the computational cost, Peier al.
(1992) provided a novel algorithm to decode a fractal
image from IFS codes. It is suitable for parallel
implementation and has no transient behavior in the
decoding of IFS codes.

To compress a natural image, we first partition
the image into blocks, and the affine transformations,
explained in a later section, are then used to express
the relations between blocks of the image. The param-
eters of these transformations are called local IFS codes,
which approximate the natural image and are used for
image decompression or reconstruction. The amount of
storage for these codes is much smaller than that of
the original image. The larger the partitioned blocks
are, the fewer IFS codes there are, and the worse is
the reconstructed image.

Encoding of natural images by fractals is
computationally intensive. In this paper, speed im-
provement in the fractal image compression technique
by using the N-step matching algorithm is proposed.
Additionally, characteristics of the local IFS codes that
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are meaningful and useful for some image processing
tasks are described. These tasks include edge detec-
tion, edge magnification or demagnification, and tex-
ture segmentation. The edges of an image.can be
extracted by slightly modifying the IFS codes in the
decompression process. Magnified or demagnified
non-jagged edges can be easily obtained in decompres-
sion, and texture segmentation can be achieved through
classification of the parameters of local IFS codes. The
experimental results indicate that IFS codes are prom-
ising features for image processing.

In this paper, detailed descriptions of local IFS
codes and fractal image compression techniques are
given in Section II. In Section III, applications of
fractals or local IFS codes on image processing are
proposed, and experimental results are presented.
. Conclusions and suggestions for further researches
appear in the last section.

Il. Fractal Image Compression

This section introduces some basic concepts in
fractal geometry and in the implementation of fractal
image compression.

1. Fractal Geometry

Affine transformations and IFSs are central to
fractal image compression and are briefly discussed in
this subsection.

A transformation is a function which takes points
from one space to another. In fractal geometry, trans-
formations operate on a metric space (X, 9), where X
is a space, and & is a metric defined on X. Let (%%,
d) be a metric space, where & is the set of real numbers,
and & is a metric on ®R%. An affine transformation
defined on (%% 6) is in the form of

o()-(505)+(2)

where a, b, ¢, d, e, and f are real numbers, and (x, y)
€®? If an affine transformation w has the property

S(w(x), w(y))<s«d(x, y), for any x, y in R,

where s is a constant, and & is a metric to measure the
distance between pairs of points in ®?, then the trans-
formation w is said to be contractive, and s is called
the contractivity factor because points move closer
together after the transformation. When an affine
transformation is performed on a metric space, there
may exist points which remain unchanged after the

transformation. These points are called fixed points.
If an affine transformation’ is contractive, it can be
proved that this transformation has fixed points
(Mandelbrot, 1982).

An IFS:consists of a metric space together with

=3 finite set of contractive affine transformations. The

Iy

set of fixed points of these contractive affine transfor-
mations is called the attractor of the IFS. The attractor
constitutes a binary fractal image, and the parameters
of the contractive affine transformations in the IFS are
called IFS codes. The attractor of an IFS can be
obtained with the aid of the deterministic algorithm or
the random iteration algorithm (Barnsley and Hurd,
1993).

The affine transformations of an IFS on a metric
space (X, 0) transform points in the space X to X. A
fractal image is formed by affine transformations of
its whole self. However, a natural image does not
appear to coritain affine transformations of its whole
self; it appears to consist of copies of properly trans-
formed “parts” of itself. So local transformation is
defined. A local transformation on a space X is one
whose domain is a subset of the space X, instead of
all the points of the space; a global one is defined on
_all the points of the space. By extending the IFS
“cgoncept from “global” to “local” and restricting the
rotation transformations to eight affine symmetry ro-
tations (Barnsley and Hurd, 1993), as shown in Fig.
1, it is not difficult to develop schemes for natural
image compression. -

2. Compression and Decompression

This section deals with compression and decom-
pression of a natural gray-level image by using the
fractal scheme (Jacquin, 1992; Monro, 1993; Monro
and Dudbridge, 1992). An image is coded into local
IFS codes in the compression process. In the decom-
pression process, these codes are used to reconstruct
the original image. The detailed procedures are dis-
cussed in the following.

A. Encoding

To compress a natural gray-level image, we first
define a space on which the affine transformations
operate. The space is X=(%, f), where I is the spatial
domain of an image, and f is the intensity function of

the image. We define a metric § as follows:
S(h.h)= T |fiCx.y)=-px.0F,
(x,y)el]. b

where I, and I, are two blocks of an image, and fi(x,
y) and f,(x, y) denote the gray levels of pixel (x, y) on
blocks I; and I,, respectively. It is obvious that (X,
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Fig. 1. Eight affine symmetry rotations.

0) is a metric space. The metric §is used to determine
the distance between pairs of blocks and is used as a
measure of block similarity.

A natural image does not appear to contain affine
transformations of itself, but it seems to be composed
of copies of properly transformsd parts of itself. To
find the local IFS codes of an image, we partition the
image into N non-overlapped blocks, called range
blocks. For each range block R;, we wish to select a
portion of the image, called domain block D;, such that
the result of applying some affine transformation over
D; is most similar to the range block. The affine
transformation should be contractive; hence the do-
main block is larger than the range block by, in general,
four times. For gray-level images, the affine transfor-
mation w between a range block and a domain block
is modified as follows:

x ab0)/x e
w(y):(ch)(y)+(f), 08)
z 00s/\z 0

where z denotes the gray-level value of pixel (x, y),
and s and o are concerned with the gray-level trans-
formation between the two blocks. The transformation

w is contractive if s<1.

To find the most similar domain block for each
range block R,, i=1, 2, ..., N, we search through all the
overlapping domain blocks of the image to find a domain
block D; which satisfies the minimum of the quantity:

&R, w(Dy) for j=1, 2, ..., M. 2

To compute &, the domain block should be subsampled
to the same size as the range block. There are 8 ways
to rotate one square block to another, as shown in Fig.
1. Minimizing. Equation (2) means finding a domain
block D; that most looks like R; after applying some
rotation as shown in Fig. 1 and a gray-level transfor-
mation. A choice of D; and the corresponding rotation,
along with the parameters s; and o,, determine a trans-
formation w, in the form of Eq. (1). Let R; and the
subsampled and rotated D; contain n pixel intensities
q1, 925 --., qn and py, po, ..., p,, respectively. From Eq.
(2), parameters s, and o; of w; are selected to minimize
the quantity:

T:jgl(s,qu—qj)? 3)

The minimum of T occurs when its partial derivatives
with respect to s; and o, are zero. Hence, we have

Si=(n(j§1p,q,)—(]§1p,)(j§1q,))
n n 2
/(n]gpf—(j;lpj))

n n

0:=(j§1 qj-si'jglpj)/n.

If nZ0_, p?—(Z.4p,)° =0 (that is, R; is a plain
block), then 5,=0 and 0,=(Z]_,g;)/n . Once we have
the collection of transformations w;, wy, ..., wy, the
encoding procedure finishes.

B. Decoding

The decoding procedure decompresses an image
from a set of local IFS codes. An arbitrary image is
initialized first in the decoding procedure. Its content
is unimportant; it can be data, a natural image, or
anything. This initial image is the same size as the
original image in encoding. In the first iteration of
decoding, the initial image is partitioned into non-
overlapping blocks which are the same size as the range
blocks in encoding, and which are also called range
blocks. For each range block, we read the correspond-
ing local IFS codes (that is, the affine transformation
parameters from the stored packed file), and locate the
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domain block that is the same size as the domain block
in encoding. Then, the domain block is subsampled
into the same size as the range block and its content
is mapped to the range block by the affine transfor-
mation. Once the content of each range block is re-
placed by the transformed content of its corresponding
domain block, the reconstructed image in the first
iteration is obtained. In the second iteration, the
reconstructed image obtained in the first iteration is
used as the initial image, and the same process carried
out in the first iteration is performed. The obtained
reconstructed image in this iteration is then used as the
initial image in the later iteration. The process is
repeated until the difference between the initial image
and the reconstructed image is indiscernible, and the
last reconstructed image is the decoded image. For
simplicity of programming, blocks are usually rectan-
gular or triangular in shape. Experimental results of
compressing 256x256 images are shown in Figs. 2-4.
In these examples, the blocks in the shape of triangles
are chosen. The sizes of triangular range blocks and
domain blocks are a quarter of 16x16 and 32x32, re-
spectively. The compression ratios in these examples
are about 16.2:1 when no data-packing method is used.
The compression ratio is determined by the ratio of the
memory required to store the IFS codes to the memory
required to store the original image. The peak signal-
to noise ratio (PSNR) of the decompression image is
about 26.19. In order to reach a high image compres-
sion ratio, IFS codes may be stored into a packed file

(c) (d)

Fig. 2. Anexample of fractal image compression: (a)original image;
(b) initial image; (c) image reconstructed after 1 iteration;
(d) image reconstructed after 20 iterations.

(c) (d)

Fig. 3. Anexample of fractal image compression: (a) original image;
(b) initial image; (c) image reconstructed after 1 iteration;
(d) image reconstructed after 10 iterations.

(d)

Fig. 4. Anexample of fractal image compression: (a)original image;
(b) initial image; (c) image reconstructed after 1 iteration;
(d) image reconstructed after 10 iterations.

by using, for example, Kraft’s coding theorem (Barnsley
and Hurd, 1993).

ll. Fractal-based Image Processing

After compressing an image using the fractal
scheme, we obtain a set of local IFS codes of this image.
In this section, we wish to study whether there exist
characteristics of these codes which are useful for
image processing.
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1. Speed Improvement by N-Step Matching
Method

In the encoding process, it is most computa-
tionally intensive to search the most similar domain
block for each range block. To speed up this work,
the N-step matching method (Koga et al., 1981; Lee
et al., 1994) is used. This method uses coarse-to-fine
searching to find the location of the best matching. In
the first step, an approximate location is detected from
several trial locations that are coarsely spaced. In the
second step, a more accurate location is detected from
fewer trial locations that are less coarsely spaced around
the approximate location. The third step is a repetition
of the second step, and the distance between trial points
becomes smaller than before. This process continues
until all N steps have been evaluated.

The N-step algorithm with N=3 is described briefly
through an example in Fig. 5. In the first step, let the
coordinates of the starting point be (i, j). Around the
point (i, j), (2x3+1)” trial points, which are three rela-
tively equally differing grids indicated by the circle
marks in Fig. 5 are tested. For each trial point (¢, g),
we use the value of 7' in Eq. (3) as a measure of
dissimilarity between the image blocks located in (,
J) and (p, q), respectively. After computing the value
of T for each trial point, we choose the point with the
minimum T to be the starting point of the next step.
In this example of Fig. 5, the point found is (¢+3, j+3).
In the second step, point (i+3, j+3) is the starting point;
(2x2+1)* trial points, which are indicated by the rect-

. o ]
j+91 1 i+3 i+6 1+9

6

j*3

j-9

3

Fig. 5. An example which illustrates the N-step algorithm with N=3.
The points found in the three steps are (i+3, j+3), (i+3, j+5)
and (i+2, j+6), respectively. Point (i+2, j+6) is the final
matching result.

angle marks in Fig. 5, are two equally differing grids
around the starting point. In this step, the point with
minimum 7 is (i+3, j+5). In the third step, the starting
point is (i+3, j+5), and (2x1+1)? trial points, which are
indicated by the cross marks in Fig. 5, are checked.
The coordinates of the point (i+2, j+6) have the mini-
mum 7 value, and so it is considered to be the location
of the best matching.

This method has been implemented on a DEC
3000 machine. Experimental results of taking N as 5,
10, 15, and 20 in the N-step algorithm for image
compression are shown in Fig. 6, where the images are
of size 256x256. The encoding time for each case is
also given in this figure. The smaller the N value was,
the less was the encoding time used, and the worse was
the reconstructed image. Note that if exhaustive search-
ing was used to find the most similar domain block of
each range block, then the encoding time was about
3 hours.

2. Noise Reduction

If an image is corrupted with noise, what will be
the result after reconstruction from the local IFS codes
of the noisy image? We find that the noise has been
blurred in the reconstructed image. If the noise in an
image is not extensive, then it won’t affect the search-
ing for the most similar domain block for each range
block. That is, the coefficients of the affine transfor-

(a) 1 mnute 32 seconds (b) 11 minutes 9 seconds

( ¢) 28 mmutes 6 seconds (d) 39 minutes

Fig. 6. Results of using the N-step matching algorithm to speed up
compression: (a) N=5, PSNR=21.82 dB; (b) N=10,
PSNR=23.70 dB; (c) N=15, PSNR=24 83 dB; (d) N=20,
PSNR=25.06 dB.
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mations found are almost the same as those found in
compressing the original noiseless image. Hence, the
reconstructed image will be almost no different from
the original noiseless image. This is the noise reduction
effect of the fractal image compression scheme, as
shown in Fig:7. If much noise appears in an image,
the reconstructed image is somewhat noisy, but the

noise has been blurred, as shown in the example in Fig.
8.

3. Edge Detection

If a given image is encoded to a set of local IFS
codes, a straightforward approach to extracting the
edges of the image might be to decode the image first
and then use an edge detector, such as the Sobel edge
detector, to extract its edges. That is, image decoding
and edge extraction are treated as two separate opera-
tions. This would result in an increase of the compu-
tational requirements.

In fact, edge detection tasks can be implemented
simultaneously with the decompression procedure
through the following steps. First, the IFS codes o of
all range blocks are set to an arbitrary small gray-level
value o, such as 0’=5. The selection of o’ does not
affect the result significantly, buto’ cannot be 0. Second,
we set the IFS codes s to 0.0 for certain range blocks
whose s values are far from 1, or not within a specific
interval, such as [0.90, 1.20]. This interval is specified
by the user; the wider the range is, the more edges are
detected edges. Third, we perform the decoding pro-
cedure with an arbitrary initial image, and then choose
as the edge points those pixels whose gray levels are

(b) (¢)

Fig. 7. Anexample of noise reduction: (a) original image; (b) image
with Gausian noise; (c) reconstructed image.

Fig. 8. An example of noise reduction: (a) original image; (b) image
with Gausian noise; (c) reconstructed image.

approximately the value o” multiplied by the number
of iterations, n, that have been performed in decoding.

Before decoding, if the s value of a range block
was about 1.0, we found from the experiments that this
range block included edge points in general. For those
range blocks whose s values were far from 1.0, their
s values were reset to O in the first step. Hence, after
one iteration of processing in decoding, their gray
levels were gss+0’=0’, where g is the gray-level value
of the initial image. Aftern iterations, their gray levels
were also approximately o’. Then, those pixels with
gray levels which were approximately o’en were the
edge points. Figure 9 illustrates the edge detection
results of several gray-scale images using the fractal
scheme.

4. Edge Magnification and Demagnification

If we select the sizes of the range and domain
blocks in decoding to be four times the sizes of the
range and domain blocks in encoding, respectively,
then the reconstructed image will be four times larger
than the original reconstructed image. On the other
hand, if the blocks in decoding are of smaller in size,
then the reconstructed image becomes smaller. So, if
we wish to magnify or demagnify the edges of an image,
we select the appropriate sizes of the range and domain
blocks, and use the procedure mentioned in the pre-
vious section to modify the local IFS codes in decoding.
An example is shown in Fig. 10. Obviously, magni-
fication or demagnification of edges in this way is a
feasible way to generate non-jagged edges.
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(m)

(m)

Fig. 9. Edge detection (Image size: 256 x256).

(b)

Fig. 10.

Edge magnification and demagnification: (a) edge mag-
nification; (b) edge demagnification.

5. Texture Segmentation

Another application of fractals is texture segmen-
tation. New features of fractals based on IFS codes
are proposed here. In the proposed approach, the IFS
codes s and o of each range block, obtained in the
encoding procedure, are directly used as features, and
the c-means algorithm (Devijver and Kittler, 1982), for
example, is used as the classification scheme to classify
the range blocks. Some examples of block segmen-
tation for textures are given in Fig. 11, where each
range block is triangular in shape. Shown in Fig.
11(a), (c), (e), (g), (1) and (j) are six original images.
Their corresponding segmentation results by using the
c-means algorithm with a given priori ¢ are shown in
Fig. 11(b), (d), (f), (h), (j) and (k) accordingly, where
blocks classified in the same cluster are denoted by the
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(2) (b) CR=93%.

) (d) CR=97%. "

(e) (f) C.R=98%.

(g) (h) CR=93%.

(i) (j) CR=94%.

(k) (1) CR=97%.

Fig.

11. Texture segmentation (C.R. denotes classification rate; the
image size of (a), (c), (e) and (g) is 128 X128 and that of
(i) and (k) is 256%256).

same gray level to illustrate the result of segmentation.
The average classification rate in this example is 95.33%,
which is the ratio of the number of blocks correctly
classified to the total number of blocks. The primitive
blocks for encoding/decoding or classification in the
example are triangles. Hence, the boundary between
different textures may have a triangle blocking effect.
The local IFS codes can be considered good features
for coarse texture segmentation. If improvements are
expected, we can use smaller primitive blocks in clas-
sification or use another texture feature for finer seg-
mentation.

IV. Conclusions

In image processing and recognition, the amount
of storage for an image is large, and so is the com-
putational cost. However, if an image is represented

by local IFS codes, the storage space is reduced; thus,
the amount of computation required for the image can
also be reduced. In this paper, we have studied the
feasibility of processing images on the basis of fractals
or local IFS codes. After compressing an image, some
image processing tasks can be implemented simulta-
neously with the decompression procedure. In other

“words, when the image is reconstructed, the image
processing tasks also are completed. These processing
tasks include noise reduction, edge detection, edge
magnification or demagnification. In addition, texture
classification can be achieved by means of the features
of local IFS codes. Some experimental results have
shown that the IFS codes are promising features for
texture segmentation.

Further researches may be directed to the follow-
ing topics. First, a parallel processing environment can
be designed to speed up the fractal image compression
scheme, especially block matching in encoding. Sec-
ond, more characteristics of local IFS codes may be
found, and thus, additional applications of fractals in
image processing can be studied.
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