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Abstract

Previous studies have shown that certain glycosphingolipids may function as
modulators of protein kinase C (PKC) activity. To study the structure-activity
relationship, we examined the effects of 17 gangliosides, 10 neutral glycolip-
ids, as well as sulfatide, psychosine and ceramide on PKC activity in PC12D
cells. Using an in vitro assay system, we found that all but one (GQ1b) ganglio-
side inhibited PKC activity at concentrations between 25 and 100 pM, and
the potency was proportional to the number of sialic acid residues. However,
at lower concentrations several gangliosides, including GM1 and LM1 be-
haved as mild activators of PKC activity. GQ1b had no effect within the range
0.1-10 pM, but acted as a mild activator of PKC activity at 25 pM. On the
other hand, fucosyl-GM1 and GM1 containing blood group B determinant,
which are abundant in PC12 cells, were potent inhibitors of PKC activity.
Among the neutral glycosphingolipids tested, LacCer, Gb3, GalGb3, and
GALl, all of which have a terminal galactose residue, were found to be ineffec-
tive or acted as mild activators of PKC activity. In contrast, GA2, Gb4 and
GbS5 which have a terminal N-acetylgalactosamine residue, were potent inhib-
itors of the PKC activity. Thus, the terminal sugar residue may play a pivotal
role in determining the effect of glycosphingolipids in modulating PKC activi-
ty. In addition, we also found that GalCer containing normal fatty acids acted
as potent activators of PKC activity. Ceramide and GlcCer appeared to be
ineffective in modulating PKC activity, whereas psychosine and sulfatides
appeared to be inhibitory. We conclude that the carbohydrate head groups and
the hydrophobic groups of gangliosides and neutral glycolipids may modulate
the PKC system in unique manners, which may in turn affect various biologi-
cal processes in the cell.

secscccccsnee sesccncee

The expression of glycosphingolipids (the nomencla- addition of exogenous glycosphingolipids to several cell
ture used throughout this paper for gangliosides and neu- lines grown in tissue culture causes growth inhibition by
tral glycosphingolipids is based on that recommended by  extending the length of the G, phase of the cell cycle, and
IUPAC-IUB [26]) is regulated during the cell cycle and  blocks cellular proliferation in the presence of growth fac-
oncogenic transformation [16, 50]. It is well known that tors [7]. Thus, glycosphingolipids have been implicated in
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diverse cellular functions including modulation of trans-
membrane signal transduction, resulting in regulation of
cell proliferation and cell-cell or cell-substratum recogni-
tion [17]. Despite many reports documenting the neuri-
togenic and neurotrophic effects of glycosphingolipids [8,
31, 38, 39, 48], the mechanism of action and signal trans-
duction pathways modulated by these complex lipids has
largely remained obscure. Gangliosides may mediate
these cellular processes by modulating protein kinase
activities [10, 14, 20, 30, 35, 47].

PC12 pheochromocytoma cells are derived from a
clonal cell line from rat adrenal medullary pheochromo-
cytomas [15]. They share with normal adrenal chromaffin
cells originating from sympathetic nerve ganglia such
characteristics as neurite outgrowth, increased cellular
adhesion and increased levels of choline acetyltransfer-
ase, acetylcholine esterases, and norepinephrine uptake
sites in response to nerve growth factor (NGF) [15].
Therefore, PC12 cells have been used as a model to study
neuronal function and differentiation. Several recent
studies have indicated that protein kinase C (PKC) is an
important component of the NGF-sensitive phosphoryla-
tion system in PC12 cells [13, 19]. Hilbush and Levine
[24] reported that GM1 ganglioside modulated NGF sig-
nal transduction in PC12 cells. Hall et al. [18] reported
that PKC plays a role in mediating the neuritogenic
effects of NGF by virtue of a sphingosine-sensitive path-
way. There have been several reports indicating that
sphingosine acts as an inhibitor of a variety of PKC-
dependent processes [21, 22, 34, 52]. In the present study,
we describe the effects of exogenous gangliosides and
neutral glycosphingolipids on PKC activity in PC12D
cells, a subclone of PC12 cells [28]. PC12D cells were
chosen because they are morphologically more homoge-
neous than the parent PC12 cells which are quite hetero-
geneous |5, 28). Our results demonstrate that certain gan-
gliosides and neutral glycosphingolipids can modulate
PKC-dependent phosphorylation.

Materials and Methods

The glycosphingolipids used were prepared in our laboratory
using established methods[1, 2, 3,27, 37] from the following sources:
gangliosides (GM2, GM1, GD1a, GD1b, GD2, GTla, GT1b, and
GQ1b) and asialo glangliosides (GA1 and GA2) from human brain;
neutral glycosphingolipids (LacCer, Gb3, Gb4, and Gb5) from bo-
vine or sheep erythrocyte membranes; GD3 and GT3 from bovine
buttermilk, GM3(A) and GM3(G) from bovine adrenal medulla;
LM1 and paragloboside (nLc4) from human erythrocyte membrane;
GQIlc from cod fish brain; fucosyl-GM1 (FGM1), GM1 with blood
group B determinant (BGM1), and Gb3 with al-3 galactosyl residue

(GalGb3) from PC12h cells [39, 40]; GlcCer from the spleen of a
patient with Gaucher’s disease (kindly provided by Dr. Oshima of
The Clinical Research Institute, National Medical Center, Tokyo,
Japan). The isolation of GalCer and sulfatides with a-hydroxy and
normal fatty acids from human brain was achieved by preparative
HPTLC on silica gel (Merck, Darmstadt, Germany) and Jatrobeads
column chromatography, as described previously [2]. Galactosyl psy-
chosine (Psy) was prepared from GalCer by the procedure of Take-
tomi and Yamakawa [44]. Ceramide was prepared from GalCer by
the method of Carter et al. [9]. The individual glycosphingolipids
were found to be chromatographically pure on HPTLC plates in sev-
eral solvent systems. The structures of glycosphingolipids used in this
study are shown in table 1.

Gangliosides were quantitated by measuring the lipid-bound
sialic acid using the resorcinol-hydrochloric acid method [43]. Other
glycosphingolipids were estimated by measuring their sugar content
using gas-liquid chromatography (46]. Ceramide was estimated by
measuring the sphingosine bases [23]. [y->2P]ATP was purchased
from DuPont-New England Nuclear (Boston, Mass., USA). All other
reagents were of the highest grade available and were obtained from
Sigma (St. Louis, Mo., USA). PC12D pheochromocytoma cells were
grown in Dulbecco’s modified Eagle’s medium supplemented with
10% heat-inactivated horse serum (Bioproducts Md., USA) and 5%
fetal bovine serum (Bioproducts) in the presence of insulin (5 mg/l;
Gibco N.Y ., USA) as described previously [28].

PKC was partially purified from PCI12D cells as described by
Kreutter et al. [30] and Xia et al. [47)]. The cells were washed twice
with phosphate-buffered saline (PBS, pH 7.4) and resuspended in a
lysis buffer (2 mM Tris-HCI, 0.1 mM EGTA, 10% sucrose, 50 mM
2-mercaptoethanol, pH 7.5) and disrupted by sonication for 3 s. Tri-
ton X-100 was added to a final concentration of 0.3%. The mixture
was incubated on ice for 15 min to solubilize membrane-bound PKC,
and then 2 ml of DEAE-cellulose equilibrated in lysis buffer were
added. After incubation for 15 min, the mixture was centrifuged for
5 min at 1,000 rpm and washed twice with the lysis buffer and the
enzyme was eluted with 0.2 M NaCl in lysis buffer. The activity of
PKC was measured by the incorporation of [32P] from [y-32P]ATP
into histone III-S. The reaction mixture for assaying PKC activity
contained 10 M Mg acetate, | mM EGTA, 1.1 uM CaCl,, 0.01 mM
ATP (0.1 uCi of [y-32P]JATP), 20 pg/ml of phosphatidyl serine, 2 pg/
ml of 1,2-diolein, 200 pg/ml of histonc III-S, 0-100 pAs of glyco-
sphingolipids, and 15-~40 pg/tube of PKC, in a final volume of
250 pl. Reactions were carried out at 37°C for 10 min, and termi-
nated by addition of 1.0 ml of 25% ice-cold trichloroacetic acid
(TCA). After 5 min, the reaction mixture was filtered (Millipore HA,
0.45 um), the filters were washed three times with 4 ml 5% ice-cold
TCA, placed in scintillation vials with 10 ml scintillation fluid and
the [32P] incorporation into histone III-S was determined using a
scintillation counter.

Protein concentration was determined by the method of Bradford
[6]. The data are expressed as values = SD. (%) relative to the value
of control conditions (100.0%) including 20 pg/ml of phosphatidyl
serine and 2 pg/ml of 1 2-diolein, but without glycosphingolipids.
Statistical analyses were performed using Student’s t test (signifi-
cance at p < 0.05).
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Table 1. Structures of neutral

glycosphingolipids and gangliosides Ceramide

Psychosine (Psy)
Glucosyl ceramide

Cer
Galp1-1"sphingosine
Glcpl-1"Cer

Gala series
Galactosyl ceramide
Sulfatide

Galfp1-1’Cer
Gal(SO3)p1-1Cer

Lacto series
LacCer
GM3(A)
GM3(G)
GD3

GT3

Galp1-4Glcp1-1"Cer
Gal(NeuAc)B1-4Glcp1-1Cer
Gal(NeuGc)p1-4Glcp1-1'Cer

Gal(NeuAc,)B1-4Glcp1-1'Cer
Gal(NeuAc3)p1-4GLcf1-1'Cer

Globo series
Gb3

Gb4
GalGb3
Gb5

Gala1-4Galp1-4Glcp1-1'Cer
GalNAcp1-3Galal-4GalB1-4GLcB1-1"Cer
Galal-3Galal-4Galp1-4Glcpl-1"Cer
GalNAca1-3GalNAcB1-3Galal-4Galp1-4Glep1-1'Cer

Gangliotriaosyl series
GA2

GM2(A)

GM2(G)

GD2

GalNAcf1-4Galp1-4Glcp1-1'Cer
GalNAcB1-4Gal(NeuAc)p1-4GlcP1-1'Cer
GalNAcp1-4Gal(NeuGce)B1-4Glcp1-1'Cer
GalNAcB1-4Gal(NeuAc,y)f1-4Glcf1-1'Cer

Gangliotetraosyl series
GAl

GM1

GDla

GD1b

GTla

GTl1b

GQlb

GQlc

Galf1-3GalNAcB1-4Galp1-4Glcp1-1'Cer
GalB1-3GalNAcf1-4Gal(NeuAc)p1-4Glep1-1'Cer
Gal(NeuAc)p1-3GalNAcp1-4Gal(NeuAc)B1-4Glcf1-1'Cer
Galf1-3GalNAcB1-4Gal(NeuAcy)B1-4Glcf1-1'Cer
Gal(NeuAc;)B1-3GalNAcB1-4Gal(NeuAc)p1-4Glep1-1'Cer
Gal(NeuAc)p1-3GalNAcB1-4Gal(NeuAc;)B1-4GlcB 1-1°Cer
Gal(NeuAc,)B1-3GalNAcp1-4Gal(NeuAc,)p1-4Glcp1-1'Cer
Gal(NeuAc)B1-3GalNAcP 1-4Gal(NeuAc,)p1-4GlcB1-1'Cer

Neolacto series
nlcd
LMI1

Galp1-4GlcNAcB1-3Galp1-4GlcB1-1'Cer
Gal(NeuAc)B1-4GIcNAcf1-3Galf1-4Glcp1-1Cer

Other gangliosides
FGM1
BGM1

Gal(Fuc)pB1-3GalNAcB1-4Gal(NeuAc)B1-4Glepl-1'Cer

Galo1-3Gal(Fuc)p1-3GalNAcB1-4Gal(NeuAc)B1-4Glep1-1'Cer

Cer = Ceramide; Glc = glucose; Gal = galactose; GalNAc = N-acetylgalactosamine;
GlcNAc = N-acetylglucosamine; NeuAc = N-acetylneuraminic acid; NeuGce = N-glycolylneu-
raminic acid; Fuc = fucose.

Results

To study the structure-activity relationship between
various glycosphingolipids and PKC activity in PC12D
cells, we examined the effects of 17 gangliosides and 10
neutral glycosphingolipids as well as ceramide, psycho-
sine, sulfatides, and N-acetylneuraminic acid between the
concentrations of 2.5 and 100 M in an in vitro assay sys-
tem (tables 2, 3). Among gangliosides with a gangliote-

traose core structure, GM1 ganglioside acted as a mild
activator of PKC activity within the range 2.5-10 p/. At
10 pM, GD1b also appeared to be a mild activator of
PKC activity. All but one gangliotetraosyl series ganglio-
side inhibited PKC activity at concentrations between 25
and 100 pM. GQ1b had no effect within the range 0.1-
10 uM; however, at 25 pM this glanglioside appeared to
be a mild activator of PKC activity. GQ1lc was only mild-
ly inhibitory of PKC activity. At 50 uM, both GQ1b and
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Table 2. The effects on gangliosides, sulfatides and sialic acid on PKC activity

51.4£3.0 (9)y**

GM1 104.8%£5.6(3) 100.1+3.6(3) 107.1£2.4 (3)* 117.7£5.0(3)* 116.8£5.5(9* 74.8+7.1 (9)** 22.7+0.2 3y
GDla 95.6+6.4(3) 1009+£2.0(3) nd. n.d. 106.6x4.8 (9) 61.9%7.6 (6)*** 31.4+7.3(6)*** n.d.
GDI1b 96.7+£2.9 (6) 98.3+2.0(3) nd n.d. 1124£50(6)* 47.3+49(3)** 27.5%£2.6 (3y** nd
GTla 114.9+8.4(3) 90.8+6.3(3) nd. n.d. 93.2+6.1(3) 62.2+53(3)y* 2305803 nd
GTI1b 92.3£5.2(6) 106.8+6.1(6) n.d. n.d. 97.9+8.7(6) 51.7+8.8 (6y** 4.5+3.9(3)*** nd.
GQIlb 103.3+2.7(9) 98.4+72(9) nd n.d. 110.3£7.3(9)  113.1£5.1(6)* 77.8+£3.5(3* nd.
GQlc 92.5+5.3(3) 91.4+3.1(6) 101.3£6.3(3) 102.2+1.8(3) 92.6+5.5(9)* 80.9%+53(9)** 763x55(3)* nd.
M1 103.9£5.0(3) 1149+6.8(3)* n.d. n.d. 109.8+4.5(3)* 40.7£1.7(3y*** 17.5+52(3* n.d.
FGM1 76.9+3.5(3y* 78.7+£4.3(6)* 85.0£5.0(3)* 85.6+0.8 (3 T4.5+£2.0(6)** 60417 (6y** 39.1£56(3)** nd.
BGM1 89.1£5.0(3) 852 1.8 (6)*** 85.6+7.4(3) 75.4+4.5 (3)* 69.3+1.3 (6)*** 56.9£4.9 (6)*** 30.0+8.1(3)* n.d.
GM3(A) 111.3£12.9(3) 108.0+5.4(3) n.d. n.d. 80.0+6.6 (9)** S57.4+£7.0(9y** 35.6+2.1(Oy** 11.8+4.5(6)**
GM3(G) 113.7£11.5(3) 83.9+11.4(3) nd. n.d. 68.8+8.7(6)*  38.0£2.3(3y*** 18.5+2.9(3)*** 10.4+5.0(3)**
GM2(A) 88.7%12.3(3) 84.1+5.8(3) n.d. n.d. 72.4+7.0(9)** 57.2+6.8(6)*** 36.3+4.3(6)*** n.d.
GM2(G) 96.1:4.0(3) 87.6+£8.6 (3) n.d. n.d. 70.7£3.6 (6)*** 40.2+3.0(3)** 20.0+0.6 3y** n.d.
GD3 94.1+1.1 (3 86.4x59(3) n.d. 72.5+4.9 (3)* 771+£11.9(6)* 39.7£5.1(6)*** 12.5+5.6 (6)*** n.d.
GD2 100.5+3.3(3) 88.5+£10.9(6) 86.0%6.9(3) 86.5+10.8(3) 90.8x11.9(9) 6L.1x7.8(6)*** 26.0+x1.7(3)** nd.
GT3 76.0£0.8 (3y*+* 75.5+7.1 (3)* n.d. n.d. 59.1+£2.6 3)y** 19.3£6.2(3)** n.d. n.d.
Sulf(N) n.d. n.d. 60.0£1.4 (3y** 67.4%£54(3)* 72.3+£3.4 (3 60402 (3)*** n.d. n.d.
Sulf(H) n.d. n.d. 55.8£6.9(3)** 44.6+2.0(3) 65.5+1.9(3y* 5474703 nd. n.d.
NeuAC 107.2£57(3) 109.4%5.1(3) n.d. n.d. 108.7+£6.7(3) 105.5£7.0(3) 106.8+2.0(3) n.d.

The values are expressed as the percentages of normal control + SD. The number in parentheses indicates the number of determinations.

n.d. = Not determined; Sulf = sulfatide; NeuAc = N-acetylneuraminic acid.
*p<0.05; ** p<0.01; *** p<0.001.

Table 3. The effects of neutral glycolipids, ceramide and psychosine on PKC activity

L 100 pM

Psy n.d. n.d. 90.4+1.8(3* nd. 98.8+3.0(3) 84.9+28(3)** 84.6+3.5(3  T72.0£38(3*
Cer n.d. n.d. 89.0+6.3(3) 80.2+51(3)*  83.0x6.6(3)* 95.6£1.9(3)* 95.6+2.5(3) 96.4+1.3(3)
GlcCer n.d. n.d. 96.3+3.0(3) 106.7+3.0(3) 102.8+4.0(3) 87.8+5.0(3)* n.d. n.d.
GalCer(N) n.d. n.d. 98.9£2.3(9) 100.9%£3.4(9)  110.9£5.0(9)* 1551243 (9p** 132.613.1 (6)*** 121.5+3.0(3p*
GalCer(H) n.d. n.d. 91.6%6.7 (9) 87.2+4.1(6)*  93.0%6.9(6) 94.3£5.1(9) 81.5£3.7(6)*** 66.5t6.4(3)*
LacCer 99.3+3.0(3) 104.6+2.7(3) nd. n.d. 1117506 109.2£7.7(6)  113.9+£4.3(6)* n.d.

Gb3 n.d. n.d. 102.8+2.1(6) 95.7£3.6 (6)* 100.3+5.1(6) 90.9+52(3)** n.d. n.d.

Gb4 n.d. n.d. 88.1x2.4(6)** 88.6+3.3(6)*  55.7+4.5(6y** 26.7+2.2(6)*** n.d. n.d.

Gbs n.d. n.d. 86.6+3.7 (6)** T1.3£5.1(6)*** 51.2x0.5(6y** 19.7+0.5(6)*** n.d. n.d.

GA2 79.3£4.3(3)* 74.0%8.6(6)** 72.6x£2.0(3)** T03x35G)** 60.2x9.1(9)*** 51.4+4.5(7y** 36.0£49(3)* nd

GAl 106.0+£7.3(3) 115.9x8.5(6) 1102+£10.2(3) nd. 101.0x7.4(6) 99.4+10.7(3) 114.0+8.0(3) 93.7£5.5(3)
nLc4 n.d. n.d. 106.7+7.6(3) 101.2+2.8(3) 95.7+£3.6(3* nd. n.d. n.d.

GalGb3 n.d. n.d. 107.8+0.6 (6)** 98.7£2.8(6) 103.6£0.8(6)* 91.3+£79(6)* nd. n.d.

The values are expressed as the percentages of normal control = SD. The number in parentheses indicates the number of determinations.

n.d. = Not determined.
*p <0.05; * p<0.01; **p<0.001.

GQIlc appeared to possess inhibitory potency, with the
PKC activity remaining at approximately 80% of the con-
trol. However, GA1 was found to have no effect on PKC
activity (table 3). N-Acetylneuraminic acid itself had no
effect within the range of 0.1-100 pM (table 2). Lacto and
gangliotriaosyl series gangliosides were also found to be
potent inhibitors of PKC activity at concentrations be-

tween 25 and 100 pM (table 2). The corresponding asialo
compounds of the two series of gangliosides had different
effects on PKC: LacCer appeared to be ineffective at con-
centrations less than 1.0 pM or was a mild activator
between 10 and 50 pM, while GA2 strongly inhibited
PKC activity.
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Fig. 1. Effects of the number of sialic acid residues on PKC activi-
ty at the ganglioside concentration of 10 pM. * p < 0.05; ** p < 0.01;
**% < 0.001 (for asialo-gangliosides).

Figures 1 and 2 show the effect of the number of sialic
acid residues on PKC activities at the concentrations of
10 and 25 pM, respectively. There appears to be a direct
correlation between the number of sialic acid residues and
inhibitory potency. This correlation is particularly appar-
ent at the concentration of 25 uM and the rank order for
inhibitory potency was trisialogangliosides > disialogan-
gliosides > monosialogangliosides for both the gangliote-
traosyl- and lacto-series gangliosides. In the case of gan-
gliotriaose-series gangliosides, however, the number of
sialic acid residue(s) appeared to render the ganglioside
stimulatory at the concentration of 10 p/.

FGM1 and GM1 containing blood group B determi-
nant (BGM 1), which are major gangliosides in PC12 cells
[3], acted as potent inhibitors of PKC activity (table 2).
LM1 seemed to be a mild activator of PKC activity within
the range of 1-10 pM, but suppressed PKC activity above
25 pM (table 2).

Table 3 shows the effects of fatty acids in cerebrosides
on PKC activity. GalCer containing normal fatty acids
[GalCer (N)] was a potent activator of PKC. At the con-
centration of 25 pM, the activity increased to approxi-
mately 155% of the control value. However, GalCer con-
taining a-hydroxy fatty acids [GalCer (H)] and psychosine
appeared to be mildly inhibitory. Sulfatides behaved as
potent inhibitors of kinase and differences in fatty acid

Fig. 2. Effects of the number of sialic acid residues on PKC activi-
ty at the ganglioside concentration of 25 pM. * p < 0.05; ** p < 0.01;
**k 3 < (0.001 (for asialo-gangliosides).

residues in sulfatides apparently had no effect on PKC
activity (table 2). Ceramide and GlcCer were ineffective
in modulating PKC activity (table 3).

Among the other neutral glycosphingolipids tested,
LacCer, Gb3, GalGb3, and GA1, which have a terminal
galactose residue, were ineffective as PKC inhibitors or
activators. On the other hand, GA2, Gb4, and GbS5, which
have a terminal N-acetylgalactosamine residue, were po-
tent inhibitors of PKC activity (table 3). Gb5 appeared to
be more inhibitory than Gb4, suggesting a direct correla-
tion between the number of N-acetylgalactosamine resi-
dues and inhibitory potency.

Discussion

Gangliosides are known to play a crucial role in many
cellular processes perhaps by serving as membrane trans-
ducers of both positive and negative signals that regulate
cell growth and differentiation. Recently several lines of
evidence have emerged suggesting that gangliosides may
mediate many dynamic cellular processes by modulating
protein kinase systems [for review see ref. 49]. Yu et al.
[51] first demonstrated that gangliosides added to a rat
brain membrane preparation had profound effects, both
stimulatory and inhibitory, in modulating several protein
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kinase systems. Thus, Ca2*-gangliosides may stimulate the
calmodulin-dependent kinase I system, while inhibiting
the calcium-phospholipid-dependent kinase (PKC) [49].
Such a modulatory role for gangliosides has been shown to
operate m a number of systems involving growth factor
receptors [17]. Little 1s known, however, about the mecha-
nism(s) by which the ganglioside-mediated protein phos-
phorylation exerts its biological and physiological effects.
We recently reported that several ganglio-series ganglio-
sides are potent inhibitors of rat brain PKC activity in vitro
in the range of 10-200 puA and that the rank order for the
inhibitory potency is GT1b > GD1b = GDla > GM1 =
GM3[30]. In the present study, we have extended our pre-
vious work to include lacto-series gangliosides and con-
firmed our previous finding that most gangliosides sup-
pressed the activity of PKC at high concentrations and that
the rank order for inhibitory potency was trisialoganglio-
sides > disialogangliosides > monosialogangliosides (fig. 1,
2). Interestingly, fucosylated gangliosides, FGM1 and
BGM1, were found to be potent inhibitors of PKC activity
within the range 0.1-50 pM (table 2). We have reported
that fucosylated gangliosides, such as FGM1, BGMI,
FGD1b, and BGD1b, are major components in the acidic
lipid fractions of PC12 cells, but other gangliotetraose-
series gangliosides are minor components [3, 4]. It is appar-
ent that glycosphingolipids, even in minute amounts, may
have profound effects on protein kinase systems. Thus, de-
N-acetyl GM3, GQ1b, and polysialogangliosides, which
are present at negligible or undetectable levels in human
carcinoma A431 cells [20], human neuroblastoma cells
[45], and rat brain [10, 11], have been reported as stimula-
tors of certain kinase systems. In the present context, the
endogenous concentrations of glycosphingolipids in PC12
cells are low compared with the exogenously added glyco-
sphingolipids. However, it is not certain how much of the
added. glycosphingolipids was actually incorporated into
the plasma membranes of living cells. .

GMI1 and LM1 gangliosides seemed to be mild activa-
tors of PKC activity within the range of 2.5-10 p,; at
higher concentrations, they acted as inhibitors (table 2).
Such a concentration dependency may reflect the physical
state of gangliosides in solution as demonstrated by Mag-
gio et al. [32]. GM1 has been shown to be a stimulator for
a Ca?*-dependent protein kinase associated with rat brain
membranes [10, 12]. Recently, Hilbush and Levine [24]
reported that micromolar concentrations of exogenous
GM1, together with NGF, stimulated a Ca2*-dependent
protein kinase activity in PC12 cells. Additionally, endog-
enous GM1 ganglioside can mediate proliferation of lym-
phocytes [41].

Tsuji et al. [45] reported that GQ1b at nanomolar con-
centrations stimulated cellular proliferation and neurite
outgrowth, perhaps by stimulating a novel ecto-protein
kinase system in certain neuroblastoma cell lines. Chan
[11] reported that polysialogangliosides appeared to be
mild stimulators for certain kinases. In the present study,
we demonstrated that GQ1b at concentrations of 0.1-
10 uM was ineffective in modulating PKC activity, but
this ganglioside was a mild activator at concentrations of
25 uM (table 2). On the other hand, GQlc, which is an
isomer of GQ1b, was found to be a mild inhibitor of PKC
activity. PKC activity remained at approximately 80% of
the control level even at a concentration as high as 50 pM
for these two highly sialylated gangliosides. Since sialic
acid itself is ineffective in modulating PKC activity, these
polysialogangliosides may play an important modulatory
role in PKC activity. It is therefore possible that GM 1 and
GQ1b, which are only minor gangliosides in PC12 cells
[4], act as stimulators for PKC activity within a limited
range of concentrations. -

There are numerous instances demonstrating that
sphingosine plays a crucial role in signal transduction and
cellular proliferation in vitro and in vivo [21, 22, 25, 34,
52]. Merrill et al. [33] reported the effects of sphingosine
with different stereospecific structures and fatty acids on
PKC activity and found that most sphingosines were
Inhibitors. Variable effects of synthetic sphingosines with
different stereospecific structures on PKC activity have
also been reported [25]. Okazaki et al. [36] reported that
ceramide itself may serve as a lipid mediator of second-
messenger transduction for HL-60 cell differentiation.

Concerning the effect of neutral glycosphingolipids on
PKC activity, studies from various laboratories are incon-
clusive; this may reflect differences in the glycosphingo-
lipids used, variations in lipid concentrations, and the
kinase systems studied. Several neutral glycosphingo-
lipids, such as paragloboside, and asialo-gangliosides were
found to be ineffective on certain protein kinase systems
[29, 35]). Recently, Shayman et al. [40} reported that
endogenous GlcCer enhanced hormone-stimulated inosi-
tol triphosphate formation in MDCK cells, perhaps by
modulating the phospholipase C activity. In the present
investigation, GalCer having normal fatty acids was found
to be a stimulator of PKC activity, but GalCer with
hydroxy fatty acid was not. GalCer with normal fatty acids
contained large proportions of fatty acids C24:1 and C24:0
[2]. Furthermore, we found that addition to the culture
medium of exogenous GalCer having normal fatty acids
enhanced neurite outgrowth and exhibited an activatory
effect on PKC phosphorylation [5]. This may influence
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the receptor activity of the carbohydrate head groups of
glycosphingolipids, as exposure of the carbohydrate head
group of GalCer has been shown to increase with increas-
ing fatty acid chain length and decrease by hydroxylation
of the fatty acid chain [42]. GlcCer and ceramide were
ineffective, but psychosine is found to be a mild inhibitor
of PKC activity. LacCer, Gb3, GAl, and GalGb3, which
have a terminal galactose residue, were completely inef-
fective as PKC inhibitors, but GA2, Gb4, and Gb35, which
have terminal N-acetylgalactosamine residue(s), exhib-
ited an inhibitory effect on kinase-catalyzed phosphoryla-
tion. It is remarkable that the terminal sugar residue can
have such a profound effect on PKC activity. On the other
hand, sulfatides behaved as suppressors of the PKC activ-
ity and there were no significant differences with respect
to the N-acyl moieties, suggesting that the sulfate residue
may be responsible for suppressing the PKC activity. The
overall data indicate that the terminal N-acetylgalac-
tosamine residue as well as negatively charged functional
groups, such as the sialic acid or sulfate residue, may be
structurally important for suppressing PKC activity. Ad-
ditionally, the terminal N-acetylgalactosamine and sialic
acid residues may act as inhibitory structural elements.
There have been several reports indicating that modifica-
tion or substitution of the functional groups of glycosphin-
golipids as well as their fatty acid chains may modify their
effects on protein kinase systems. For example, de-N-ace-
tyl GM3, which 1s a minor ganglioside in human epider-
moid carcinoma A431 cells and mouse B16 melanoma
cells, stimulated tyrosine phosphokinase activity associat-
ed with the epidermal growth factor or insulin receptor
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