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ABSTRACT

In this paper we investigate the excitation of gravity wave modes in a radially stratified non-
isothermal spherical atmosphere. The exciting source can be time-space heating, mass injection or an
external force. The problem is formulated in terms of a Green’s function using eigen function expansion
as done previously by Weston (1961). For a localized source, we find it convenient to express the solution
as a sum of various spatial moments which are, in ascending order, total strength, bipolar moment,
quadrupolar moment, etc. Making use of the addition theorem for noninteger degree Legendre functions,
the solutions corresponding to the moments up to the fourth order have been obtained. It is found that
the higher order moments of the source generally influence not only the wave amplitude but also 1ts phase.
This implies that, in general, the horizontal phase front is not necessarily orthogonal to the great circle
linking the ground projections of the source and tlfe‘observer. This certainly complicates the interpretation
of the experimental data. By using a superposition integral, the monochromatic solution is further extended
to the polychromatic case. It is found that a time dependent source can excite waves that are the sum
of a forced oscillation and a free oscillation. If the source is localized, the forced oscillation will exist
appreciably only near the source region. On the other hand, the free oscillations given by a discrete spectrum
that satisfies a source-free dispersion relation can propagate a long distance away in response to the source.
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l. Introduction

The propagation of atmospheric waves around a
spherical earth has been investigated since the early
1960s (Weston, 1961; Dikii, 1965; van Hulsteyn, 1965;
Wait, 1969). In recent years the observational data of
atmospheric waves in the aftermath of several severe
geophysical events have been widely collected on a
global scale and thoroughly analyzed (e.g., Liuer al.,
1982; Roberts et al., 1982; Walker et al., 1988; Wil-
liams et al., 1988). Many of these observations have
shown anisotropic excitation on a worldwide scale. For
example, the gravity waves reported by.Walker et al.
(1988) for the Asia Pacific sector do not show equal
strength for the American sector. In atheoretical study,
Weston, among other aughors, took into account both
the sphericity of the earth and the atmospheric tem-
perature profile. He employed an eigen function
expansion approach to calculate the Green’s function
in aradially stratified atmosphere. The eigen functions

are the solutions of the governing equation satisfying
the boundary conditions at the earth surface (where the
radial velocity of the air parcel must vanish) and in-
finity (toward which the wave amplitude must decrease
exponentially). Each eigen function corresponds to a
fully ducted propagating mode. The Green’s function,
expressed as a series of such eigen modes, satisfies the
boundary conditions automatically. In the meantime,
the ducted modes in a flat earth geometry have also
been studied in great detail by many authors (e.g.,
Press and Harkrider, 1962; Harkrider, 1964; Fried-
man, 1966; Donn and Shaw, 1967; Francis, 1973). In
this work we will use Weston’s approach in our
calculations and extend his results to excitation by
anisotropic sources.

In most of the previous investigations of acoustic-
gravity wave excitation problems using a flat earth
geometry (Row, 1967; Liu and Yeh, 1971; Yeh and Liu,
1974) or a spherical earth geometry (Weston, 1961;
Dikii, 1965; van Hulsteyn, 1965; Wait, 1969), the
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configuration of the source was assumed to be an iso-
tropic singular point. This can be viewed as the first
step toward investigating excitations by using a more
general and more realistic case since an arbitrary source
can be decomposed into an integral of point sources.
If the source Gccupies a volume that is small in com-
parison with the region in which the excited wave
propagates, a Taylor expansion of Green’s function
with respect to the source point can be used as is done
for multipolar radiation of a charged body in electro-
dynamics. The moments of the source are found to
carry important information about the strength, orien-
tation and configuration of the source. Green’s func-
tion itself can be viewed as the response to a zero order
moment of the source. The higher order moments of
the source give rise to a response with latitudinal and
longitudinal dependences. The coexistence of higher
moments in addition to the zero order moment would
imply that the normal direction of the wave front is
no longer aligned with the great circle path linking the
observation point to the source point. This nonalign-
ment greatly complicates the experimental data inter-
pretation.

In handling the transient process of an excitation
problem, Weston uses a time delay theorem in Fourier
transform theory. This recipe, however, can only be
effective in the non-dispersive case (Lamb wave mode).
We address this problem with the insight of a linear
system theory. In fact, as in the linear system theory,
there are two kinds of singularities on the complex -
plane: one originates from the frequency spectrum of
the source, and the other originates from the “system,”
i.e., the atmosphere confined by the gravity force in
a spherical globe. The former can be viewed as the
forced oscillation directly driven by the source while
the latter can be viewed as the free (source-less) os-
cillation. The forced oscillation can only last as long
as the source is active. It exists only in an area that
a sound wave starting from the source can cover during
the source action, which usually takes a short period
of time. The free oscillations, however, can last a much
longer time and spread over a much wider area than
can the forced oscillation. Since the atmosphere is
assumed to be lossless, the singularities contributed by
the “system” lie on the real w-axis as discrete
singularities. Thus, the free oscillation consists of a
series of wave packets of various gravity modes with
discrete horizontal-wavenumber-frequency spectra
which correspond to a variety of Legendre functions
of integral degrees. The discreteness of the horizontal-
wavenumber-frequency spectra for free oscillations is
intrinsically connected to the phenomenon that,after
excitation, the wave energy propagates between the
source region and its antipode.

Il. Green’s Function of a Spherical
and Radially Stratified Atmo-
sphere

We start with a set of basic linearized dynamic
~and thermodynamic equations for a radially stratified
non-isothermal atmosphere with source terms included.
Following the procedure of eigen function expansion
employed by Weston (1961), we can write the Green’s
function for such a circumstance.

1. Basic Equations

The basic equations for linear perturbations in the
atmosphere are as follows:

%+v-Vs0=%, 1)

L4ve(pw)=M, 2)
av .

Pog+Vp+gpi=F . 3)

As is clear in Eq. (2), the background atmosphere is
assumed to be stationary. The effect of winds is known
to give rise to the critical layer phenomenon (Booker
and Bretherton, 1967; Brown and Stewartson, 1980).
Therefore, the physics of the problem is already known
even though the analysis has not been extended from
Cartesian coordinates to spherical coordinates. In this
paper, for simplicity, we choose to ignore the back-
ground wind effect, leaving it to later investigation.
The variables in Eq. (1) through (3) are connected by
two more equations: one comes from thermodynamic
considerations, and the other expresses a hydrostatic
equilibrium. They are

S, o
=R P e P “@
and
%
W == ng » (5)
where
s, p, p  are perturbations of entropy per unit mass,

density and pressure, respectively;

59, Pos Po are the corresponding quantities for the back-
ground atmosphere;

¢, and c, are the specific heat at constant pressure and
volume, respectively;
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is the heat input per unit mass per unit time;

is the mass injection rate;

is the external force density;

is a unit radial vector against which a con-

stant gravity g is applied.

The source terms can include various physical
phenomena that may excite atmospheric acoustic-grav-
ity waves such as Jole heating, nuclear explosion and
the Lorentz force, etc.

Consider a temporal harmonic case in which the
operator d/dt becomes a scalar jo. After tedious cal-
culation using Eq. (1) through (5), a scalar equation
can be obtained:

R

Ly=¢. 6)

In Equation (6), the wave function is l//:p/\/g . The
acoustic-gravity wave operator in a spherical coordi-
nate system has been previously obtained by Weston
(1961) and is given by

L=vt-2

L+ L (i D)eq(r ), ™

where the several symbols are defined by

A @
g(r, =20 &g,
_g 1 aPo
A=2*20, or ;
__ @
C—wz_wb,

wf =(glc,)ds¢/dr, square of local Brunt-Viisild
frequency.

The source term £ on the right hand side of Eq. (6)°

is

B 1 @ (g-1)
S= Ve F+Fa[(§ Db+ — e B
oM _jelypQ g D0y g

P ok vmeg o g

This source term was not given bu Weston. Once the
wave function yis found, the veloc1ty v of the air parcel
can be expressed by

__J _1y9¥ =
V= Vy+ (¢ l)arr+A{fl//i‘J

8%0
Powc, Ty

where F,=Fef. In particular, the radial velocity can
be obtained by doting Eq. (9) by F to yield

i (¥

e (v ay)- g0 _ j¢

V,=vef=
g W T, @

(10)

To solve the excitation problem of Eq. (6), we take
the Green’s function approach. Using this approach,
the solution to Eq. (6) is expressed as

l//(r):jé(rs)G(r,rs)dSrs. (1
7]

Here, the Green’s function G is the solution to the

following equation
LG=6(r-ry), (12)

where the wave operator L is given by Eq. (7).

In Eq. (11), the integration over the source co-
ordinates r, covers the volume £2. We consider the case
in which the source volume €2 is small in comparison
with the wave propagation region. In this case we can
expand the Green function G(r, ry) with respect to r;
in the form of a Taylor series around a certain point
ro inside €. As an approximation, we truncate the
series after the second order. The wave function then
becomes, approximately,

Y(r)=ByG(r,r)+B,

-V.G(r,r, VVG(r +)

) s= '0+ =1

(13)

The coefficients By, B, and ﬁq are the total strength,
bipolar and quadrupolar moments of the source. They
all reflect the structure and orientation of the source.
They are defined by

Bo=f§d377, Bb=f§nd3r,,
0 Q

B,= [ £mdn, (14)
Q

where nj=r,—ry. It is easy to show that By, B, and ﬁq
are the 0-th, 1-st and 2-nd coefficients of a Taylor
expansion of the spectrum of the source density &.
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2. Green’s Function

To simplify the expressions, we assume r;
=ryZ; i.e., the source point is on the polar axis for
which the Green’s function has an azimuthal sym-
metry. In this-case, Eq. (12) can be written as

LG= 5(1‘—}62). 15)
Under the approximation that the atmosphere is thin
in comparison with the earth radius, the operator L

becomes separable. In this case, the solution to Eq.
(15) can be approximately written as

R (i) R, (r) P, (—cosB)

G(r,m)=; AWsin 4,7 ’

(16)

where 6 is the angle between the two position vectors
r and ro. The function P, is a Legendre function of
degree p, and the function R, is a solution to the fol-
lowing eigen equation

(4 (¢Lyvq(r, ) R~AR =0 (17

with a corresponding eigen value A,. The degree and
the eigen value are related by y,(u+1)=A,7 . The eigen
function R; represents the ith vertical distribution of
a perfectly ducted mode caused by the temperature
profile of the lower atmosphere. There is a constraint
between A, and wfor every mode. This constraint stems
from the boundary conditions ar r=a and r—e. The
relation between A, and @ may be called a dispersion
relation and is expressed as the solution to the follow-
ing implicit relation:

Alw, A)=R'(a+hy; 1, —Ag; ®, A)
VO(a+h,;0,1) «R(at+hy; 1, —Ag; @, 2)=0.(18)

This implicit relation is obtained from the upper bound-
ary as r—eo by requiring that wave function decay
exponentially in the thermosphere. The altitude A, is
somewhere in the thermosphere where the atmosphere
becomes isothermal. The eigen function R(r; Ry, Ry ;
®, A) is a solution to Eq. (17) satisfying the boundary
conditions

R(a; Rg, Ry ; @, )=Ryg (19)

and

R'(a: Ro, Ry; @, M)=Ry . (20)

The vanishing of v, at r=a links Ry and R(; by the
relation Ry +AgRy=0 where A}=A at r=a. For a given
, there are many values of A, satisfying Eq. (18), each
of which belongs to a specific fully ducted mode.

The Green's function expression Eq. (16) shows
that the relative strength of a mode depends on the
height at which the source is placed. In fact, every
eigen mode is represented by a standing wave distri-
bution along the radial direction. If the source is at
a height where the eigen mode assumes a crest value,
this mode will be highly excited since the coefficient
of this mode in Eq. (16), R,(rg)/W, is large whereas if
the source is at a height at which another mode has
a node, this other mode is not likely to be excited at
all since the coefficient will be zero.

ic Excitation of
ave Modes

I1l. Anisotro
Gravity

We have seen from Eq. (13) that the anisotropic
excitation problem can be solved by calculating various
orders of the gradient of the Green’s function with
respect to the source position vector. To do so, we need
to shift the source point from the polar axis of the
spherical coordinate system ryZ to a new position,
r,=r,.. The non-integer-degree Legendre function has
the following addition formula that will be useful for
this purpose:

P, (cosb,)

=P, (cos 6, )P, (cosb,)

& I'(-m+1) ,n
+2m§1 F(u+m+1)1?“ (cos ;)

oﬂl’”(cos 0,)cosm (@ — 9, ), 21)

where 6,, is the polar angle of point 2 relative to point
1, i.e.,

c0s6,=c0s8; cosB,+sinb; sinb, cos(P;—¢,).
The function £ is the associated Legendre function
of degree u of order m. It can be proven from Eq. (21)
that

By (—cosbyp,)

=B, (~cos6,) P, (cos 6,)

& mI (H—m+1)
+2m2=:1(—1) ————F(#Hn_'_l)Pﬁ”(—cosOl)
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*P(cost))cosm (¢~ ¢,). (22)
The stage is now set for calculating the gradients needed
in Eq. (13). Substituting the addition formula Eq. (22)
into the Green’s function Eq. (16), and making use of
many formulas applicable to Legendre functions
(Abramowitz and Stegun, 1964), the following results
are obtained:

V.Gl
=Zl:4w§'s(i£'l)ll”[ﬁ#(%+,lb)R'(ro)iLl,(—cose)i’
+R (1) B, (~cos0)z] 23)
V.V, Gl

_y RO R(o)n= i (Bt DR ()

. 4W sin 2

. Ri(n) =
'Ppl(—COse)—Tozofﬁi(—COSG)] 1,

R (n) an s
+ﬁ1’02(—00s9)’n’+Ri (1) B, (—cos8)2z
R -R e an
+—-.’(’°)’32 s0) pl(_cos6) (12+27)), (4)
rO 1

where the unit vector 7 is in a direction tangent to a
great cycle path on the earth surface formed by pro-
jections of the source point to the observation point,
and I, is a 2-D unit tensor in the horizontal plane.
We denote the bipolar and quadrupolar moments

of the sgurce as follows:

B, = B, X + B,y + By, Z (25)

B, =B, X%+ B, §9 + B, (X§ +§& )+ B, (XZ + 7% )

+ quz (yZ +7Zy) + quii R (26)
where X, § are unit vectors of x and y axes which are
in the horizontal plane with the source point at the
origin. Expressed in terms of the components of these
moments, the approximate Green’s function Eq. (13)
is found to be

w(r)

=z Rz(r)

s 7 (BoR (1) + BR, (1) + 3 BR! (1)

(B + By )[R (1) %~ (4 +1)R, (1)]
+
2’62

}

*B, (—cos )+ {[

b+ DR (5)
T bx

LR ()K= Ri ()

20 B, 1cos ¢

+R,'(ro)ro—R,(ro)

H(H+1)R ()
+] v 0 By, 27 B, 1
. 1 R (%)  (Bu—By)
cos @ } B, (—cos o)+ o [ 5 cos2¢
+B,,,sin2¢ 1P} (—cos6)), 27

where ¢=2(7, X).

From Eq. (27), we see that the horizontal com-
ponents of a bipolar moment contribute to the cosg and
sin¢ azimuthal dependence while the horizontal com-
ponents of a quadrupolar moment contribute to the
cos2¢ and sin2¢ azimuthal dependence of the excited
modes. Furthermore, the coexistence of azimuthally
symmetric terms and non-symmetric terms, especially
the zero and first order terms, produces both amplitude
and phase gradients in the ¢ direction. This azimuthal
phase gradient makes horizontal wave propagation
direction non-orthogonal to a great circle path linking
ground projections of the source and observation point.
The asymptotic approximation of an associated Legendre
function (Abrahamowitz and Stegun, 1964) gives

C(usm+1) [~

B (cos )=

I'(u+3/2) V #sin 0
-cos[(ﬂ+%)9—f+m7”]. (28)
Thus,

aPﬂ(—cosG)+bcos¢-}Ll(—cose)

=~ A cos[(U + 1/2)0 ~ 8] + Bcos¢ « cos[(t + 1/2)0 — 12 — 0]

~>[A—jBcos ¢ e i(#+1/2)8-8 (29)
where-

_ I'u+1) z .

A‘F(u+3/2) Zsin@ ¢

_ I'(u+2) 2 .

B=rtus3/ayV wsin6 "0 ST
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The factor A—jBcos¢ produces not only an amplitude
but also a phase modulation along the ¢ direction. This
is depicted in Fig. 1 when the wave front given by Eq.
(29) with B/A=0.5 is shown. The possible existence
of ¢ variations greatly complicates the data interpre-
tation in general.

This phenomenon may help diagnose the nature
of the source by using the data acquired in remote areas
situated in all directions from the source. For example,
the micro barograph data recorded in Japan in the after-
math of the eruption of Mount St. Helens on May 18,
1980 shows that the horizontal propagation direction
is roughly along the great circle path (Liuet al., 1981).
That means the bipolar moment of the source is prob-
ably nearly vertical to the earth surface.

Amplitude modulation along the azimuthal direc-
tion caused by higher order moments of the source
makes the wave strength vary along the ¢ direction.
This is similar to antenna patterns in antenna theory.
Figure 2 gives an example of the amplitude modulation
patterns.

IV. Transient Propagation Process
of Anisotropic Excitation of Grav-
ity Wave Modes

The results obtained in previous sections apply
to monochromatic waves excited by a monochromatic

Fig. 1. The wave front of the wave mode P,l(cos6)+ﬁ-Pn1 (cos8)>cos@,
where n=40, f=-0.5 There 1s an azimuthal phase gradient
ky to make the horizontal wave propagation direction kj, off
the great circle path direction k.

Fig. 2. The azimuthal wave strength pattern of a wave mode
P,.(cosB)+0.7-P,%(cose)-cos(2¢v—30°).

source, By using a superposition integral, these results
can be extended to problems involving polychromatic
excitations. In fact, the source moments used in the
last section can be viewed as Fourier components of
a polychromatic source. According to the superposi-
tion principle, the response of the perturbed atmo-
sphere to a polychromatic source can be obtained by
integrating the monochromatic components of the
response function as

w(r,®)evdw

g%z

v, 0)=5-

s [E(r.0,0:n,0) .
_;_fw sint(w) e/da,

(30)
where from Eq. (24) F; is given by
F=(r,0,¢;5,0)

R. ’ ”
= B (UBoR (1) B, (1) + § B,R ()

+<qu+qu>[R£(ro>ro—M<ul+1>Ri(r0>]]
213

B+ 1) R (1)
1

*B, (—cos0)+[[ By,
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+Rl~'(ro)ro—R,(ro)

oy B, 1cos ¢

b+ DR () o R )5 =R ()

+1 70 by 2'62 qyz]

o 1 R (%) Bux—By
s1n¢]Pﬂi(—cos9)+—4’b2—~[—2—0052¢

+B,,,sin2¢ 1P} (~cos6)}.

Since in general By, B, B,, Ri(r), Ri(ro) and u are all
the functions of ®, it is very difficult to obtain an
analytic result for. Eq. (30) except for some special
cases and under certain assumptions or approxima-
tions. One such case is the L.amb wave mode, which
will be considered in the following. For this mode and
with the mode number i dropped hereafter, the radial
function R(r) is independent of @ and u=row/c—1/2 for
large |K|.

In pursuing solutions, notice that the factor sin
H(w)r in the denominator of the last expression of Eq.
(30) has a series of zeroes when u(w) is equal to an
integer n. Since the atmosphere is assumed to be
lossless and the modes considered are perfectly ducted,
the equation y(@w)=n has a real root @, Thus, there
exists a series of poles on the real @ axis. To satisfy
the principle of causality, the poles of F(r, 8, ¢; g, ®)
must be in the upper half @w-plane. This can be satisfied
by an integration path along a straight-line parallel to
the real w-axis in the lower w-plane (Fig. 3). Thus,
the integration of Eq. (30) consists of contributions
from residues of two groups of poles in the @w-plane;
one group comes from the poles of F(r, 8, ¢; ry, W),
and the.other comes from zeroes of sin y(w)m. The
residues from the poles of F' can be identified as the
forced oscillations while those from zeroes of sinum

Fig. 3. A graph depicting the singularitie§ contributed by both
sin[u(w)x] and F in the complex w-plane.

can be identified as the free oscillations. Writing them
out explicitly, we have

V=Vsorcedt Vtrees (31)
where
_1$ dw R 0 o-
Viee= 7.2 S poa TIEE L Bin, @), (32)

In F(r, 6, ¢; ryg, ®,), the degree u of the Legendre
functions must necessarily become an integer n. Notice
that B"(—x)=(-1)"P"(x) ; therefore,

(=1)Y'F(r,0,¢;n,0,)

=B ((BR (1) + B () + AB.R (1)

+(qu+qu)[R’r0)r02—#(#+I)R(m)])&(cose)
215
AU DR@, K @n-R@

+
R \ i

B, Icos ¢

H(U+1)R(p) +R’(rz))ro—R(ro)

+[ 7 B,, 22 B, ]
-sin¢)P,,1(cos(9)+Rir?) [(qu;qu)cos2¢

)
+ B, sin 201P>(cos6)}. (33)

This solution has no singularities for any values of r,
6 and ¢ and, therefore, is a solution of Eq. (6) when
£=0. For this reason, it represents the free oscillations
excited by the source.

The contribution from the poles of F(r, 8, ¢; ry,
o) represents the forced oscillations directly driven by
a source:

F(r,0,¢;5,0)
sinu(w)r

WYsorced = ; res { e } (34)

w:wl

‘To simplify the calculations, we=assume the fre-
quency spectrum of all source moments to have the
following form:

A(@) L

That is, F(r, 6, ¢; ry, @) has a single first order pole
at w=j/t. For Lamb waves, {+1/2=ryo/c forlu l >>1.
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Consequently, there is no dispersion, and R and W are
independent of ®.

Using the asymptotic expression Eq. (28), the
forced Lamb wave solution becomes

. R(r)
s/ (PR (1)

Yeorced = €

+ B, R (’b)+ B, R ()

o Bt By) LR () —H(H+ DR ()]
2

r'(1/2+joy HU+1)R(%)
Ty O T B

R(ro)ro R(n)

2 B, )cos ¢

B+ DR(R) p

( R(n)r-
1 by *

2r¢

R (%)

T(3/2+4j6) .

.quz)sin¢]we

R;;’)[(B —20) o526+ B, 1sin29)
r(s/2
}*u%i? e PrtY, (36)

where o=ry¢/ct. We notice that this term decreases
exponentially at arate of o as fincreases. The quantity
ois a large number since 7 can be viewed as a measure
of the source action time which is usually short, making
cT<<a<ry. As a consequence the forced oscillation
contributes significantly only in the vicinity of the
source during source action. In remote areas in the
aftermath of the source action, the free oscillation terms
will, therefore, dominate in response to the source
action.

The free oscillation term Y. constitutes a dis-
crete spectrum of monochromatic waves. Notice that
every P(cos8) represents a standing oscillation
along the 6-direction. This standing oscillation can be
further decomposed into two opposite traveling waves
between the source and its antipode. By using the
Poisson formula (Papoulis, 1962), the global atmo-
spheric response can be interpreted as a process whereby
wave energy of discrete spectrum propagates back-and-
forth between the source point and its antipode. This
can greatly complicate the experimental data interpre-

tation, especially in the backward ray tracing technique
in locating the source as cautioned by the authors in
an earlier paper (Dong and Yeh, 1993).

V. Conclusions

From the investigations conducted in previous
sections, we can draw the following conclusions.

Atmospheric gravity wave modes can be excited
by various physical causes ranging from localized sud-
den heating, mass injection, or external forces like the
Lorentz force. The radial part of the Green’s function
as given by the eigen modes in Eq. (16) represents
standing waves in the radial direction. For excitation
of a particular mode, the source must possess substan-
tial energy near the crest of that mode. Thus, a localized
source will excite only those modes that have substan-
tial amplitude at the source height. The vertical dis-
tribution of energy profiles of various modes has been
computed (e.g. Francis, 1973; Maeda, 1982, 1985).
The region where substantial energy exists is known
as the duct. Thus, to excite a particular mode, the
source of that mode must be placed inside the duct. The
excited wave field is determined not only by the total
strength of the source (the integral of source density
over the volume in which the source resides, or the 0-
th order moment of the source), but also by its higher
order moments as well. The higher order moments
determine the azimuthal variations of wave amplitude
and phase. The coexistence of the zero order moment
and horizontal components of bipolar moment of the
source in general makes the horizontal wave propaga-
tion direction non-orthogonal to the great circle path
linking the source and the observer. This can be used
to good advantage as a means of diagnosing the nature
of the source. This also means that the widely assumed
plane wave fronts that have been used in experimental
data analysis must be examined carefully for validity
on a case by case basis.

The transient response of the atmosphere to a
severe event like earthquake, volcanic eruption or
nuclear explosion consists of two parts. The first part,
called source forced oscillation, is directly linked to
the source action. The source forced oscillation lasts
for as long as the source is active. The range within
which the forced oscillation is appreciable is about the
distance the sound covers during the source action,
which is much smaller than the earth’s radius. The
second part, called free oscillations, can last much
longer than the source does and may propagate over
long distances. The free oscillation is a solution of the
source-less equation and has a discrete frequency-
horizontal-wave-number spectrum. The discrete spec-
trum corresponds to the back-and-forth movement of
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wave energy between the source and its antipode on
the earth’s surface.
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A T HEAEFB R P E RS o BBOBIRET LRESHEE - WHEEES » SAREH - BRI
M RAPIBA T AR > W LIFAE R B (eigen function) JEBY o H MR R RIBAY - BR8] A =5 M B4R
('spatial moments ) #FIFER » A7 FUBR S AR B OME o AP RIR G KRR EL BHEEREESES
HEWHIRE > HHEWHCIR A - EMFARESEERER MR EEENGER RMUERAEERS
('superposition integral ) A EAERMBEEL AL R c WM BHETEBORTHE _E - —EBPERE (forced
oscillation) o FH R R RFBH - BiE B EFAE R U IRME 85 8% H iR\ (freeoscillation) o B HIRE MW
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