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ABSTRACT

Previous research has suggested that asking “why” questions is important for mathematical problem solving.
The purpose of this paper was to analyze students’ “why” questions which arose during their problem-solving
processes and to provide insights into the nature of such questions.  For this purpose, we analyzed the processes
of solving two problems by a pair of ninth graders, for which they tackled geometry problems using dynamic
geometry software.  They asked or were prompted to ask “why” questions several times.  The analysis showed
that as the students explored the problem situation and deepened their understanding of the situation, they related
their “why” questions to the mechanism of the situation and pursued the questions more seriously.  This implies
that asking genuine “why” questions is supported by the solvers’ understanding of the problem situation.  This
also implies that it is important for students to explore problem situations to some extent before they are capable
of asking genuine questions.
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I. Introduction

Charles & Lester (1982: p. 5) defined a problem as
follows: “A problem is a task for which: (1) The person
confronting it wants or needs to find a solution; (2) The
person has no readily available procedure for finding the
solution;  (3) The person must make an attempt to find a
solution.” The first component is concerned with emotional
aspects or intrinsic motivation with respect to the problem
solver.  Sohma (1997) stated that he wanted his students
to experience a feeling of “why?” so that they would be
motivated to solve mathematical problems.  In fact, when
a person has a feeling of “why?” concerning a problem,
he/she may want to know the reason for that “why?” and
investigate the problem further.  For example, when a
person confronts a strange phenomenon in a problem situ-
ation and has a question, such as “why do such things
happen?” he/she may have a desire to find some reasons
to answer this question.  Having such questions changes
tasks given to students into problems they truly desire to
resolve.  Asking “why?” is important especially in school
mathematics.  Hanna (1995) distinguished two types of
proofs, “proofs that prove” and “proofs that explain.”  While

the former deals with “what is true?” the latter deals with
“why is it true?” (see also Hersh (1997: pp. 59-61)).  She
emphasized the importance of “proofs that explain” in
school mathematics.  Since almost all statements concern-
ing proof problems in school mathematics have already
been proven by others, proof problems may become worthy
of being explored when students desire to explain why such
statements are true.  This implies that students’ feelings
of “why?” are critical in turning those problems into genuine
issues.

According to Stacey & Scott (2000), having a “why”
question not only provides motivation for problem solving,
but also serves as a key to successful mathematical problem
solving.  They examined ways in which students tried ex-
amples while solving a problem, where they were asked
to find numbers to satisfy a certain condition.  They found
that orientation toward a deeper structure is a key com-
ponent for the effective use of examples in developing
solutions.  Here, they used the term “surface structure” to
indicate what is true about a mathematical situation and
the term “deep structure” to indicate why it is true.  Thus,
their finding implies that asking “why” questions during
problem solving and being oriented to the deep structure



− 32 −

K. Nunokawa and T. Fukuzawa

is key to successful problem solving.
The previous research mentioned above suggests that

asking “why” questions is important for various aspects of
mathematical problem solving.  In spite of this importance,
there has been little research on “why” questions themselves.
Exploring how such questions are asked during problem
solving processes would be helpful in understanding these
processes of students.

The purpose of this paper is to analyze students’
“why” questions during their problem-solving processes to
provide insights into the nature of such questions.  For this
purpose, we analyze the processes of solving two problems
by a pair of ninth graders who were tackling geometry pro-
blems during which they asked several “why” questions.
Although the questions asked in one process were similar
to each other, their tones and intensities (i.e., the extent
a student stuck with a question) seemed to slightly differ.
Such differences and changes in the questions are examined
based on the protocols of the solution processes.  This exam-
ination illustrates a factor that is important for asking “why”
questions during mathematical problem solving.

II. Data Gathering

The data analyzed in the remainder of this paper were
gathered during research mainly implemented by the sec-
ond author.  The aim of this research was to explore roles
of dynamic geometry software (Goldenberg & Cuoco,
1998) in developing ideas to prove geometry problems, and
to explore the effects of teacher interventions which were
planned in advance (Fukuzawa, 2001).  Cabri Geometry was
used as the dynamic geometry software in this research (1).
Subjects consisted two pairs of Japanese ninth graders, the
last grade of junior high school, and each pair separately
participated in five sessions and a follow-up interview.
Since the participants had never used this software, instruc-
tions in its basic commands and exercises for the construc-
tion of basic figures were given during the initial three
sessions.  After this introduction, two problem-solving
sessions were implemented, and the students tackled one
geometry problem using Cabri Geometry in each session.
The problems used in these problem-solving sessions are
described below.

Problem 1. Construct a quadrilateral ABCD. Let the mid-
point of side AB be P, the midpoint of BC be Q, the midpoint
of CD be R, and the midpoint of DA be S. When connecting
these midpoints, what kind of quadrangle does PQRS be-
come? (Kakihana & Shimizu (1997); modified by the authors;
see the figures in Section III)

Problem 2. There is a triangle ABC. Construct an equi-
lateral triangle BAD on the side opposite to ∆ABC. Con-

struct an equilateral triangle ACE on the side opposite to
∆ABC. Construct an equilateral triangle BCF on the same
side as ∆ABC.  What kind of quadrangle does ADFE be-
come? (Nohda & Nakayama (1996); modified by the authors;
see the figures in Section IV)

The entire problem-solving sessions were recorded
with an audiotape recorder and two video cameras.  One
video camera recorded the computer screen and the other
recorded the students.  Protocols were made based on these
audio and video records.  Using video records of the screen,
we could include the tracings of their dragging operations
and the order in which they adopted commands during their
problem-solving activities in our protocols.

In this paper, we examine only one pair of male stu-
dents, Nogawa and Yamada (pseudonyms), and analyze
each of their problem-solving processes to explore how
their questions changed.  A tendency similar to what is pre-
sented in this paper was observed in the problem-solving
processes of the other pair.  However, Nogawa and Yamada
were selected for illustration because changes in their “why”
questions were more clearly observable.

III. Questions Arising while Solving
Problem 1

1. Outline of Their Solution for Problem 1

(i) The students constructed rectangle ABCD. Nogawa
operated the software (as he did throughout the
process of solving the problem).  Although they
used the Cabri Geometry software, they constructed
the rectangle solely by resorting to visual judgment,
and did not use commands like “perpendicular
line” or “parallel line” which were available.  They
then connected the midpoints of the four sides to
make PQRS.  They drew PR and QS, made the
intersection point O, and measured the lengths of
PO, QO, RO, and SO.(2)  They said that PQRS
seemed to be a rhombus, and measured the lengths
of PQ, QR, RS, and SP.  The students also men-
tioned that PQRS might be a parallelogram.  They
measured ∠ RSQ saying that the opposite angles
were equal, and then they used the “parallel?”
command, which checks whether or not two lines
are parallel, to determine that PS was parallel to
QR.  They also tried to measure the area of PQRS
but failed to do so.

(ii) When they dragged the point D to arrange the
lengths of the sides, ABCD was out of the rectangle,
and so they thought that it was better to call PQRS
a parallelogram.  They measured ∠ PSQ, ∠ PQS,
and ∠ RQS, and found that opposite angles were
equal and remained equal even when dragging C
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mand to draw a square, ABCD.  They created
PQRS using that square and drew the diagonals
of PQRS. After they measured their lengths and
measured ∠ PSR, ∠ PQR, ∠ SRQ, and ∠ SPQ, they
concluded that PQRS was a square. Then they
mentioned that PQRS was always a parallelogram.

(vii) When the researcher advised the students to move
the diagrams, they dragged the vertices of the
initial diagram.  They noticed that points P and
S did not move even when dragging C.  They also
noticed that, when dragging B, sides AD and DC
did not change and their midpoints were not affected.
They mentioned again that  PQRS remained a pa-
rallelogram.  At this point, Yamada asked why the
length of PQ did not change when B was dragged.

(viii)The researcher asked why the length of QR did
not change even when Q and R were being moved.
While Nogawa mentioned that QR was a base side
of ∆CQR, Yamada asked again why it did not
change.  They tried to explain it based on the shape
of ∆CQR and checked how its vertices moved
when C was dragged.  They noticed that PS = QR
even when ∆CQR greatly differed from ∆APS.
Yamada asked the same question again and again.

(ix) When asked what did not change when C was
dragged, Yamada mentioned the other vertices, A,
B, and D. He also mentioned that the way PO
changed was the same as that of RO, and that the
alternate interior angles were always equal.  Then
he asked why the length of SO was always the same
as that of QO.

(x) The researcher advised the students to use the
“replay construction” command, which replays all
steps they had taken.  When the midpoints were
connected to each other to make PQRS in the
second replay, Yamada asked why the opposite
sides became equal when they merely connected
those midpoints.  When more than 98 minutes had
passed, the researcher intervened to terminate the
problem-solving activity.

2. Questions Observed during the Process of
Solving Problem 1

Although the students sometimes wondered whether
they should call PQRS “a rhombus,” they concluded that
quadrilateral PQRS became a parallelogram when they
constructed the initial quadrangle and measured some of
its sides and angles in (i).  When vertex D was dragged
in (ii), they made the following comments and  took for
granted that PQRS became a parallelogram.(4)

279 Yamada “What kind of quadrangle does it become?  It’s easy to

and D.  The students also mentioned, according
to the measurement values on the screen, that the
opposite sides were equal and that they were par-
allel to each other since the “alternate interior
angles” were equal.

(iii) The students wanted to know the area of PQRS
which they thought “crucial evidence.”  They tried
to change the lengths of the sides of PQRS so that
they could easily calculate the area using a math-
ematical formula. After giving up that attempt,
they measured ∠ SPR, ∠ QPR, ∠ SRP, and ∠ QRP.
They confirmed that the opposite angles and the
opposite sides were equal, and concluded that
PQRS was a parallelogram (Fig. 1).(3)

(iv) The researcher asked whether they could explain
their conclusion without depending on the mea-
sured values given on the screen.  The students
constructed a new quadrangle that appeared to be
a rectangle, drew diagonals of PQRS, and mea-
sured ∠ SOR, ∠ SOP, ∠ POQ, and ∠ QOR.  Here,
point O is the intersection of two diagonals.  They
said that if they could show that ∆POQ≡∆ROS,
then they could also conclude that PQ = SR and
that the “alternate interior angles” were equal.
They searched for a command, which Cabri Ge-
ometry does not have, to determine whether the
two triangles were congruent.

(v) After the researcher advised the students to use
various quadrangles, they dragged the vertices of
the initial diagram, which they had used before (iv).
They transformed ABCD into a concave quad-
rangle and noticed that PQRS became a parallelo-
gram even when ABCD was concave.  Then they
changed ABCD into a quadrangle that appeared
to be a rectangle, and into one that appeared to be
a trapezoid.

(vi) The researcher advised the students to use the
commands available in the Cabri Geometry
software.  The students used the “polygon” com-

Fig. 1. Diagram used when the students concluded that PQRS was a
parallelogram in (iii) (“deg” indicates that those angles were
measured, but their exact values could not be read from the VTR
data).
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find what kind of quadrangle.  Ah, It’s easy to find it is a

parallelogram, isn’t it?”

280 Nogawa “Yes, it’s a parallelogram because...”

281 Yamada “The opposite sides are equal.”

282 Nogawa “The opposite sides are equal, and the opposite angles

are also equal.”

When they tried to find the area of PQRS in order
to get “crucial evidence” in (iii), they made the following
comments.

350 Yamada “It appeared to be a parallelogram, but we cannot conclude

so.”

However, they immediately concluded that PQRS was a
parallelogram after measuring ∠ SPR, ∠ QPR, ∠ SRP, and
∠ QRP.  At these early stages, the students appeared to have
no doubts about their conclusion that PQRS was a parallelo-
gram.

Even when a concave quadrangle appeared on the
screen by chance, they voiced no questions.

710 Yamada [seeing the concave quadrangle] “Well, it becomes a

parallelogram even in that case.”

711 Nogawa “Yeah, somehow it’s parallelogram.”

712 Yamada “It is a parallelogram wherever it goes.”

713 Nogawa “Only angles get...”

714 Yamada “It’s a parallelogram even in that case.”

715 Nogawa “That’s great.”

716 Yamada “[inaudible] a parallelogram, isn’t it?  Well, then let’s

go back to the main subject.”

Although they thought that a concave quadrangle was an
exception because they could “not connect its mid-
points,” they did not question that case and changed the
shape of ABCD.

Nogawa explained in (vii) that some midpoints were
not influenced by dragging the vertex.  After that explanation,
Yamada asked why they did not move.  This question does
not seem focused enough.

856 Nogawa “When moving this point [C], then...”

858 Nogawa “P and Q, no, S and P don’t move.  Right, S and P don’t

move.”

860 Nogawa “They don’t move”

862 Nogawa “ When moving this [D], then P and Q”

863 I   “P and Q don’t move.”

864 Nogawa “For now, yeah, I see that.”

866 Yamada “Why don’t they move?”

867 Nogawa “Because they are midpoints.”

869 Nogawa “Because, when moving this B,”

871 Nogawa “the lengths of BA and BC will change,”

873 Nogawa “but the lengths of AD and DC do not change, so their

midpoints remain the same.”

874 Yamada “Mmm...”

After that, when dragging vertex B on the screen, Yamada
asked why the length of PQ did not change.

896 Yamada “Why is only this length [PQ] not changing?”

898 Nogawa “Since the midpoints remain the same.”

899 Yamada “So it does not change, even when this becomes very

short.”

900 Nogawa “That’s right.”

901 Yamada “It doesn’t change.”

902 Nogawa “Midpoints, because they are midpoints anyway.  Even

if the lengths change, the midpoints, well, the midpoints always

remain in the middle [of the sides].  The midpoints”

903 Yamada “Then because.... Why?  Why does it always become

a parallelogram no matter how we move the points?”

904 Nogawa “Because they remain the midpoints.”

905 Yamada “That’s right. Or because [inaudible] midpoints.”

While Yamada asked why the length of PQ did not change
and why PQRS became a parallelogram, Nogawa repeated
the same reason that the midpoints remained in the middle
of the sides even when the vertices were being dragged.
Yamada seemed to be convinced by this reasoning at this
stage.

When they were dragging vertex C, the researcher
highlighted Yamada’s question and asked why the length
of QR did not change when Q and R were moving.  After
hearing Nogawa’s explanation, Yamada asked by himself
why it did not change and attempted to explain it as follows,
using the idea of counterbalancing.

956-968 Yamada “Well, when moving C upwards, R moves as if it

escapes from [C] and Q moves as if it follows [C].  Conversely,

when moving C so that Q moves as if it escapes from [C],

then R moves as if it follows [C].  Yes, anyway, the length

does not change in such a manner...”

Here, he seemed to explain the fact that the length of QR
was constant by referring to the mechanism of the problem
situation in which points move in synchronization with each
other.(5)  However, Yamada immediately asked again why
it did not change when dragging vertex C.

After that, they discovered the following.

973 Nogawa “If this [C] is moved, these lengths [CQ and CR] change.

Of course, they change.  But, this [QR] doesn’t change.”

The next conversation followed this part.

986 Yamada “[Dragging C] If we know how [CR] decreases, we can

find it, can’t we?”
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987 Nogawa “In some cases, one of them [Q or R] goes up, and in

some cases, one of them goes down, and in some cases, both of

them go up.”

988 Yamada “[Dragging C upward] Well, when moving this vertically,

the difference of this and this [CR] gets shortened.  So, this [QR]

remains the same.”

Attending to ∆CRQ, they thought that the sum of lengths
of its three sides was constant and attempted to explain the
constancy of PQ’s length based on this. Indeed, Nogawa
said the following after this.

1006 Nogawa “If this [QR] changes, the length of this [CQ] won’t

change.”

Then they noticed that the length of PS was the same as
QR even when the sizes of ∆APS and ∆CRQ greatly
differed.  This suggested to them that the length of QR was
not directly related to the constancy of the sum of ∆CRQ’s
three sides.  After dragging C to QR and squashing ∆CRQ
(Fig. 2), Yamada asked the same question.

1048 Yamada “Why does it not change?”

Moreover, he said the following when dragging vertices
C, D, A, and B.

1059 Yamada “It’s strange that this length does not change no matter

how we move it.”

After mentioning in (ix) that the length of PO changed
in the same way as that of RO, Yamada asked a question
about the fact that PO = RO and SO = QO always held.

1104 Yamada “Come to think of it, why do the lengths from them to

the intersection not change?”

1105 I   “What do you mean by intersection?”

1106 Yamada “Ah, so.”

1108 Yamada “The distance from S to the intersection [O].”

1110 Yamada “The distance from Q to the intersection.”

1113 Yamada “Why are they always equal?”

1115 Nogawa “Because they are midpoints.”

1116 Yamada “I don’t agree with that.”

Yamada asked the following question during replaying
their construction in (x).

1154 Yamada “Why do the opposite sides in Fig. 3 become equal when

connecting this midpoint and this midpoint, although the lengths

of the sides greatly differ?”

1155 Nogawa “Mmm...”

1156 Yamada “Although the distances to the midpoints also greatly

differ, the lengths of the opposite sides become equal when

connecting this midpoint and this midpoint.”

1157 Nogawa “Mmm...”

When the researcher asked Yamada to repeat his
question, he explained it as follows.

1161-1191 Yamada “Ah, well, when taking A, B, C, and D first, we

didn’t care about the lengths of the sides at all.  So, the

quadrangle consists of sides whose lengths greatly differ

from each other.  Nevertheless, when making a midpoint

on each side and connecting those midpoints with each

other, the opposite sides, the opposite sides or... , yeah the

opposite sides become equal.  It’s strange to me, because

line... the distances to the line segments are very different,

the distance from A to S is very different [from its

correspondent], and the distance from A to P is very dif-

ferent [from its correspondent].”

Yamada mentioned here that quadrilateral ABCD was
adopted arbitrarily, and specific conditions were not as-
sumed about the lengths of its four sides.  He also mentioned
that PQRS was determined only by the condition that the

Fig. 2. Diagram in which ∆CQR was crushed (“cm” and “deg” indicate
that those sides and angles were measured using the Cabri software,
but their exact values could not be read from the VTR data).

Fig. 3. Diagram which appeared during the replay of the students’
construction. Yamada  spoke line 1154 when this diagram was
on the screen.
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midpoints of those sides were connected and no restrictions
were given for the lengths of the sides of PQRS.  He felt
it strange that, although no assumptions were given for the
lengths of the sides of ABCD and of PQRS, the opposite
sides of PQRS always became equal.

By closely examining their problem-solving processes,
we noticed: (1) at later stages, the questions asked had a
relation to the mechanisms of the problem situation as their
solving process proceeded; and (2) when a solver asked
a question relating to those mechanisms, he was not con-
vinced by his partner’s superficial explanation, for example
“because they are midpoints.”  Around line 280 in the pro-
tocol above, the students paid attention only to the phe-
nomenon of quadrilateral PQRS becoming a parallelogram
and they did not question that.  Around line 900, Yamada
asked why the length of PQ did not change even when
dragging B (line 896) and why PQRS remained a paral-
lelogram (line 903).  However, such questions were ap-
parently resolved by his partner’s explanation, “because
they remain the midpoints.”  Although they noticed that
the length of PQ was constant even when AB and BC
became shorter during this conversation (lines 899, 901),
they seemed to consider these two observations to be
phenomena that were simultaneously observed, and they
did not think that they were strange.

In lines 956-968, Yamada relates the phenomenon
that the length of QR did not change with movement of
other elements of the situation (Q and R), or with changes
in the other sides of ∆CRQ (CR and CQ).  He then found
an aspect of the mechanism of the situation, i.e., ∆CRQ
can be flat when the length of QR remains the same, and
noticed that such movements and changes do not explain
that phenomenon.  Yamada asked why the length of QR
did not change (line 1048) and mentioned that this phe-
nomenon was strange (line 1059) taking into account that
aspect of the mechanism.  This finding probably suggested
to him that the phenomenon was not self-evident.  Yamada
also asked  why SO = QO in 1113, and he was not convinced
this time by Nogawa’s explanation, “because they are
midpoints.”  When the researcher asked whose location did
not change when dragging C, Yamada referred to vertices
B, A, and D, while Nogawa referred to midpoints S and
P. Moreover, when the researcher mentioned that Q, R, and
C were moving, Yamada reacted by saying “yes.”  It can
be said that Yamada was aware of the mechanism of
midpoints Q and R moving with C, and asked the question
how the constancy of QR related to this mechanism of the
situation.  He might have thought that since Q and R were
moving with C, the distance between Q and R could change
when dragging C. Because of the nature of his question,
Yamada did not easily accept Nogawa’s explanation that
Q and R were midpoints.

In asking a question in line 1154, his attention was

directed to the relation between the mechanism or the basic
structure of the situation and the phenomenon that the
opposite sides were equal.  Yamada seems to have asked
that question because he began to feel a gap between the
mechanisms and the phenomenon.  Nogawa did not give
an explanation like “because they are midpoints” to this
question.

IV. Questions Arising while Solving
Problem 2

1.  Outline of Their Solution to Problem 2

(i) To construct an equilateral triangle, BAD, they
drew a perpendicular bisector of AB using one of
the Cabri commands.  Nogawa operated the soft-
ware (which he did throughout the problem-solv-
ing process).  Then they took a point D on the line
and moved it while visually checking whether
∠ ABD was 60°.  They constructed ∆ACE and
∆BCF in the same way and made a quadrilateral
ADFE. They said that ADFE appeared to be a
parallelogram and measured its four interior angles.
They also measured the lengths of AE and EF, and
found that their values differed from the lengths
of AD and DF, which they had measured before.
They thought that this was strange.

(ii) Since they had visually constructed the equilateral
triangles, the shapes of the figures became dis-
torted during measuring the sides and angles.
Although they tried to make new constructions,
they always did this visually.  The researcher
advised them to use a computer file which he had
made in advance.  In this file, the problem situation
was constructed using the appropriate Cabri
commands, so that the given conditions were
maintained regardless of how the original triangle
ABC was transformed.

(iii) The students opened that file.  They found that the
figures moved hand-in-hand when vertex A was
dragged, and the four angles and four sides of
quadrilateral ADFE were measured (Fig. 4). When
dragging A, they said that ADFE was a parallel-
ogram.  They continued dragging and overlapped
A on BC and on F (Fig. 5).  In doing so, Yamada
asked why ADFE became a parallelogram. Using
the “parallel?” command, they checked whether
AE and AD were parallel to DF and EF respectively.
Nogawa concluded that ADFE was a parallelogram.

(iv) They thought that ADFE was a parallelogram because
the opposite sides were equal and the opposite
angles were also equal.  When the researcher
asked why they remained equal when the figures
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were moved, the students began to explore the
situation again.  In dragging A and C, Yamada
asked why the opposite sides became parallel to
each other.

(v) When the researcher advised them to use other
functions of the Cabri software, they adopted the
“replay construction” command without hesitation.
When vertices D and F were connected in the
replay, Yamada asked why the opposite sides
became parallel to each other.  Following the re-
searcher’s advice to measure something, they mea-
sured the lengths of CE, AC, AB, BD, and BC.
Although they also measured ∠ DBF and ∠ FBA,
they immediately deleted their values on the screen
and measured the lengths of FB and FC.

(vi) When the researcher asked what did not change
when dragging the figures, they moved sides AC
and AB, and Nogawa said that ∆ABD did not
change when AB was dragged. Yamada said when
dragging A, triangles without dragged points did
not change.  After the researcher advised them to
make ∆ABC a special triangle, they made it to be
equilateral and then isosceles (Fig. 6). Nogawa
found that the lengths of all sides except ∆FBC’s
sides were the same, at 8.59.  Yamada asked why

the length of DF was also 8.59.  He found that
∆BFD and ∆ECF were also isosceles triangles and
asked why they had become that way.

(vii) After dragging A and C, Yamada mentioned that
∆BFD and ∆ECF were isosceles if ∆ABC was
isosceles, and that ∆BFD and ∆ECF were not
isosceles if ∆ABC was not isosceles.  They dragged
vertices and then made ∆ABC an isosceles triangle
again.  Yamada mentioned that the lengths of BF
and BD were known because ∆BAD and ∆BCF
were equilateral, and he insisted that, because
of these lengths, the length of DF could be deter-
mined automatically.  They checked whether EF’s
length could be also determined and understood
that opposite sides became equal if ∆ABC was
isosceles.

(viii)To examine the case of non-isosceles triangles,
they moved vertex A slightly.  Seeing this, Nogawa
noticed that ∆BFD and ∆ECF were the size of
∆ABC, and Yamada said that ∆ABC could be
placed on ∆BFD if it was rotated around B and
it could be placed on ∆ECF if it was rotated around
C.  Based on this rotation, they could demonstrate
that EF = AB, which implied that AD = EF and
that the opposite sides were equal. Although they
demonstrated this, they still depended upon the

Fig. 5.  Diagrams which appeared during students’ dragging of point A in Fig. 4.

Fig. 6. Diagram in which students made ∆ABC an isosceles triangle.

Fig. 4. Diagram which appeared when the file was opened. The sides
and angles were measured by the students.
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“parallel?” command and measuring the values of
some angles. Since more than 110 minutes had
passed, the session was ended by the researcher.

2. Questions Observed in the Process of Solving
Problem 2

Similar to their process for solving problem 1, they
said that ADFE was a parallelogram as soon as they had
completed its construction and saw ADFE on the screen.

160 Nogawa “What kind of quadrangle does it become?”

161 Yamada “It appears to be a parallelogram.”

Even when the measured values were inconsistent with their
conclusion, they did not abandon it and blamed their use
of the software, such as when they said, “Did we make a
mistake?” and “There is something wrong” (cf. Nunokawa
(1997)).  Here, they did not question the phenomenon of
ADFE becoming a parallelogram.

In (iii), Nogawa asked a question when they used the
file the researcher had prepared in advance.

528 Yamada “All the figures move hand-in-hand when moving it.”

529 Nogawa “Why?”

530 Yamada “I have no idea.”

531 Nogawa “Yeah, all of it is moving.  It’s wonderful. So, what should

we do?”

Since their constructions were not based on the appropriate
commands, figures could not move and maintain the given
conditions.  Nogawa seems to have questioned the nature
of the construction, not why ADFE had become a parallelo-
gram.

When dragging A and putting it on side BC in (iii),
Yamada, when seeing this special case, asked why ADFE
became a parallelogram.

552 Yamada “That’s not good.”

553 Nogawa “Ha ha...  But, it is at least ADFE, a quadrangle.  Anyway,

this is also OK, isn’t it?”

554 Nogawa “That doesn’t happen by chance, does it?”

555 Yamada “Something is hidden. [Dragging A]”

563 Nogawa “[A diagram like Fig. 4 is on the screen] Like this.  This

is a parallelogram again.”

574 Yamada “[A lies on BC] It becomes a parallelogram no matter

where we move it.”

582 Nogawa “[A, which overlaps F, is dragged toward BC] Its shape

is a parallelogram.”

583 Yamada “Why do we get a parallelogram?”

588 Nogawa “Why... Look, look!  This is a mysterious phenomenon.

Look, this shape is beautiful, isn’t it? [Moving A from BC and

putting it upon F]”

589 Yamada “A parallelogram...”

590 Nogawa “You’re right.  That’s a parallelogram.”

591 Yamada “Why a parallelogram?”

592 Nogawa “What?  Because its opposite sides are equal.”

593 Yamada “That’s right.”

Here, they thought that a quadrangle in a special case did
not become a parallelogram by chance and that something
hidden underlay this phenomenon.  In addition, Yamada
asked why ADFE became a parallelogram.  However, he
asked about ADFE becoming a parallelogram without re-
lating it to the mechanism of the problem situation.  When
Nogawa gave the reason that the opposite sides were equal,
he accepted it.  Immediately after this, Yamada proposed
using the “parallel?” command and when it showed that
the opposite sides were parallel, he agreed with the con-
clusion that ADFE was a parallelogram saying, “That’s
enough.”  These activities are consistent with the nature
of his question.

Following the researcher’s intervention in (iv), Yamada
asked why the opposite sides were equal, why the opposite
angles were equal, and why ADFE was a parallelogram.
Furthermore, when Nogawa was dragging vertex A, Yamada
asked the following question.

644 Yamada “Why do D and E also move when A is moved?”

645 Nogawa “What?”

646 Yamada “That’s a question.”

647 Nogawa “Because they are vertices of equilateral triangles.  As

D and E are vertices of the equilateral triangles, AEC and ADB

...”

648 Yamada “[inaudible] Then, why do those opposite sides become

parallel?”

649 Nogawa “If moving this [C], then D and A are...”

650 Yamada “That’s mysterious.”

Yamada focused on the movement of D and E, and he seems
to have asked why ADFE became a parallelogram in relation
to their movement.  He might have thought that, although
D and E were moving, AD was always parallel to EF and
DF was always parallel to AE.  The term “mysterious” he
used suggests that he thought this phenomenon was not self-
evident.

When Nogawa dragged C and A widely, Yamada
asked a similar question.

662 Yamada “Why on the earth does this become a parallelogram?

We take equilateral triangles of different sizes.  Although we take

such equilateral triangles, why do the opposite sides become equal

to each other?”

674 Yamada “ I know that it’s a parallelogram.  How does it become

a parallelogram?”

675 Nogawa “That’s a question.  Everything will be OK if we know

that.”
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676 Yamada “Anyway, why does it become a parallelogram?”

Yamada related the phenomenon of ADFE becoming a
parallelogram to a part of the mechanism of the problem
situation.  That is, he might have thought that, although
the equilateral triangles could be very different sizes and
the locations of D, E, and F could vary rather freely, the
opposite sides including these points were always parallel
to each other. Nogawa gave no reason this time.

While replaying the constructions in (v), Yamada
asked about the relationship of the opposite sides becoming
parallel to each other.

779 Yamada “Why do the opposite sides already become parallel when

drawing this line [DF]?”

803 Nogawa “[Going back to the point where the three equilateral

triangles had been drawn] All we can do here is to connect the

points by lines.”

804 Yamada “[Going back to the earlier steps, when F was taken in

the replay] I doubt the steps from about here.”

They seem to have related their questions to a certain as-
pect of the mechanism of the situation, i.e., the oppo-
site sides only connected the points that were pre-deter-
mined by the equilateral triangles.  Before asking this
question, Yamada mentioned another aspect of the situation
in this replay: “These points [A, B, and C] are taken al-
most arbitrarily” (line 767).  He was aware that the loca-
tions of A, B, and C had no specific features.  This sug-
gested that he might have asked the above question in
relation to the way of taking the vertices of the original
triangle ABC.

After asking this question, Nogawa mentioned that
BD = AB and the length of FB was known without measuring
it.  They paid attention to the lengths that were known
according to the given equilateral triangles.  This illumi-
nated the lengths that were not obviously known from the
given conditions.

When dragging sides AC and AB in (vi), Nogawa
mentioned that ∆ACE and ∆ABD did not change, respec-
tively.  When dragging point A, Yamada said that the
triangle with no moving point did not change.  These
observations concern the dependence of the lengths on other
components.  After they made ∆ABC isosceles and found
that many sides became 8.59 units long, Yamada asked a
question about some lengths following the researcher’s
intervention.

947 Yamada “I know why these two lines [AD and AE] became

8.59 long.  But I don’t know why the two lines above that also

become 8.59 long.”

955-965 Yamada “Well, ABC, no, triangle ABD, if all the sides of that

triangle become 8.59 long, then this [AD] becomes 8.59 long.

This [AE] also becomes 8.59 long similarly.  But, although

the two lines above that are merely lines connecting...”

Here, the question about the lengths of DF and EF was
related to an aspect of the mechanism of the situation: DF
and EF were not directly dependent upon the given equi-
lateral triangles.  Such a mechanism clarified that some
relations among the lengths were not obvious.  After men-
tioning this, Yamada noticed that ∆EFC and ∆DBF were
isosceles when ∆ABC was isosceles. He did not merely
observe this phenomenon, but also asked why all of them
became isosceles triangles (line 981).  One can say that
this question is also supported by the same point that DF
and EF are not necessarily equal to the sides of the equi-
lateral triangles.  This question led them to notice in (viii)
that those three triangles were congruent, and that this
congruence could explain why ADFE became a parallelo-
gram.

Similar to their process for solving problem 1, the
students asked no questions about the phenomenon of
ADFE becoming a parallelogram in the early stages.  Al-
though, seeing the special case on the screen, Yamada asked
why it became a parallelogram in lines 583 and 591 in the
protocol, he seems to have been convinced by Nogawa’s
explanation that the opposite sides were equal.  When
Yamada asked why the opposite sides were equal relating
this question to movement of D and E in line 648, he felt
that this phenomenon was “mysterious.”  In lines 662 and
674, Yamada related the questions to the mechanism of
the problem situation, i.e., the situation consisted of the
three equilateral triangles of different sizes, and vertices
D, E, and F could vary rather freely.  In this case, Nogawa
avoided giving a simple reason for it. After trying to relate
their questions with some parts of the situation in line 804
and paying attention to the dependence of the length of the
sides, Yamada asked about the length of DF and EF while
taking account of the mechanism of the situation.  Noga-
wa joined his activity to investigate triangles congruent to
∆ABC.

Their questions gradually became related to their
understanding of the problem situation, after which, the
questions were not resolved by superficial reasons.

V. Questions and Understanding of
Problem Situations

1. Limited Understanding of Mathematical Proofs

As shown in Section III.1 and Section IV.1, in earlier
stages of their problem-solving process, the students sup-
ported their conclusions using the results of Cabri functions,
i.e., by measuring sides and angles and checking parallel
relationships.  While the Cabri settings might facilitate their
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tendency to use these measurements, it seemed difficult for
them to pursue mathematical proofs even when they tried
to think in a paper-and-pencil manner.  In stage (iv) of the
first problem-solving session, they were asked to explain
their conclusion if it did not depend on the Cabri functions.
Although they tried to tackle the problem as if they were
in a paper-and-pencil setting, they mentioned measurement
with rulers and they wanted to measure the angles.  In the
final part of the second session, the students also mentioned
measurement using protractors in spite of trying to think
in a paper-and-pencil manner.

Kumakura (1999) investigated whether Japanese
eighth and ninth graders appreciated the role and signifi-
cance of mathematical proofs.  His research showed that
more than 70% of ninth graders thought that experiments
and measurements were sufficient to support a geometrical
statement.  Some activities of Yamada and Nogawa dis-
played a limited understanding of mathematical proofs that
is similar to that of ninth graders reported by Kumakura
(1999).  Their “emotional orientation to mathematics”
(Drodge & Reid, 2000) seemed to differ from ours.
Furthermore, their activities also remind us of the second
level of van Hiele’s theory (Nunokawa, 1992).  To verify
their conclusions, they tried to gather evidence for their
conclusions (e.g., by measuring four sides, measuring four
angles, checking whether the opposite sides were parallel,
etc.), rather than trying to prove those conclusions. In such
a case, the teacher and students may be speaking different
languages (van Hiele, 1986: p. 90).  The fact that the
students merely listed properties of PQRS when asked why
it had become a parallelogram implies that the question the
researcher asked did not mean what he had intended to the
students.  The students seemed satisfied with their conclu-
sions which were supported only by measurements and the
result of the “parallel?” command in the earlier stages of
the problem-solving process.  Even when Yamada spon-
taneously asked a “why” question in solving problem 2 (line
583), he was satisfied with Nogawa’s comment which was
based on the measurements. Thus the researcher sometimes
needed to intervene and ask some questions.  Since the
students were influenced by the researcher to begin to ask
“why” questions, it is difficult to draw conclusions about
the origins of the “why” questions.  However, it is possible
to observe some changes in how they reacted to the “why”
questions.  Although, as mentioned above, the researcher’s
“why” questions did not seem to make sense to them in
the beginning, the students appropriated those questions
and searched for reasons that would explain their conclu-
sions in the later stages.  In this sense, “why” questions
became genuine ones at the later stages of their problem-
solving process.  Such changes in their reaction to “why”
questions were supported by their understanding of the
problem situation.

2. Importance of Understanding the Problem Situ-
ations

As shown in the previous sections, the students, as
their solving processes progressed, could gradually relate
their questions to mechanisms of the problem situations.
For example, Yamada asked why the length of DF was equal
to the lengths of AE and AC in stage (vi) of the second
session.  In this case, he did not merely ask this question,
but also associated this question with the mechanism of
the problem situation, i.e., that the length of DF was
determined by vertices D and F whose locations did not
seem to directly depend upon the length of AC. When they
related their questions to some aspects of the problem
situations, the students began to adhere to those questions
and were not satisfied with reasons based only upon
measurements and the results of Cabri functions.  They
seemed to want to explain their conclusions using mecha-
nisms of the problem situation.  That is, a “why” question
became a genuine question for them, and the explanations
they could accept seemed to change as the problem-solving
process proceeded.

In the first session, Yamada felt it was strange that
the length of QR did not change regardless of how they
dragged vertex C (line 1059).  He also felt it mysterious
in line 650 of the second session that the opposite sides
became parallel regardless of how vertex A was moved.
It can be said that he recognized a discrepancy in two aspects
of the problem situation (e.g., the constancy of the length
of QR and the motion of vertex C).  Nunokawa (2001) said
that, in order to feel surprises or gaps, it is necessary for
learners to have some expectations about the object at issue.
And, in order to have expectations about that, subjects are
required to understand the object to some extent.  In fact,
Yamada’s feeling about the length of QR was supported
by his understanding of the problem situation.  Before
manifesting this feeling, he found that, when dragging C,
points Q and R also moved, and that ∆CRQ could be crushed
and then the lengths of CQ and CR changed rather freely.
He also noticed that, even when ∆CRQ greatly differed
from ∆APS, QR became equal to SP.  Such understanding
of the situation elicited his recognition of the gap and
supported his having a genuine “why” question.

Some researchers have proposed a concept of under-
standing as the establishment of a network of ideas and
facts (e.g., Hiebert & Carpenter (1992)).  Taking this
standpoint, it can be said that questions themselves make
good sense when they are incorporated into a network of
ideas and facts about a problem situation.  Such incorpo-
ration may help solvers ask questions about a question or
the meta-question: “Why should I ask such a question?”
Exploring and understanding problem situations are impor-
tant not only for resolving questions in problems (cf.
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Nunokawa (2000)), but also for making sense of those
questions.  From this viewpoint, it is natural that the students
could ask genuine “why” questions only after they had
explored the problem situations and gradually understood
them.  Their exploration and understanding of the problem
situations might have been an important factor supporting
their “why” questions.

At the end of the second session, the students could
not finish their proof since they could not show appropriate
reasons why ∆ABC could be put on ∆BFD and ∆ECF by
rotation.  If they had noticed that such a phenomenon was
not obvious and felt that it was worth explaining, they would
have pursued a proof based more on mathematics.

3. Roles of Dynamic Geometry Software

It is obvious that the students’ activities with dynamic
geometry software facilitated their exploration and under-
standing of the problem situations which were important
in their developing “why” questions.  Dragging made it
possible for the students to observe mechanisms of the
problem situations.  By replaying the constructions, they
could examine how a certain element was determined by
other elements.  While the measurement function of the
Cabri software might have elicited the students’ explana-
tions based on measurements, it also facilitated their rec-
ognition of dependent relationships among the elements in
the problem situations.  If the lengths of DE and AC in
Fig. 6 are displayed on the screen and vertex A is dragged,
it might be easy to notice that the length which DE changes
depends on that of AC.

Balacheff & Kaput (1996: p. 476) said that in dynamic
geometry settings, the statement of a geometrical property
becomes a description of a geometrical phenomenon ac-
cessible to observation and that these phenomena occur in
fields of experimentation.  Other researchers have pointed
out that dynamic geometry software facilitates making geo-
metrical properties of figures explicit (Mariotti & Bartolini-
Bussi, 1998; Tsuji, 1997).  In the first and second sessions,
the conclusions that the target quadrangles, PQRS and
ADFE, became parallelograms appeared as observable
phenomena on the screen.  What became observable was,
however, not only the phenomena directly concerning the
conclusions, but also the mechanisms of the problem sit-
uations.  The Cabri software seemed to make it possible
to operate upon or “touch” the problem situations.  The
students could alter the situation by dragging the figure and
check their results with measurements on the screen.  Such
exploration also highlighted some discrepancies in the
observed properties and those mechanisms and facilitated
the students asking genuine “why” questions.

As discussed in Section V.1, the students were apt
to be satisfied with their conclusions that were supported

only by measurements and the result of the “parallel?”
command.  The data of this study suggest that some students
need teacher support to direct their attention to mechanisms
that can fully explain the target phenomena.  Such support
would help students to use the software effectively to de-
velop mathematical proofs.  When beginning to draw a new
diagram in the first session, Yamada said that too many
measurement values made him confused (lines 470-472),
and that they should measure only necessary parts (line
509).  Moreover, he did not operate the software during
their problem-solving process.  In this sense, he seemed
to be less dependent upon the software.  However, he also
seemed to relate his “why” questions to his understanding
of the problem situations more easily.  The influence of
the dependence of solvers on software needs to be inves-
tigated in future research.

VI. Concluding Remarks

In the introduction of this paper, we mentioned an
emotional aspect on the side of solvers.  The above analysis
suggests that the students’ feeling of “why?” was influenced
by their understanding of a problem situation.  Even if
mathematics teachers attend to the importance of “why”
questions and ask our students why a certain statement is
true, it may be the case that our students are not interested
in searching for proofs that explain the statement.  In order
for “why” questions to become genuine questions for
students, opportunities to explore and/or understand prob-
lem situations should be provided.

The students in this study had stronger feelings of
“why?” in the later stages of their problem-solving process.
In the second session, such feelings led them to explain
their conclusions using the three congruent triangles in the
problem situation.  When he found these triangles, Nogawa
said that he had made “a big discovery.”  The students might
have appreciated “proofs that explain” and have experi-
enced geometry problem solving in the sense that they
searched for reasons of their “why?”.  Before they could
have feelings of “why?”, however, the students were
prompted by the researcher to ask “why” questions several
times.  Factors that stimulate solvers to spontaneously ask
“why” questions need to be explored in future research.

Notes

(1) Using the Cabri Geometry software, solvers can construct
basic figures (e.g., points, lines, circles, parallel lines, and
perpendicular lines) and their combinations.  This means
that solvers can construct a rectangle in the same way
as with the usual ruler-compass construction.  Solvers
can also measure constructed elements (e.g., lengths,
angles, and areas) and move points and lines by dragging
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with given conditions satisfied (e.g., parallel).
(2) Measured values remain near the measured components.

For example, the length of a side continues to be shown
near that side.  Its value can change in accordance with
changes of the sides.

(3) The Cabri software shows the values of lengths only using
its numerical values without units (e.g., cm), while it
shows the measures of angles using its numerical values
with the unit of degrees, “°”.

(4) The number at the head of each utterance corresponds
to the number of the line in the protocol in Fukuzawa
(2001).

(5) The term “mechanism of the problem situation” is used
here to highlight the dependence relationships in the
problem situation.  For example, when moving vertex
C in Fig. 1, vertex R also moves depending upon the
motion of C.  As shown in Fig. 2, ∆CQR can be crushed
independent of the length of QR.  Such dependence (or
independence) is referred to here.
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