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ABSTRACT

The free vibration analysis of general plates using a newly developed four-noded conforming plate
element is presented. The plate formulation is based on the classical Kirchhoff thin plate theory and energy
orthogonality theorem and can automatically satisfy the convergence requirements. It employs bilinear
functions to perform two-dimensional geometric interpolation. The displacement functions are those of
modified bicubic polynomials which contain a rigid body, constant strain and higher order deformation
modes. The four-noded element has 16 degrees of freedom 1n total. The displacement functions and degrees
of freedom are expressed and investigated in Cartesian form. The numerical results of the new element
are compared with the available data in the literature based on the effects of element geometry and the

irregularity of mesh.

Key Words: plate finite element, free vibration analysis, energy orthogonality theorem, transverse dis-
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l. Introduction

Engineering problems which involve the
ability to predict the free vibration behavior of
plate structures may generally be solved by using
the finite element method. However, as there are a
variety of theoretical and numerical formulations
for the method, many plate bending elements, each
having some merits and demerits, have been de-
veloped over the years (Hrabok and Hrudey, 1984;
Batoz et al., 1980). To date there is still no agreement
among researchers on the best or optimum element
available.

In the finite element method, the structure is
represented-by an assembly of elements, each having
an appropriate stiffness. Numerical finite element
calculations are based directly on the element stiffness
matrices. It may, thus, be said that the characteristics
of afinite element are hidden among the actual numbers
in its stiffness matrix.

In the bending of thin plates, it is impossible
to construct a strictly C' polynomial interpolation
for general three-node triangular and four-node
quadrilateral elements with three kinematic degrees
of freedom (DOF) per node (Batoz er al., 1980;
Batoz and Tahar, 1982). Conditions, of interelement
compatibility are violated by such a displacement
field. Continuity of deflections at the interface is

the prime requirement which must be satisfied.
The next requirement is the continuity of slopes
which, if achieved, would produce a continuous,
piecewise differential field of displacements in
the structures. Success in achieving full conformity
comes easiest in the case of rectangular elements.
Bogner et al. (1966) developed 16 and 36 DOF
conforming rectangles that exhibited good con-
vergence properties. It was necessary, however,
to use second derivatives of displacement as DOF.
In particular, the 16 DOF element the twist was
used.

To achieve a conforming element, while still
using only the three geometric DOF, several re-
searchers (Bazeley et al., 1965; Gallagher, 1969;
Clough and Tocher, 1965) have used different
approaches to meet the requirements. Of all the
different schemes considered for derviation of
conforming plate bending elements, perhaps the
most straightforward is the use of fiigher order
polynomials. A comprehensive review of the different
plate bending elements based on their variational
formulation can be found in Hrabok and Hrudey
(1984).

The plate bending elements are normally
derived from the potential energy or a hybrid
formulation. A radically different and pro-
mising approach is the direct method introduced
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by Bergan and Hanssen (1976). This method
is not based on a variational principle. Instead,
the elements are derived directly from the con-
ditions that they satisfy the patch test and the
rigid body nmotion and constant strain re-quire-
ments, and a variety of such C° elements have
been tested (Bergan, 1980; Bergan and Nygard,
1981). Although successful applications have been
shown in many cases, little or no emphasis has
been given to the behavior of these elements in C'
continuity.

This paper presents a formulation of a four-
noded sixteen-DOF. quadrilateral thin plate bending
element in terms of the Cartesian co-ordinates, which
is based on the so called “free formulation” as formu-
lated by Bergan (1980) and Liu and Lin (1993).
The formulation presented originally by Liu and
Lin (1993) in a somewhat different form uses a
slightly modified bicubic polynomial in the natural
coordinates £ and 7 as the displacement function
for w. These displacement patterns contain the
fundamental deformation modes and the higher
order displacement modes, and perform in a linearly
independent manner. The use of Cartesian coor-
dinates, which appears to be the natural choice
for quadrilateral elements, makes it possible to
obtain conveniently the explicit expressions for
the unknown coefficients in the displacement func-
tions in terms of the nodal displacements; thus,
the time consuming numerical procedure is avoided.
Also, transformation of partial derivatives from
the natural coordinate system to the rectangular
coordinate frame is rather cumbersome. This in-
volves inversion of Jacobian matrices for all levels
of differentiation. It should be noted that the usual
approach of expressing transverse displacements
and rotations by separate expansions is not allowed
here.

The objectives in this paper are to show how
the general continuum mechanics based plate ele-
ment formulation of Liu and Lin (1993) can be applied
to free vibration analysis of plate structures, and to
give some insight into the plate element formula-
tion.

Il. Formulation of the New Element

The formulation closely resembles that of
the NCQ (Liu and Lin, 1993) element. It starts
with the free formulation (Bergan and Hanssen,
1976; Bergan, 1980), where the transverse
displacement w of the element is described by
way of generalized displacement patterns or
“modes”:

W=Naa=Nrcarc+Nhaha 1)

where N,. expresses a complete polynomial to
a degree which corresponds to a complete rigid-
body and constant straining field expansion

(rc-modes) for the plate, and a,. are the as-

sociated polynomial coefficients. N, expresses
a set of higher order deformation functions
(h-modes) and a, are the associated coefficients.
The total number of rc-modes plus h-modes
must be equal to the number of degrees of free-
dom in the nodal displacement vector q for the
element.

The quadrilateral element has four corner nodes,
as shown in Fig. 1, each of which has four degrees of
freedom: w; ow/ox; owldy; dw*dxdy. Thus, the vector

q is

w
q ow
_ /% _ ox .
q= qQ [’ q;= ow ; 7=1, 2, 3, 4. 2)
qQ4 g
0w
oxdy

The kinematic relationship between the nodal
degrees of freedom q and the generalized modes in Eq.
(1) is easily obtained by inserting the appropriate nodal
co-ordinates into N,:

qua=GrcarC+Ghaha Q)

where G is quadratic, and N, must be chosen so that
it is invertible. Vector a is then established by Egs.
(1) and (3):

a. ~1 Hrc
a:{ah}=G q=Hq=[Hh]q (4)

o 1

R w/dxdy

A4 e
Fig. 1. Geometry and degrees-of-freedom for the four-node quad-
rilateral plate bending element.
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Substitution of Eq. (4) into Eq. (1) yields

w=N, H,.q+N,H,q=Nq; ()
thus,

N=N, H, +N,H,. (6)

The computation of strains from Eq. (5) is straight-
forward:

€=(AN, H,+AN,H,)q=(B,.H,+B,H,)q=Bq, (7)

where A is the appropriate strain-producing
differential operator. Based on the displace-
ment expansion on generalized functions and
the strains in Eq. (7), the potential energy of the plate
is

U=Llqr f B’CBdVq-=1¢"Kq, (8)
79 ), 2

where V is the volume of the element, and C is the
constitutive matrix of an isotropic plate.

The generalized stiffness matrix may be parti-
tioned according to rc-modes and h-modes:

- Krc Krch
K= [Khrc Kh ] ’ (9)

where

_ T
K= [ (BH C(BH, )V

-V (BH,) C(BH,) (10a)
K= [ (BH,) C(BH,)aV (10b)
Kire= | (B, C(BH,)aV (10¢)
K,= fv (B,H, ) C(B,H,)dV . (10d)

When a finite element is derived from a complete
set of constant strain and rigid body modes plus
a set of linearly independent higher order modes
which is energy orthogonal to the first set, the
element is convergent (Bergan and Hanssen, 1976;
Bergan, 1980). The requirement of orthogonality

between the rc-modes and the A-modes is that
K, =K;,.=0, which implies that there should be no
coupling in energy between them. Since the rc-modes
produce a B,. which is constant over the volume
(see Eq. (10a), K,.,=K},.=0 may be satisfied by requir-
ing

fv B,dV=0. an

It is evident that the element stiffness matrix may be
constructed as

K=K, +K,. 12)

The simplest selection of the transverse dis-
placement w in the element is assumed to consist of
a 16 terms of bicubic polynomials in the x—y coordi-
nates:

W=a1+ApX+A3Y+ A X+ AsXy+agy +a,x +agx’y

2 3 3 2,,2 3 3.,2
FagXy +a;py a1 X Y+A XY +A 13Xy +A14X7Y

+al5x2y3+a16x3y3=Naa=Nrcarc+Nhah, (13)
in which
N,=[1 x y x* xy y¥] 14)

and

Nh=[x3 x2y xyZ y3 x3y x2y2 xyS x3y2 x2y3 x3y3]‘
as)

A major disadvantage of the choice of the
higher order deformation modes in Eq. (15) is that
it contains three fourth degree terms and one sixth
degree term, and they depend on the reference
frame (G matrix may become singular for certain
element shapes). The functions in Eq. (15)
must, therefore, be discarded for general quadri-
laterals.

An alternative to the modes in Eq. (15) is

N=[x* 2%y xy* y* y-ouxy xy*—(opx*+asy”)

Xy —ouxy x°*y* Xy Py —osxy]. (16)
These h-modes are energy orthogonal. They also
result in a positive eigenvalue. The coefficients
o; (i=1, 2, 3, 4, 5) should be chosen such that the
corresponding terms satisfy the orthogonality condi-
tion (11); thus,
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L(3x2—a1)dA=0 (17a)
L (¥ =0)dA=0 (17b)
L(x2—a3)dA=0 17c¢)
| (3 -ayaa=0 17d)
L (9x%)2 — 05 ) dA=0, (17¢)

where ¢; are easily determined from Eqs. (17a)-(17e),
and A is the area of the element. It is recommended
that a translated and scaled local x—y system to the
centroid of the element area be used rather than the
global system. The function of Eq. (16) does not
lead to any difficulties in connection with inversion of
G.

Ill. Element Stiffness Matrix

The main objective of a finite element deve-
lopment in stress analysis is to derive the element
stiffness matrix. This stiffness matrix must satisfy
the patch test or, equivalently, the individual
element test (Bergan and Hanssen, 1976; Bergan,
1980) in order to give reliable results. The basis
for the individual element test is that the element
should, when deformed in an rc-state, generate nodal
forces (moments) which are the same as the forces
obtained by a consistent lumping of the edge tractions
to the nodes.
written as

T, =P, 2, (18)
where P,. expresses the nodal forces produced by the
generalized rc-modes. T, is the nodal forces produced
by lumping of tractions at the element boundary to the
nodes. In practice, it is possible to factorize P, in the
following manner:

P, =LCB,, (19)
where L is the lumping matrix which depends on the
element geometry.

The nodal forces S,. generated by the element
stiffness matrix K during the rc-state are

In mathematical terms, this may be-

S,=Kq,=KG,.a,. (20)
The individual element test demands that the forces
S,. in Eq. (20) be equal to T,. of Eq. (18) for all a,..
Thus,
KG, =P, =LCB,.. 21)
The potential energy during a pure rc-state

consists of the strain energy U,. and the load potential
W,

Tore= Urc + W‘C = % qchrcqrc - qZ;Trc . (22)
Equilibrium requires that 7z,. be stationary:
6ﬂrc= 6qchrcqrc - 6qZ;Trc =0. (23)

By using Eq. (3), Eq. (10a), Eq. (18), Eq. (19) and
H, G, =1, it is evident that

KrcGrc= VHZ—LBZ;CBTL}IVCGI‘L‘

=FP.=LCB,. (24)
Thus,
L=VHIB.. (25)

This is equivalent to the following simple expression
for the element stiffness matrix

K=K, +K,

=V (BH,) C(B,H,)+H] | BT CBavH,
|4
= LCL™+H} jv B! CB,dVH,

= yLCL™+ HIK, H, (26)

Itis clear that K in Eq. (26) has no negative eigenvalues
because it consists of quadratic forms on C and K,
that are both positive definite.

The fundamental matrix L. for a general quadri-
lateral plate bending element with sixteen degrees of
freedom is given here by

L=[L, L, L; L,], 27)

where, typically,
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Table 1. First Nine Frequencies of Vibration of a Clamped Square

Plate
Eigenvalue Computed Theoretical Values
Number Values Stokey (1961)
1 7.4620 7.4566
2 15 2148 15.2095
3 15.2148 15.2095
4 22.4668 22.4320
5 27.2300 27.2739
6 34.2206 34.2167
7 34.2206 34.2167
8 43.3433 e
9 43.3433 e
T
L; =
2
0 %= Yk 0 Gu=W76
%’ 0 0 x,-%  (g—x)6 |,
4-1b o 0 0
(28)

where the indices i and k are the nodes before and after
node j, respectively, when going counterclockwise
around the element.

IV. Element Mass Matrix

The natural frequencies of vibration of a plate
system are governed by the following equation:

(K~@’M;)q,=0, (29)

where @ are the natural frequencies of vibration in
radians perssecond, and K, M, and q; are the stiffness
matrix, mass matrix and displacement vector of the
whole system, respectively. The element stiffness matrix
is givenin Eq. (26). The element mass matrix is defined
as

M=p | IN.NTINNIaV, (30)

where p is the mass per unit volume of the element. «*
N,. and N, are defined in Eq. (14) and Eq. (16),
separatively. The subspace iteration method (Bathe,
1982) is employed to obtain the solution of the eigen-
value problems in Eq. (29).

V. Numerical Assessments

A computer program has been developed

for numerical computation of various types of examples.
All the computations have been per formed on an IBM
personal computer system in double precision of real
rounded arithmetic accuracy.

Except where specifically mentioned, the follow-
ing values are adopted for analysis:

t(thickness of plate) = 0.05

E(Young’s modulus of elasticity) = 3000.0
v(Poisson’s ratio) = 0.3

p(Mass density) = 1.0

Example 1: Rectangular Plates

Rectangular plates are widely used in the litera-
ture for assessing the performance of finite elements;
therefore, for comparison purposes, they are also
considered here. The frequencies of vibration are quoted
in rad/sec, and a 2x2 Gaussian integrating rule is in-
variably employed.

The first case considered is that of a clamped
square plate of side length 2.0 discretized into 16
elements. Table 1 shows the theoretical (Stokey, 1961)
and computed values for the first nine frequencies of
vibration. Close agreement can be observed. The
eigenvectors for the first eight modes are shown in
Fig. 2.

The next case considered is that of a square plate
of side length 2.0 with two adjacent edges clamped.
The theoretical (Stokey, 1961) and computed eigenval-
ues corresponding to the first nine frequencies are
given in Table 2, and good agreement is also observed.
The mode shapes for the first eight modes of vibration
are shown in Fig. 3.

Some results for the free vibration of a simply
supported square plate with regular and irregular
meshes (Fig. 4) of side length 2.0 are shown in Table

The computed eigenvalues of the first ten frequen-

Table 2. First Nine Frequencies of Vibration of a Clamped Square
Plate with Two Adjacent Edgeds Clamped

Eigenvalue Computed Theoretical Values
Number Values S[(_)_key (1961)
1 1.4249 1.4416
2 48413 4.9890
3 5.4315 5.5526
4 9.6435 9.9553
5 12.5562 13.0817
6 13.2026 .-
7 17.0826 ———--
8 177771 eeee-
9 239088 0 -
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"Fig. 2. First eight modes of vibration of a clamped square plate.

LW. Liu

cies of vibration corresponding to the different patterns
are listed, and it is seen that mesh 2 provides quite
accurate results with respect to the regular mesh while
results obtained from mesh 3 and mesh 4 are also
consistent.

In Table 4, the convergence characteristics for the
frequencies of a simply supported rec tangular plate
of aspect ratio 2:1 are shown. The longer side length
2.0 is used, and results for the first eight modes of
vibration are given. Itis seen that aspect ratio has very
little influence on the accuracy of the present
method.

Example 2: Sector Plates

Free vibration analysis of annular sector plates
is of practical and academic significance and has
been studied by many authors. In Table 5, the first
eight frequencies for a simply supported 90° sector
plate with an inner to outer radius ratio of 0.5
are reported. In this case, a coarse mesh of 5x5
elements and a fine mesh of 10x10 elements were
used for the analysis. Excellent agreement of the
results obtained from the two solution schemes
‘can be observed. For purposes of comparison, the

Table 3. First Nine Frequencies of Vibration of the Simply Sup-
ported Square Plates in Fig. 3

Eigenvalue Mesh 1 Mesh 2 Mesh 3 Mesh 4 Exact
Number

1 4.0962 4.0962 4.0535 4.0535 4.0897
2 10.2032 10.2032  7.3543  7.3543  10.2150
3 10.2032 10.2032  9.8910  9.8910 10.2150
4 16.2000 16.2000 11.3463 11.3463 16.3441
5 19.0843 19.0843 14.7262 14.7262  20.4301
6 19.0843 19.0843 15.5663 15.5663 20.4301
7 25.7420 257420 16.6860 16.6860 26.5591
8 25.7420 25.7420 18.3492 18.3492  26.5591
9 33.9495 33.9495 18.9976 18.9976 34.7311
0

1 33.9495 33.9495 26.5980 265980 34.7311

Table 4. First Eight Frequencies of Vibration of a Simply Support
Rectangular Plate of Aspect Ratio 2:1

Eigenvalue Element Mesh Exact
Number 2x2 4x4 8x8 10x10

1 9.2734 10.2236 10.2191 10.2185 10.2150
2 18.9487 16.2978 16.3565 16.3489  16.3441
3 19.3904 24.6112 26.5924 26.5680 26.5591
4 19.8652  34.1930 34.6878 34.6901 34.7311
5 20.2048  38.6344 40.7925 40.8121 40.8601
6
7
8

24.5775 43.2281 40.8136 40.8419 40.8601
25.2836  67.0834 50.9983 51.0257 51.0752
----- 67.1328 58.2506 " 58.9967  59.2473

MODE 8
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MODE 7

MODE 8

Fig. 3. First eight modes of vibration of a square plate with two adjacent edges clamped.

MESH 1 MESH 2

MESH 3 MESH 4

Fig. 4. Different meshes of a simply supported square plate.

results using a semi-analysis solution by Mukho-
padhyay (1979) are also quoted, and again agreement

between the results obtained by the two schemes is
obvious. Plots of the mode shapes for this case are
given in Fig. 5 for the first eight modes of free vi-
bration.

Example 3: Cantilevered L-shaped Plate

The final example considered is that of the vibra-
tion of a cantilevered L-shaped plate shown in
Fig. 6(a). The plate in Fig. 6(b) is discretized into 14
elements, and the material properties assumed for this
problem are

t(thickness of plate) = 0.1

E(Young’s modulus of elasticity) = 30x10°
v(Poisson’s ratio) = 0.3

p(Mass density) = 0.00733

The lowest five natural frequencies are listed in
Table 6, where they are compared with results from
another quadrilateral plate model in Potts and Oler
(1989). In this case, a coarse mesh of 14 elements and
a fine mesh of 56 elements were used for the analysis.
Excellent agreement of the results obtained from the
two solution schemes can be observed. Plots of these
mode shapes are shown in Fig. 7.
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Table 5. First Eight Frequencies of Vibration of a 90 © Sector Plate
with all Edges Simply Supported with an Inner to Outer
Radius Ratio of 0.5

Eigenvalue Element Mesh Mukhopadhyay
Number 5%5 10x10 (1979)
1 9.8791 9.7628 9.7584
2 14.6683 14.3571 14.1306
3 22.0536 21.9794 21.3674
4 32.0732 31.5402 31.2046
5 34.9879 34.6039 34.3069
6 40.1197 39.7405 -
7 43.8562 42.1744
8 57.1977

56.6343 -

o
S

R
R
“\“\\“‘::“““‘:

<
A OS

)

2

RN

Ry
= X

Fig. 5. First eight modes of vibration of a simply supported 90 °
sector plate.

VIi. Conclusions

The derivation of a general quadrilateral element
with sixteen degrees of freedom for the free vibration
analysis has been shown. The approach presented here
for calculation of finite element solutions, based on a
free formulation, opens up a number of avenues for
further investigation. In this study, the shape functions
were employed for the transverse displacement only.
The relation between the corner rotations and the trans-
verse displacement has been easily obtained by partial

()
2 23 24
4 Y 19 |20 |21

16 17 18

11 12 13 14 15

1 2 3 4 5

(b)

Fig. 6. (a) Cantilevered L-shaped plate. (b) Cantilevered L-shaped
plate of 14 elements mesh.

Table 6. First Five Frequencies (Hertz) of Vibration of a Cantile-
vered L-Shaped Plate

Eigenvalue 14 elements 56 elements  Potts and Oler
Number (1989)
1 435 438 435
2 929 977 970
3 2690 3137 3127
4 3571 3982 3990
5 5474 6229 6225

differential. The fundamental matrix L for the general
quadrilateral element has been derived. The expres-
sions obtained in the present formulation can be used
comfortably in microcomputers.
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