
This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Immunotherapy for liver tumors: present status and future prospects

Journal of Biomedical Science 2009, 16:30 doi:10.1186/1423-0127-16-30

Pablo Matar (matarpablo@hotmail.com)
Laura Alaniz (laualaniz@yahoo.com.ar)

Viviana Rozados (viviana.rozados@gmail.com)
Jorge B Aquino (aquinojb@yahoo.com)

Mariana Malvicini (mariana.malvicini@gmail.com)
Catalina Atorrasagasti (mcatalinaa@gmail.com)

Manuel Gidekel (mgidekel@gmail.com)
Marcelo Silva (msilva@cas.austral.edu.ar)

O. Graciela Scharovsky (graciela.scharovsky@gmail.com)
Guillermo Mazzolini (gmazzoli@cas.austral.edu.ar)

ISSN 1423-0127

Article type Review

Submission date 28 October 2008

Acceptance date 6 March 2009

Publication date 6 March 2009

Article URL http://www.jbiomedsci.com/content/16/1/30

This peer-reviewed article was published immediately upon acceptance. It can be downloaded,
printed and distributed freely for any purposes (see copyright notice below).

Articles in Journal of Biomedical Science are listed in PubMed and archived at PubMed Central.

For information about publishing your research in Journal of Biomedical Science or any BioMed
Central journal, go to

http://www.jbiomedsci.com/info/instructions/

For information about other BioMed Central publications go to

http://www.biomedcentral.com/

Journal of Biomedical Science

© 2009 Matar et al. , licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:matarpablo@hotmail.com
mailto:laualaniz@yahoo.com.ar
mailto:viviana.rozados@gmail.com
mailto:aquinojb@yahoo.com
mailto:mariana.malvicini@gmail.com
mailto:mcatalinaa@gmail.com
mailto:mgidekel@gmail.com
mailto:msilva@cas.austral.edu.ar
mailto:graciela.scharovsky@gmail.com
mailto:gmazzoli@cas.austral.edu.ar
http://www.jbiomedsci.com/content/16/1/30
http://www.jbiomedsci.com/info/instructions/
http://www.biomedcentral.com/
http://creativecommons.org/licenses/by/2.0


 11 

Immunotherapy for liver tumors: present status and future prospects 

Pablo Matar
1,3

, Laura Alaniz
2,3

, Viviana Rozados
1
, Jorge B. Aquino

2,3
, Mariana 

Malvicini
2
, Catalina Atorrasagasti

2
, Manuel Gidekel

4
, Marcelo Silva

2
, O. Graciela 

Scharovsky
1 

and Guillermo Mazzolini
2,3 

 

(1) Institute of Experimental Genetics, School of Medical Sciences, National University 

of Rosario, Santa Fe 3100, (2000) Rosario, Argentina 

(2) Gene Therapy Laboratory, Liver Unit, School of Medicine, Austral University. Av. 

Presidente Perón 1500, (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina 

(3) CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) 

(4) VentureL@b. Escuela de Negocios. Universidad Adolfo Ibañez. 

Av. Diagonal Las Torres 2700, Peñalolen 791000, Santiago - Chile 

 

Pablo Matar: matarpablo@hotmail.com 

Laura Alaniz: laualaniz@yahoo.com.ar 

Viviana Rozados: viviana.rozados@gmail.com 

Jorge B. Aquino: jaquino@cas.austral.edu.ar  

Mariana Malvicini: mariana.malvicini@gmail.com 

Catalina Atorrasagasti: mcatalinaa@gmail.com 

Manuel Gidekel: mgidekel@gmail.com 

Marcelo Silva: msilva@cas.austral.edu.ar 

O. Graciela Scharovsky: graciela.scharovsky@gmail.com 

 



 22 

Guillermo Mazzolini: gmazzoli@cas.austral.edu.ar 

 

Correspondence to:  

O. Graciela Scharovsky PhD, Institute of Experimental Genetics, School of Medical 

Sciences, National University of Rosario, Santa Fe 3100, (2000) Rosario, Argentina. 

Phone: +54 341 4804558/63, Ext:244. Fax: +54 341 4804569. E-mail: 

graciela.scharovsky@gmail.com  

Guillermo Mazzolini M.D., Ph.D. Liver Unit, School of Medicine. Austral University, 

Av. Presidente Perón 1500, (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina. Phone: 

+54-2322-482618. Fax: +54-2322-482204. E-mail: gmazzoli@cas.austral.edu.ar  

 

 



 33 

Abstract 

Increasing evidence suggests that immune responses are involved in the control of cancer 

and that the immune system can be manipulated in different ways to recognize and attack 

tumors. Progress in immune-based strategies has opened new therapeutic avenues using a 

number of techniques destined to eliminate malignant cells. In the present review, we 

overview current knowledge on the importance, successes and difficulties of 

immunotherapy in liver tumors, including preclinical data available in animal models and 

information from clinical trials carried out during the lasts years. This review shows that 

new options for the treatment of advanced liver tumors are urgently needed and that there 

is a ground for future advances in the field. 
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Background 

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third 

leading cause of cancer-related death worldwide [1]. Unfortunately, the incidence and 

mortality associated with HCC is increasing steadily [2] as a consequence of epidemics 

of hepatitis C virus (HCV) and hepatitis B virus (HBV). HCV and HBV infections are 

causally associated with the majority of HCC in the world [3]. 

Current therapeutic options are extremely disappointing since less than 30% of 

the patients evaluated in referral medical institutions can receive a curative therapy, 

consisting in either resection or transplantation [4]. Thus, in the majority of advanced 

HCC cases surgery is not possible and the prognosis is dismal due to underlying cirrhosis 

as well as to poor tumor response to chemotherapeutic agents [4-6].  

Unfortunately, advanced colorectal carcinoma (CRC) depict similar scenario [7]. 

Colorectal carcinoma is one of the most common malignancies and a leading cause of 

cancer-related death [1]. Hepatic metastases are present in 15-25% of patients at the time 

of CRC diagnosis [8]. Surgical resection, which is accepted as first-line CRC treatment, 

cannot be performed in the majority of patients [9]. Following diagnosis, the median 

survival of untreated patients with liver metastases is 6–12 months [10]. The application 

of new chemotherapeutic cocktails, including irinotecan or oxaliplatin, result in higher 

rates of objective responses and survival [11-15] and the recent incorporation of 

monoclonal antibodies against vascular endothelial growth factor and epidermal growth 

factor receptors provides additional, although limited, improvement in patients survival 

[15, 16].  
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Thus, new strategies are needed for treatment of patients with advanced liver 

tumors and immunotherapy approaches might play a significant role among them. Cancer 

immunotherapy can be defined as a set of techniques aimed to eliminate malignant 

tumors through mechanisms involving immune system responses [17, 18]. The goal of 

cancer immunotherapy is to understand how to direct against tumors similar kind of 

extremely potent immune responses such as those naturally occurring against microbial 

antigens, and subsequently how to apply these results to human cancer diseases. It has 

been observed in patients with HCC that the presence of a lymphocyte infiltrate is 

associated with a better prognosis after resection and transplantation [19]. Similarly, 

presence of lymphocyte infiltration in tumors was correlated with patient survival in 

CRC: survival rate of patients with large numbers of CD3+-T cells was 5-years higher 

[20, 21]. 

There is a limited clinical experience regarding the application of immunotherapy 

in liver tumors contrary to more immunogenic tumors such as melanoma, lymphoma or 

renal cell carcinoma. Increasing evidence suggests that immune responses are involved in 

the control of cancer and that the immune system can be manipulated in different ways to 

recognize and attack tumors (Fig. 1). Unfortunately, the presence of chronic HCV or 

HBV infection complicates the success of immunotherapy in patients with HCC because 

these viruses were found to be able to modulate the immune response against tumors and 

to counteract the immune system of the host [22-24].   
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The immune system and the induction of antitumor immunity - basic concepts  

The immune system is clearly capable of recognizing and eliminating tumor cells, 

although cancer cells are considered as poorly immunogenic [25]. Compelling evidence 

suggests that immune cells can eventually play a crucial role in the control of cancer. 

First, both occasional spontaneous tumor regressions have been described in 

immunocompetent hosts while increased cancer incidence has been reported in 

immunocompromised individuals [26]. Second, tumor immunity was demonstrated 

experimentally in several animal models [27]. Third, the immune system often recognizes 

the presence of tumors, as reflected by an accumulation of immune cells at tumor sites 

[28]. 

Despite the ability of the immune system to react against cancer cells, the 

presence of a tumor indicates that the developing cancer can avoid detection or to escape 

the immune response [29]. Mechanisms used to elude recognition include tumor-induced 

impairment of antigen presentation, activation of negative co-stimulatory signals, and 

production of immunosuppressive factors [30]. In addition, cancer cells may promote the 

expansion and/or recruitment of regulatory cells that may contribute to the 

immunosuppressive network; these populations include regulatory T cells (Treg), 

myeloid suppressor cells, and distinct subsets of immature and mature regulatory 

dendritic cells [31].  

All of the previously mentioned mechanisms were shown to be induced in the 

liver by hepatitis viruses [32, 33] and a concomitant chronic HCV/HBV infection in HCC 

patients would probably make the scenario for immunotherapeutic approaches more 

complicated.      
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The immunosurveillance and the immunoediting hypothesis 

In the last 30 years we have witnessed a dramatic change in basic concepts related 

to tumor immunology, from the strict theory of tumor immunosurveillance postulated by 

Burnet and Thomas [34, 35] to the very recent immunoediting concept developed by 

Schreiber and colleagues [36]. Using a broader look at tumor immunology, these authors 

have elegantly described tumor progression as a process following three phases: 

elimination; equilibrium and, finally, escape, in which tumor cells develop several 

strategies to avoid their immune-mediated elimination. The variety of processes by which 

tumors evade the immune response is surprisingly large. Even though cancer cells 

express new or inappropriate antigens, tumors of diverse origin develop common and/or 

unique mechanisms that enable them to escape from the immune system.  

 

The liver: an immunological privileged organ 

Mechanisms of tolerance and their implications in cancer are of central interest in 

immunology. The liver is an especial organ for its immunological privileged status which 

is a consequence of several unique immunological properties causing antigen tolerance 

rather than immunity [37, 38] and relative resistance against liver allograft rejection [39], 

allowing that 20% of allotransplanted patients could be withdrawn from long-term 

immunosuppression [40]. Aggressive autoimmune hepatitis is a somewhat uncommon 

clinical manifestation of systemic autoimmune disease [41]. Moreover, it has been 

observed in animal models that naïve liver reactive T cells ignore antigens derived from 

or expressed in the liver [42], generating tolerance to them [37]. It is important to note 
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that effector T-cells alone may not be sufficient for disease induction without additional 

inflammatory and costimulatory signals. A potential role for TLR3 has been reported as 

one of the critical mechanisms of hepatic immune privilege [43].  

As it was excellently reviewed by Abe and Thomson [38], liver immunoprivilege 

properties are likely due to its unique repertoire of antigen-presenting cell (APC) 

populations, consisting of Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs) 

and dendritic cells (DCs). KCs represent 80-90% of liver resident macrophages and are 

very efficient in clearing LPS from gut-derived blood circulation but less efficient in 

activating CD4+ cells. LSECs were shown to efficiently separate leukocytes from 

hepatocytes [44], are able to express factors involved in T cell death, induce 

differentiation of CD4+ towards the Th2 anti-inflammatory phenotype and were found to 

co-stimulate Tregs and inhibit allogeneic T cells. DCs are located in portal areas or 

circulate through liver sinusoids towards lymph draining vessels, and upon maturation 

increase their expression levels of IL-12 and CCR7, two molecules involved in CD4+ T 

cell differentiation towards the Th1 pro-inflammatory phenotype and in DC trafficking 

towards secondary lymphoid organs, respectively. From all liver APCs, DCs are the most 

potent to elicit immune responses. Due to the fact that KCs and LSECs constitutively 

express IL-10 and TGF-beta anti-inflammatory cytokines, T cell differentiation is 

affected and APC maturation inhibited in the liver [45, 46]. As a consequence, the DCs 

are less immunostimulatory than in spleen [47, 48]. 

In addition, hepatic stellate cells (also known as Ito cells) were shown to be 

involved in liver immunological processes only in case of chronic liver injury. They are 

induced to transdifferentiate into myofibroblasts and to secrete a number of cytokines and 
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chemokines, such as transforming growth factor beta (TGF-beta) [49, 50]. In fact, 

activated hepatic stellate cells have been shown to closely interact with lymphocytes [51] 

and to have potent antigen-presenting properties [52]. Furthermore, stellate cells from 

hepatitis patients have been shown to get further activated by lymphocyte proximity, 

especially by CD8+ cells, and to phagocyte CD45+ cells [53]. Those facts suggest that 

stellate cells are likely implicated in the down-regulation of the immune response in 

HCV/HBV-derived cirrhosis and might also be involved in HCC. These findings open 

new therapeutic opportunities aimed to specifically targeting hepatic stellate cells in 

advanced cirrhosis and HCC.  

Finally, when HCC coexists with HBV/HCV derived cirrhosis, these viruses as 

shown in chronic hepatitis, would likely exert direct and indirect effects on further 

downregulation of the immune response through complex and not fully understood 

mechanisms. They might influence the activity of hepatic stellate cells as well as that of 

resident and recruited immune cells, such us DCs, through direct viral protein interaction 

[54-57]. As reviewed by Liu et al. [33] in chronic B/C-viral hepatitis a reduction in the 

myeloid and plasmacytoid DC liver populations, down-regulation in IL-12 and IFN-

gamma levels, an up-regulation of IL-10 and an impairment in DCs capacity to prime 

naïve T cells may account for the insufficient immune response observed. Similarly, a 

reduction in circulating DC numbers was found in the peripheral blood of patients with 

either chronic-B-hepatitis [58] or chronic-C-hepatitis [59, 60]. HBV/HCV viruses would 

likely contribute to the DC impaired allostimulatory and IL-12 production capacities 

observed in HCC patients [61], although this remains to be elucidated. 
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Hepatic tumors escape from the immune response  

Hepatic tumors use two main strategies to escape from the immune response - 

attack and defense - the first is designed to attack the immune cells, hence avoiding 

their antitumor action and the other to defend tumor cells by enabling them to pass 

unnoticed by the immune response (Table 1).  

Attack strategies 

Fas ligand (FasL), a type II transmembrane protein reported to induce apoptosis 

of Fas-bearing cells [62] was shown to confer immunological privilege to certain tissues 

and organs such as eye, placenta and central nervous system [63-65]. More recently, the 

interaction of FasL or its secreted isoform (sFASL) produced by tumor cells, with their 

specific Fas receptor, expressed on T lymphocytes, was implicated in tumor cell evasion 

from immune surveillance [66]. The α-fetoprotein (AFP), an oncofetal protein 

overexpressed in some HCC, was shown to induce Fas-L and tumor necrosis factor 

[TNF]-related apoptosis expression in HCC Bel7402 cells, as well as TRAIL receptor 

and Fas in lymphocytes [67, 68]. Another pathway developed to attack immune cells 

involves the interaction of PD-1 (programmed death-1) with its ligands PD-L1 and PD-

L2. Immunotherapy with an expression plasmid encoding the extracellular domain of PD-

1 (sPD-1) in H22 HCC cells was shown to improve the immune response against tumors 

[69]. One further mechanism might implicate Galectin-1 (Gal-1) - a β-galactoside binding 

protein with immunoregulatory properties, which is known to play a role in cytotoxic 

immune cells elimination. It is likely that Gal-1 contributes to tumor immune escape by 

killing activated T cells [70, 71]. In fact, the expression of Gal-1 was shown to be 

induced in primary HLF, HuH7 and HepG2 cells [72]. 
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Defense strategies 

The pressure that the immune system exerts on the growth of tumor cells seems to 

have led them to develop several protection mechanisms against any immune attack. It 

has been shown that human HCC-related factors not only induce and expand the 

regulatory CD4+CD25+ T cell population (Tregs), but also enhance their suppressor 

ability [73]. A high prevalence of Tregs infiltrating HCC seems to be an unfavorable 

prognostic indicator [74]. Another mechanism frequently used by tumors is the down-

regulation of MHC-I [75] , B7-1/B7-2 co-stimulatory molecules [76] or transporter 

associated with antigen processing (TAP)1/2 molecules in human HCC [77]. In addition, 

HCC cells might escape from CTL-induced apoptosis by increasing Bcl-2 and decreasing 

Bcl-xs expression [78] and/or raising the Survivin level, an important member of the 

inhibitor of apoptosis (IAP) family [79, 80]. 

Indoleamine 2,3 dioxygenase (IDO) catalyses the degradation of the essential 

amino acid tryptophan and synthesizes immunosuppressive metabolites [81]. Larrea and 

colleagues [82] reported that IDO constitutes an important mediator of peripheral 

immune tolerance in chronic hepatitis C virus (HCV) infection. Induction of IDO 

expression may reduce T-cell reactivity to viral antigens in chronic HCV infection and 

may also influence the immune response against HCC in patients chronically infected 

with HCV. Understanding of the immune-escape mechanisms should help us to design 

immunotherapy protocols to increase the efficacy of therapeutic success. 
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Systemic use of immunostimulatory cytokines 

There is a broad experience regarding the use of cytokines to induce immune and 

inflammatory responses against cancer [83, 84]. Cytokines have been shown to act 

through different mechanisms: i) stimulation of antitumor immune responses; ii) 

induction of tumor cell apoptosis (e.g. through induction of TRAIL) [85]; iii) interference 

in uncontrolled proliferation of cancer cells, and iv) anti-angiogenesis.  

One of the most explored cytokines is interferon alpha (IFN-α) [86, 87]. The IFN-

α antitumor mechanism of action includes direct effect on tumor cells, induction of 

lymphocyte and macrophage cytotoxic activities and anti-angiogenesis [88, 89]. Two 

controlled trials comparing IFN-α with symptomatic treatment in patients with HCC 

were reported. In one of them the use of high doses of IFN-α (50 MU/m2, tiw) resulted in 

a response rate of 36% [90]. In the other trial, in which lower doses of IFN-α (3 MU/m2, 

tiw) were administered, the response rate was poor (7%) [91]. Even though it is clear that 

the different responses are related to the administered doses, the toxicity associated with 

the higher IFN-α dose is not acceptable, especially for patients with end-stage liver 

disease. Nevertheless, systemic administration of IFN-α [92] or IFN-β [93] should be 

considered as a supportive treatment after hepatectomy or tumor ablation, which may 

prevent or delay tumor relapses in patients with HCC [94]. A combination of IFN-α and 

chemotherapy was applied to patients for treatment of advanced HCC [95, 96] and 

metastatic CRC to the liver [97]; however, randomized controlled studies failed to 

demonstrate that combination protocol results in improved outcome when compared to 

chemotherapy treatment alone [98, 99]. 
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Interleukin-2, an immunostimulatory cytokine, has been administered alone or in 

combination with other treatments against liver tumors. The non-controlled nature of 

most studies precludes from any definitive conclusion. Systemic IL-2 was able to 

produce objective responses against HCC when given alone [100] or in combination with 

melatonin [101] or lymphokine activated killer (LAK) cells [102]. On the other hand, 

hepatic artery infusion of interleukin 2, with or without chemotherapy, induced objective 

remissions in 5% to 15% of liver metastases from CRC [95, 103, 104]. In a phase II 

clinical trial, Correale and colleagues showed that the combination of polychemotherapy 

with granulocyte macrophage colony-stimulating (GM-CSF) factor and low-dose IL-2 in 

colorectal carcinoma patients, results in high number of objective responses and low 

toxicity [105].   

There is one report on combination of hepatic trans-arterial chemotherapy with 

IFNγ plus IL-2 in patients with advanced HCC [106]. The achieved objective responses 

highlight some biological effect of this treatment combination. In another study, when IL-

2 was administered together with IFNγ and GM-CSF to advanced HCC patients, clinical 

results were poor [107]. However, in spite of some stimulating results, the clinical 

development of IL-2 has been proved unsuitable because in parallel to their efficacy the 

results involved severe toxicity, including systemic vascular leak syndrome. 

No trials were reported on the application of other cytokines such as IL-12, 

TNFα, or TRAIL, known to have a potential effect against primary or metastatic liver 

cancer in humans. Nevertheless, concerns were raised following reports on the 

development of severe toxicity after systemic treatment with IL-12 or TNFα [108, 109] 

in other type of tumors. 
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Although being able to obtain some positive outcomes in the treatment of liver 

tumors, systemic application of cytokines is accompanied by toxic effects which can be 

overcome by local delivery. A possible role of some of the immunostimulatory cytokines, 

e.g. IL-12, could be reasonable in the context of vaccination as an adjuvant administered 

at low doses.  

  

Immunostimulating monoclonal antibodies 

In the field of cancer therapy mAbs can act directly against tumor cells or 

indirectly by interfering with several processes such as survival, cellular proliferation or 

angiogenesis. The immunostimulating monoclonal antibodies which are those 

corresponding to the latter group, are defined as a new family of drugs aimed to augment 

immune responses. They consist in either agonistic or antagonistic mAbs which are 

aimed to bind key immune system receptors, thereby enhancing antigen presentation, 

providing co-stimulation or counteracting immune-regulation [110].  

 

Regulation of T-cell responses 

T-cells express several co-signalling molecules, typically cell-surface 

glycoproteins classified as co-stimulators or co-inhibitors [111, 112]. The outcome of T-

cell responses depend on the balance between co-stimulatory and co-inhibitory 

molecules. Thus, antigenic signalling in the absence of co-stimulatory molecules results 

in suboptimal immune activation and may lead to T-cell deletion or unresponsiveness. 

Monoclonal antibodies targeting co-stimulatory molecules expressed on T-cells may act 

agonistically, working as surrogate ligands and augmenting T-cell proliferation and 
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survival. Alternatively, mAbs may act antagonistically, counteracting the inhibitory 

effects of co-inhibitor molecules or Treg-cells. 

 

Costimulation with agonistic mAbs  

Diverse costimulatory molecules appear to regulate T-cell response, working 

specifically at different time points [113, 114]. Antibodies against CD28 are known to 

potentiate antitumor immunity in combination with bi-specific antibodies that bind to 

both the tumor antigen and the TCR-CD3 complex [112]. Some anti-CD28 antibodies, 

termed superagonist antibodies, can activate T-cells without concomitant TCR 

engagement. Unfortunately, concerns were raised following reports of severe toxicity in a 

Phase I dose-escalation trial with an anti-CD28 mAb (TGN1412) [115]. 

Another costimulatory molecule, CD137 (also known as 4-1BB), is a member of 

the TNF-receptor superfamily, expressed in antigen-activated T-cells (CD4+, CD8+, 

Treg and NK cells), DCs, cytokine-activated NK cells, eosinophils, mast cells and, 

intriguingly, endothelial cells of some metastatic tumors [116-118]. The natural ligand 

for CD137 (CD137 ligand) is constitutively produced by activated APCs. Agonistic anti-

CD137 Abs strongly promote survival of T-cells and prevent activation-induced cell 

death [119, 120]. Antitumor effects of anti-CD137 mAbs were first recognized by Melero 

et al. [121] in established Ag104 sarcoma and P815 mastocytoma. These effects are 

thought to be involved in the activation of naive T-cells which are specific for tumor 

antigens cross-presented by DCs. Repeated systemic injections of agonistic anti-CD137, 

in two mouse models of CRC, induced tumor eradication in 3 out of 5 mice [122]. 

Unfortunately, this therapeutic modality may have serious drawbacks. Niu and colleagues 
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found that a single injection of anti-CD137 given to BALB/c or C57BL/6 control mice 

led to the development of a series of anomalies such as splenomegaly, lymphadenopathy, 

hepatomegaly, multifocal hepatitis, anemia, altered trafficking of B cells and CD8+ T-

cells, loss of NK cells, and a 10-fold increase in bone marrow cells bearing the phenotype 

of hematopoietic stem cells [123].  

OX40 (also known as CD134 and TNR4) is another member of the TNF receptor 

family, specifically expressed in activated CD4+ and CD8+ T lymphocyte, B-cells, DCs 

and eosinophils [124]. OX40 ligand (OX40L) is expressed in activated APCs and can 

also be found in activated T-cells and in endothelial cells [125]. OX40 seems to be 

particularly important to ensure T-cell long-term survival, probably through up-regulation 

of the anti-apoptotic proteins Bcl-xL and Bcl-2 [126]. Weinberg [127] showed that 

systemic OX40 ligation increases tumor immunity, with a role for CD4+ cells in the B16 

melanoma model. Phase I clinical trials, using a murine anti-human OX40 mAb, have 

been initiated in patients with advanced cancer of multiple tissue origins; however, it can 

not be administered in several repeated doses because of its xenogeneic nature, which is 

likely to trigger immune responses against murine sequences [128]. 

Thus, agonistic mAbs have been found to produce some benefits in treatment of 

liver tumors although their systemic application causes serious undesired secondary 

effects. Intratumoral application of low doses of them might overcome some of the 

systemic delivery problems. 
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Counteracting immunoregulation with antagonistic mAbs  

The cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, also known as 

CD152) is an inhibitory receptor with a structural homology to the co-stimulatory 

receptor CD28 [111, 129]. Under antigenic stimulation, ligand binding to CTLA-4 

generates inhibitory signals mediating reduction in T-cell proliferation and in IL-2 

secretion. Administration of antagonistic anti-CTLA-4 mAbs demonstrated antitumor 

effects in different murine tumor models including colon, prostate and renal carcinomas, 

as well as fibrosarcoma and lymphoma [130, 131].  

As mentioned earlier, PD-1 and its ligands B7-H1 (also known as PD-L1) and B7-

DC (also known as PD-L2) [111, 132] deliver inhibitory signals to T cells.  

Administration of mAbs anti-PD-1 and B7-H1 produced CTL-mediated antitumor effects 

in mice [133].  

The finding that HCC-associated antigen HAb18G/CD147, a member of the 

CD147 family, enhances tumor invasion and metastasis through induction of matrix 

metalloproteinases [134] led to the development of an anti-CD147 therapy. By using an 

orthotopic model of HCC in nude mice, Ku and colleagues [135] showed that the 

application of two different anti-CD147 mAbs (HAb18 and LICARTIN) resulted in 

consistent inhibition of both tumor and metastasis growth.  

In animal models, immunostimulatory mAbs antitumor effects were demonstrated 

when used either alone or in combination with radiotherapy or chemotherapy [136, 137]. 

Clinical experience with mAbs is scarce; however, several immunostimulatory mAbs 

have now been introduced in clinical trials and early results suggest that they might 

enhance antitumor responses with accepted toxicity. Therapy with immunostimulatory 
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antibodies alone or in combination with other strategies should be carefully designed in 

order to avoid induction of autoimmune toxicity as a consequence of uncontrolled 

stimulation of the immune system effector arm. 

 

Gene transfer of cytokines and costimulatory molecules. Genetic vaccination 

Gene therapy is a promising novel therapeutic strategy for treatment of several 

heritable and non-heritable human diseases [138, 139]. Since about 20 years ago, when 

the first clinical trial was initiated, and after more than 1300 clinical trials performed all 

around the world ( www.wiley.co.uk/genmed/clinical/), we learned that the core concept 

of gene therapy may be applicable: genes introduced into patients can be safely expressed 

[140]. However, we have also learned that vector efficiency in clinical applications is not 

as good as expected [141, 142]. Cancer represents almost 70% of the clinical trials 

conducted in patients and 25% of these studies consisted in the application of cytokine 

genes.  

Gene transfer of immunostimulatory cytokines (e.g. IL-2, IL-4, IL-6, IL-7; IL-12, 

INF-γ, TNF-α, GM-CSF) was shown to overcome the immune tolerance against tumors, 

facilitating their eradication in some cases [143-145] (Table 2). Two main approaches 

have been used [144]: i) direct  injection of vectors expressing cytokines/chemokines/ 

costimulatory molecules into tumor lesions, or ii) use of tumor cells/DCs transduced ex 

vivo with vectors expressing cytokines/costimulatory molecules.  

Interleukin 12 (IL-12) is a potent cytokine that showed antitumor activity in a 

number of tumor models [146, 147]. Multiple action mechanisms mediating its activity 

are known, including the activation of NK cells, cytotoxic T lymphocytes and the 
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induction of a TH1 type of response [146]. It also inhibits tumor angiogenesis and 

enhances the expression of adhesion molecules on endothelial cells, thus facilitating the 

homing of activated lymphocytes to the tumor [148, 149]. However, IL-12 was shown to 

eventually induce severe toxicity when administered systemically as a recombinant 

protein [150]. Thus, unspecific toxic effects of systemic IL-12 administration might be 

solved by the use of gene therapy strategies, allowing local production of IL-12 at the 

tumor milieu and resulting in high local levels with low systemic concentrations [151]. 

Consistently, the potential usefulness of IL-12 gene transfer for liver tumors treatment in 

animal models was demonstrated by different groups including ours [152-154]. We also 

reported that intratumor injection of an adenovirus encoding IL-12 genes (AdIL-12) into 

rats with orthotopic HCC induced the complete tumor elimination in the majority of 

animals [155]. Potent effects of this vector have also been shown in a very aggressive 

multifocal HCC model developed in rats, by treatment with DENA [155, 156] as well as 

in mice bearing hepatic metastases of colorectal carcinoma [157, 158] and in woodchucks 

chronically infected with woodchuck hepatitis virus (WHV) [159]. The toxicity observed 

under high IL-12 levels is partly due to induction of IFN-γ overproduction [160]. An 

encouraging result is that IL-12 gene transfer in combination with another vector 

expressing  the chemokine IP-10 (AdIP-10) allowed the reduction in the AdIL-12 dose 

with a similar outcome efficacy [161]. The underlying mechanism is the following: 

lymphocytes get attracted to tumors due to a local IP-10 expression and subsequently 

they are activated by IL-12. In addition, a combination of IL-12 with MIP3α 

demonstrated similar synergistic antitumor effects [162].  
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The effects of IL-12 gene transfer were assessed in patients with advanced 

gastrointestinal carcinomas in a phase I clinical trial consisting mainly in liver tumors. 

Patients were administered with up to 3 intratumor injections of AdhIL-12[163]. 

Treatment feasibility and safety were studied. Even though maximal tolerated dose has 

not been reached, some evidence of biological and antitumor activities were observed. 

One partial response, two minor regressions and six stabilizations were achieved. In four 

out of 10 patients, a significant lymphocyte infiltrate was observed in injected tumors.  

It has been stated that abnormal elevated levels of Th2 cytokines such as IL-10 

are able to skew an immune response that favors tumor growth [164]. In contrast, Lopez 

et al. [165] have recently shown that tumor cell vaccines producing a combination of IL-

10 and IL-12 act synergistically in eradicating established CRC, with the underlying 

mechanisms being not fully addressed.  

Systemic injection of recombinant IL-2 used extensively in clinical oncology for 

patients with metastatic renal carcinoma and melanoma has shown low efficacy and high 

toxicity. A phase I-II clinical trial consisting in the administration of a recombinant 

adenovirus encoding for IL-2 gene was carried out in patients with advanced digestive 

carcinomas [166]. Only one of the treated patients showed a positive tumor response with 

necrosis of the tumor mass.  

Molecules such as HLA-B7 are essential to promote specific T-cell responses. A 

reduced expression of MHC-I was observed in CRC. In an attempt to make CRC more 

visible to the immune system, Rubin et al [167] carried out a phase I clinical trial 

consisting in an indirect intralesional gene transfer of both HLA-B7 and β2-

microglobulin into CRC hepatic metastases. Treatment with a single plasmid construction 
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encoding for both genes in a lipid formulation (Allovectin-7) was feasible and safe in 15 

patients, however, details regarding antitumor effect have not been reported. Such an 

approach could produce significant therapeutic improvements if aimed to deliver 

functionally relevant genes.  

The interaction between CD40 ligand (CD40L, CD154) and its receptor CD40, 

expressed in DCs, is essential for the initiation of cellular and humoral immune 

responses. Gene transfer of CD40-L led to regression of established CRC [168] and HCC 

[169] in a CD8+ T cell dependent manner. 

Replication-selective viral agents (oncolytic virotherapy) hold promise as a novel 

cancer treatment platform. Oncolytic virotherapy is based on the ability of these vectors 

to selectively replicate in cancer cells as a result of different mechanisms of action [170]. 

This novel class of targeting viral vectors exerts direct antitumor effects, but can also be 

engineered to produce immunostimulatory genes, such as GM-CSF, augmenting its 

efficacy. A potent in vivo antitumor effect of an oncolytic vector carrying HSV and GM-

CSF genes has been demonstrated against murine CRC CT26 and murine HCC Hepa 1.6 

[171]. 

The mutant adenovirus dl1520, also called ONYX-015, was the first described 

oncolytic adenovirus [172]. It contains a deletion in the E1B 55K gene that achieves 

preferential replication in cancer cells by different mechanisms. In the case of liver 

tumors, this virus showed a partial antitumor effect on murine models but no evident 

antitumor effect was found when applied to HCC patients. Two separate clinical trials 

showed that ONYX-015 has limited therapeutic effect as monotherapy in patients with 

liver tumors, especially if systemic routes are used [173, 174]. Other oncolytic 
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adenoviruses have been developed, and show promising results in animal models of 

HCC. However, their performances in clinical trials have not been tested so far [175]. 

In conclusion, gene transfer of cytokines and the use of oncolytic viruses are two 

developing immunotherapy strategies which hold promise in treatment of liver tumors. 

The former strategy is being widely applied and after further improvements might assure 

sufficient tumor levels of inflammatory cytokines circumventing toxic systemic effects. 

The latter strategy is in early stages of development and it largely needs to be applied into 

the clinics.   

 

Immunotherapy with dendritic cells 

The armamentarium for immunotherapy protocols has been boosted by the 

identification of DCs as protagonists of antigen presentation [176]. The final outcome of 

DC cross-presentation could be either T-cell activation or T-cell tolerance, depending on 

its activation/maturation status [177]. Thus, while mature DCs are able to induce 

antitumor immunity, antigen presentation by immature DCs results in the induction of 

tolerance [177]. In addition, IL-4 which is overexpressed in the liver under recurrent 

hepatitis C [178] was shown to influence DCs to induce CD4+ T cell differentiation into 

the Th2 lineage and to suppress DC response to IFN-gamma [179]. Up to now, several 

clinical studies consisting in the application of DCs were performed and, as a general 

outcome, no significant side effects were observed in the majority of these trials with 

important biological effects showing the augmentation of cellular immune responses 

against tumor antigens [180].  
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Direct injection of DCs into tumor tissue has been exploited experimentally and 

clinically with diverse results [181-183]. Chi KH and colleagues [184] conducted a phase 

I trial in patients with advanced HCC after conformal radiotherapy. Intratumoral 

injections of autologous immature naïve DCs prior and after radiotherapy resulted in 2 

partial and 4 minor responses. Induction of specific immune responses against AFPs and 

enhancement in NK activity were observed.  

DCs ex vivo-engineered to produce IL-12 were shown to induce antitumor 

immunity in mice [182, 183]. Similar results were reported after application of DCs 

genetically modified to express IL-7 [185] or IL-15 [186]. A phase I clinical trial 

consisting in the intratumoral injection of autologous DCs, transfected with Ad-IL-12, in 

patients with metastatic gastrointestinal carcinomas was carried out [187]. This strategy 

was feasible and very well tolerated in doses up to 50x10
6 

DCs. One partial response and 

2 stabilizations were observed. In 3 out of 10 treated patients, a marked increased in 

CD8+ T lymphocyte infiltrates was found, and in 5 of them NK activity was significantly 

induced. One of the possible reasons behind the limited antitumor activity might be that 

DCs would likely be retained within the malignant tissue due to increased intratumoral 

levels of IL-8 expression as well as other chemotaxis signals, preventing their 

mobilization to the secondary lymphoid organs for further amplification of immune 

responses. Consistently, scintigraphic tracking of injected 
111

In-labelled DCs showed 

retention of DCs inside tumors [188]. 

As previously discussed, CD40-L is a costimulatory molecule expressed mainly 

on activated CD4+ T cells, which is essential for the initiation of antigen-specific T-cell 

responses [189]. Crystal and colleagues [190, 191] showed elimination of CRC nodules 
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after intratumoral administration of CD40-L exogenously expressing DCs. Although this 

approach has not yet been applied in clinical trials, it seems promising. 

Another technique employed to load antigens to DCs consists in the cellular 

transfection with mRNA molecules. Chu et al. transfected total mRNA from CT26 CRC 

cells to DCs and showed strong specific CTL activity as well as protective immunity in 

vivo [192]. Immunization of CEA-transgenic mice, using mature DCs loaded with an 

anti-idiotype antibody that mimics CEA, resulted in a potent antitumor response against 

CEA-expressing CRCs, while immunization with DCs loaded with CEA showed less 

potent response [193]. Morse et al. reported a phase I clinical trial consisting in the 

administration of autologous DCs loaded with CEA RNA (peptide CAP-1) into 21 

patients with resected CRC liver metastases [194]. The procedure was well tolerated, one 

patient had a minor response, and one had stable disease. More recently, the same group 

carried out another phase I study in 14 patients (12 CRC and 2 non-small lung cancer) on 

the effects of immunotherapy combined with DCs transduced with a fowlpox vector 

encoding CEA and costimulatory molecules. Immunization of these patients was safe and 

it was able to activate potent CEA-specific immune responses. In a phase I clinical trial 

with the aim of increasing the amount of circulating DCs, Fong et al. incubated DCs with 

the hematopoietic growth factor Flt3 ligand before injecting DCs loaded with CEA-

derived peptide into 12 patients with colon or non-small cell lung cancer [195]. Two 

patients showed objective responses and two had stable disease.  

Stift and colleagues reported that vaccinations with autologous DCs pulsed with 

tumor lysates in a cohort of advanced cancer patients (including two with HCC) was safe 

and feasible [196]. Delayed-type hypersensitivity (DTH) skin test was positive in the 
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majority of vaccination-treated patients and induction of IFN−γ producing T cells was 

achieved in 4 other patients (not HCC). Another similar DC-based strategy was applied 

by Iwashita and colleagues [197]. They carried out a phase I clinical trial in patients with 

advanced HCC. DC-based strategy consisted in the subcutaneous injection of DC pulsed 

with tumor extract in 10 patients. One patient showed a partial response and in 2 of them 

AFP levels were decreased. Seven out of 10 showed positive DTH tests for KLH. Tamir 

and colleagues [198] evaluated the effectiveness of tumor-lysate loaded DC vaccines in 

the treatment of advanced CEA-positive CRCs. 

Itoh et al. combined both DCs pulsed with a CEA peptide (restricted to HLA-

A24) and adjuvant cytokines (IFN-α and TNF-α) in the treatment of patients with CEA-

expressing metastatic tumors [199]. Ten HLA-A24 patients with advanced digestive tract 

or lung cancer were treated. No significant adverse effects were observed and the disease 

in 2 positive DTH test was stabilized [200]. A few years later, Ueda and colleagues 

conducted a phase I clinical study in which DCs previously pulsed with a CEA-derived 

peptide were administered to HLA-A24-restricted patients. Eighteen compatible patients 

were enrolled. No severe toxicity was observed. In some patients, stabilization of the 

disease and decrease in CEA levels were reported. Accordingly, patients with clinical 

responses were positive in skin tests and developed specific CTLs [201]. Finally, Babatz 

and colleagues demonstrated that immunotherapy with DCs pulsed with a CEA-derived 

peptide is able to induce specific IFN-gamma producing CD8+ T cells [202]. 

We and others have observed that DCs and NK cell interaction plays an important 

role in tumor immunity [187, 203, 204]. In this regard, Osada and colleagues found in 

patients with metastatic CRC that immunization with DCs transduced with a fowlpox 
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vector encoding CEA was able to increase NK activity in 4 of 9 patients [205]. 

Importantly, increased NK activity was correlated with clinical response. In order to in 

vivo-activate DCs and thereby avoiding ex vivo manipulation, Furumoto et al. injected 

MIP3α chemokine together with CpGs inside CRC tumors [206]. They observed an 

increase in DC number within tumors which were finally eradicated through the 

development of specific CTLs.  

The use of cytokines as a vaccine adjuvant has been shown to be a promising 

option for cancer therapy, due to its potential effectiveness against disseminated disease 

without causing systemic toxicity [207-211]. However, the weakness of these strategies 

lies in: 1) the need of culturing autologous cancer cells from each patient, 2) the problems 

in the selection of positively modified cancer cells, 3) the lack of an efficient APC 

activity in tumor cells and, 4) the limited amount of tumor cells that precludes repeated 

immunizations. Investigators have looked into other strategies to carry cytokines genes or 

tumor antigens (such as the use of allogeneic tumor cell lines) but, unfortunately, 

allogeneic tumor cells may lack sole TAA present within the patient’s own tumor, thus 

reducing its efficacy. 

In conclusion, different strategies involving DCs have been developed during the 

lasts years. Although for some of them no clinical trials have been conducted yet, for 

other strategies a proportion of patients responded to treatment with minor tumor 

regression or stabilization, with variable induction of the immune response. Further 

studies are required for improving the benefits of manipulating the main kind of APCs 

involved in immune reactions. 
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Contribution of adoptive T-cell therapy strategies 

In several animal models, solid tumors were shown to be susceptible to 

elimination after infusion of large amounts of tumor-specific T-lymphocytes [212]. 

However, the translation of these enthusiastic successes into patients are not yet feasible, 

partly due to difficulties in generating tumor antigen-specific T-cells ex vivo [213]. 

Adoptive therapy involves the transfer of ex vivo expanded and stimulated 

immune effector cells to tumor-bearing hosts, aiming at augmenting the antitumor 

immune response [212, 214]. In general, adoptive therapy is accomplished by harvesting 

cells from the peripheral blood, tumor sites (tumor infiltrating lymphocytes), or draining 

lymph nodes from which, the effector cells could eventually be expanded ex vivo, in 

either a specific or non-specific fashion. 

One of the major aims of the adoptive T-cell therapy is the identification of 

tumor-associated antigens (TAAs) that are ectopically expressed or overexpressed in 

tumor cells relative to normal tissues or, tumor-specific antigens (TSAs) that are 

expressed exclusively in tumor cells. Despite aberrant expression of TAAs in tumor cells, 

many of these proteins are also expressed at some level in non-malignant adult tissues 

and, as a consequence, the immune system may recognize TAAs as self-antigens and 

limit the T-cell immune response. In addition, as previously discussed the liver immune 

system usually generates tolerance to proteins expressed by its own cells and HCC 

induces immune response suppression [215]. Moreover, it was demonstrated that many 

malignant tumors find the way of down-regulating, modifying or losing its own antigens, 

in order to avoid immune recognition [29].  
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No TSA with high prevalence have been identified for liver tumors, so far. 

PLAC-1, which in normal tissues is only expressed in placenta, was recently found to be 

expressed in 1/3
rd

 to 1/4
th

 of the analyzed human HCC samples and 3,8% of patients were 

shown to present humoral responses against this antigen [216]. Among TAAs described 

in HCC the most important one is AFP. Several AFP-based immunotherapeutic 

approaches have been applied against HCC [217,218]. Additional TAAs recently found 

to be expressed in HCC are several members of the tumor-specific “cancer-testis” 

antigens (the MAGE, GAGE and BAGE genes, NY-ESO, CTA, TSPY and FATE/BJ-

HCC-2, among others) [219-221];, Aurora-A [222], SCCA [223], and Glypican-3. In 

between them, Glypican-3, a specific immunomarker for HCC that can be used to 

distinguish it from benign hepatocellular mass lesions, is highly immunogenic in mice 

and can induce effective antitumor immunity with no evidence of autoimmunity [224].  

Several TAA antigens are also known for CRC liver tumors, including CEA and CP1 

[225]. Clinical studies must be conducted in order to evaluate the potential use of these 

antigens in immunotherapy for liver tumors.  

The lack of TSAs for HCC may be the most important limit to immunotherapy 

applications aimed to specifically target liver tumor cells. Several technological strategies  

such as serologic recombinant expression cloning (SEREX), gene expression profiling 

and proteomics, are being applied to discover any of those specific markers [226] but, 

until now, the results are limited [227]. 

Another important negative factor limiting the success of this type of 

immunotherapy is the low survival of adoptively transferred T-lymphocytes in cancer 
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patients is. Currently, some strategies are being evaluated to increase the proliferation 

rate of transferred T-cells, including pre-treatment with cyclophosphamide [228]. 

T cells are the cellular model predominantly chosen for adoptive cellular therapy, 

although a role for NK cells and other cytokine-induced lymphocytes have also been 

investigated. Pilot clinical trials of adoptive T cell immunotherapy were initiated in 

cancer soon after the discovery of IL-2 (in the late 1970s), which enabled large-scale 

culture of T cells [229]. Although certain clinical success has been observed in 

melanoma, renal cancer, and lymphoma [230, 231], phase II studies in HCC patients have 

shown objective response rates of only about 20% [232, 233]. 

To date, no randomized clinical trials, but one, had demonstrated efficacy of 

adoptive T cell transfer approaches. Takayama et al. [234] reported benefits of adoptive 

transfer with an adjuvant setting for HCC after surgical resection of the primary tumor. In 

this study, autologous peripheral blood T cells were pre-cultured in medium 

supplemented with CD3-specific antibody and IL-2, and cell infusion was shown to 

reduce the risk of cancer recurrence by 41% when compared to a control group receiving 

only surgery. However, this trial remains unconfirmed, and the mechanism involved in 

the antitumoral effect remains unknown. 

In order to enhance the effector capacity of tumor-specific T cells, different 

cytokines such as IL-18 and IL-12, were tested as potential biological response modifiers 

in the setting of adoptive immunotherapy. Nakamori et al. [235] demonstrated that 

adoptive transfer of IL-18-transduced cytotoxic T-lymphocytes in combination with IL-

12 showed marked inhibitory effects on primary tumors and metastasis in a mouse model 

of orthotopic CRC.  
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Synergistic effect of combined therapy 

Combinatorial strategies against cancer could either consist in a simultaneous 

application of different immunotherapeutic approaches or in a combination of classic 

chemo- or radio-therapeutic protocols with immunologic tools. Some chemotherapeutical 

agents were shown to induce upregulation of tumor-associated antigen expression (such 

as CEA) or to reduce tumor cell resistance to specific cytotoxic T lymphocytes. Some of 

these combinations have been found to produce synergistic rather than additive effects.  

 The immune-inhibitory mechanisms developed by tumor cells, such as 

overproduction of immunosuppressive cytokines (TGF-β and IL-10) or induction of Treg 

cells, are important obstacles that a successful cancer immunotherapy strategy has to 

face. Inhibition of one or more of these mechanisms appear to be a  good strategy to 

induce antitumor immunity [236]. Elimination or inhibition of Treg activity by low-dose 

cyclophosphamide [237] or antibodies against CD25 or CTLA-4 may modify tumor 

immunosuppressive microenvironment, thereby increasing the efficacy of 

immunotherapy.  

It has been shown, both in mice and humans, that pre-treatment with 

cyclophosphamide, known to induce lymphodepletion, results in a sustained function of 

adoptively transferred T-cells. Adoptive transfer efficacy can also be enhanced by 

alternative immunotherapies such as cytokine administration [238] and in some cases by 

standard cytotoxic chemotherapy and radiotherapy [239, 240].  

Preclinical models support the rationale for combining cancer vaccines with 

conventional therapies, such as radiation, chemotherapy, surgery, hormone therapy, as 
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well as other immunotherapies. One of the most promising results was obtained from 

clinical trials combining antibodies against CTLA-4 with other immunotherapies such as 

application of GM-CSF-transduced tumor-cell vaccines. This treatment resulted in the 

alteration of the intratumor balance of Tregs-T effector cells and in tumor rejection [241]. 

Further research is required to optimize the combination of different immunotherapies to 

obtain maximal clinical benefits.  

 

What have we learned from the clinic? Conclusions 

Conducting immunotherapy clinical trials in patients with liver tumors is 

challenging and several strategies have been opened for clinical applications. However, 

the high efficacy of different immunotherapy strategies at eliminating liver tumors in 

animal models is in contrast with the very limited results achieved in patients. There are 

many explanations to why immunotherapy strategies fail or have little impact on patient 

survival. In general, for all solid tumors, the common scenario chosen to test 

immunotherapeutic protocols almost always involves patients with advanced diseases 

that precludes, or at least decreases, the possibility of success. Then, due to the advanced 

status of the cancer disease, the immune system of the majority of treated patients is 

deteriorated and unable to recognize tumor antigens. For the specific case of HCC and 

partially to CRC liver tumors, apart from the immunological privilege status of the liver, 

there are some particular aspects that add further difficulties when aiming for a clinical 

response such as the immunosuppressant effect of chronic HBV/HCV infection on cells 

of the immune system (e.g. DCs) or complications derived from developed cirrhosis 

which usually undermine efforts to stimulate the immune response. There is a general 
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agreement in that different forms of immunotherapy should be tested for overall clinical 

benefits along with conventional treatment regimens evidencing improvements in 

survival. It would be desirable to evaluate the possibility of immunotherapy strategies as 

neoadjuvancy in patients at early stages of the disease such as after surgical removal of 

HCC and hepatic metastases of CRC, two diseases with increased likelihood of 

recurrence. Finally, new ways of long-term local delivery of signals inducing CD4+ T 

cell differentiation towards the Th1 lineage or vaccination against liver tumor antigens 

would eventually overcome the drawbacks of the pro-tolerogenic liver influence and the 

impairment or reduced immune response capacity caused by HBV/HCV viruses.     
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Figure legends 

 

 

Figure 1: Immunotherapeutic strategies for liver tumors: administration of 

recombinant cytokines, adoptive transfer of tumor-reactive T cells generated in 

vitro, gene therapy with cytokines and costimulatory molecules, immunotherapy 

with dendritic cells, stimulation with immunogenic vaccines or antibodies. 
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Tables 

 

Table 1: Mechanisms of hepatic tumor-immune escape. 

 

Mechanisms of hepatic tumor-immune escape 

 

Attack 

 

Defense 

System 

 

Mechanism Ref. System Mechanism Ref. 

Fas/FasL T-cell apoptosis 66 Tregs Immunosuppression 

 

73 

PD-1/PD-1L T-cell apoptosis 

 

69 MHC-I Antigen presentation 75 

B7-1/B7-2 Antigen presentation 

 

76  

Galectin-1 

 

T-cell apoptosis 

 

72 

IDO Immunosuppression 

 

82 

 

Two main strategies to escape from the immune response attack and defense have been 

demonstrated for HCC in experimental and/or clinical setting. Fas: CD95; FasL: CD95L; 

PD-1: programmed death-1; PD-1L: programmed death-1 ligand; Tregs: Regulatory T 

cells; IDO: Indoleamine 2,3 dioxygenase. 
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Table 2: Gene transfer immunostimulatory molecules. 

 

 

Gene transfer of immunostimulatory molecules 

 

Cytokine 

 

Mechanism Ref. 

IL-2 + IL-12 

 

CTLs 149 

IL-10 

 

CD8+ 152 

IL-12 

 

NK, CD4+, CD8+ 187 

IL-12 + IL-10 

 

NK, CD4+, CD8+, Macrophages, Neutrophils 165 

IL-2 

 

CTLs 166 

HLA-B7 

 

CTLs 167 

IL-12 + IP-10 CD8+, CD4+, NK 

 

161 

IL-12 + MIP3α CD8+, CD4+, NK 

 

162 

CD40-L CD8+ 168,169 

 

GM-CSF + HSV CD4+, CD8+ 

 

171 

 

CTLs: Cytotoxic T lymphocytes; NK: Natural killer cells. 

 

 

 



AdoptiveAdoptive T T cellcell
therapytherapy

ImmunostimulatingImmunostimulating
mAbmAb

RecombinantRecombinant
CytokinesCytokines

Gene Gene TherapyTherapy

Dendritic Dendritic CellsCells

CancerCancer VaccinesVaccines

IFNIFN--αα, IL, IL--2, GM2, GM--CSF, TNFCSF, TNF--αα

ILIL--12, IL12, IL--2, CD402, CD40--LL, , 
HLAHLA--B7 and B7 and ββ22--
microglobulin microglobulin ��������������

CoCo--stimulatory stimulatory mAbmAb
antianti--CD28, CD137, Ox40CD28, CD137, Ox40
CoCo--inhibitory inhibitory mAbmAb
antianti--CTLACTLA--4, anti4, anti--PDPD--1, B71, B7--H1H1
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