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Abstract Connective tissue growth factor (CTGF) is a

member of the CCN family of secreted, matrix-associated

proteins encoded by immediate early genes that play vari-

ous roles in angiogenesis and tumor growth. CCN family

proteins share uniform modular structure which mediates

various cellular functions such as regulation of cell division,

chemotaxis, apoptosis, adhesion, motility, angiogenesis,

neoplastic transformation, and ion transport. Recently,

CTGF expression has been shown to be associated with

tumor development and progression. There is growing body

of evidence that CTGF may regulate cancer cell migration,

invasion, angiogenesis, and anoikis. In this review, we will

highlight the influence of CTGF expression on the biolog-

ical behavior and progression of various cancer cells, as

well as its regulation on various types of protein signals and

their mechanisms.
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Introduction

Connective tissue growth factor (CTGF) was initially dis-

covered in 1991 as a secreted protein in the conditioned

media of cultured human umbilical vascular endothelial

cells [1]. CTGF is a member of the CCN family of secreted,

matrix-associated proteins encoded by immediate early

genes that play various roles in angiogenesis and tumor

growth [2–9]. The name CCN stands for Cyr61 (cysteine-

rich 61), Ctgf (connective tissue growth factor), and Nov

(nephroblastoma overexpressed) [6]. The CCN family now

comprises six members including Cyr61 (CCN1), CTGF

(CCN2), Nov (CCN3), Wisp-1/elm1 (CCN4), Wisp-2/

rCop1 (CCN5), and Wisp-3 (CCN6). These proteins share

uniform modular structure which mediates various cellular

functions such as regulation of cell division, chemotaxis,

apoptosis, adhesion, motility, angiogenesis, neoplastic

transformation, and ion transport [2–9]. Recently, CTGF

expression has been shown to be associated with tumor

development and progression [10–17]. For example, the

level of CTGF expression is positively correlated with bone

metastasis in breast cancer [10], glioblastoma growth [11],

poor prognosis in esophageal adenocarcinoma [12],

aggressive behavior of pancreatic cancer cells [13], and

invasive melanoma [14]. In contrast, CTGF expression was

negatively correlated with proliferation activity and tumor

grade of chondrosarcomas [15], and overexpression of

CTGF has been shown to suppress the tumor growth of oral

squamous cell carcinoma (SCC) cells transplanted into mice

[16]. Accordingly, there is growing body of evidence that

CTGF may regulate cancer cell migration, invasion, angio-

genesis, and anoikis. In this review, we will highlight the

influence of CTGF expression on the biological behavior and

progression of various cancer cells, as well as its regulation

on various types of protein signals and their mechanisms.
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The biological functions of CTGF

The basic structure of CTGF, as in other CCN family pro-

teins, consists of up to four modules that resemble the

functional domains previously identified in major regulatory

proteins (Fig. 1). These four modules share identity with

insulin-like growth factor binding proteins (IGFBP), the von

Willebrand factor (VW), thrombospondin-1 (TSP1), and a

cysteine knot motif [3]. There are also a few biologically

active isoforms, generated by either post-translational pro-

cessing or alternate splicing. A carboxy-truncated CTGF

protein, lacking the CT module, was also isolated in high

concentration from the primary human osteoblasts [5]. The

absence of CT module does not necessarily abrogate its

ability to promote adhesion of osteoblasts. Nevertheless, this

module is responsible for determining the ability of CTGF to

induce dose-dependent adhesion to various other cell types

[18, 19]. The existence of two biologically active truncated

isoforms of CTGF in normal uterine secretory fluids pro-

vided the functional clue for the importance of post-

translational processing of CTGF [2].

CTGF, a 36–38 kD cysteine-rich peptide containing 349

amino acids, is predominantly identified in endothelial

cells, fibroblasts, cartilaginous cells, smooth muscle cells,

and some cancer cell lines [20]. After synthesis, CTGF is

secreted through the Golgi apparatus [21], which requires

its N-terminal 37 amino acid signal sequence. Given that

CTGF is secreted, most of the studies regarding CTGF

function have focused on the effect of exogenously added

recombinant CTGF in cell cultures [22]. Although CTGF is

glycosylated, the glycosylational modification is neither a

prerequisite for secretion [21] nor it has yet been attributed

to any of the reported functions of CTGF.

One of the main functions of CTGF is to promote cell

adhesion through a unique integrin and heparin sulfate

proteoglycan dependent mechanism [23]. The carboxyl-

terminal 10 kDa of CTGF, which binds heparin, has been

shown to be sufficient to promote cell adhesion [18]. This

fragment also promotes fibroblast proliferation [24]. The

integrins through which CTGF promotes adhesion vary

depending on the cell type; for example, CTGF promotes

adhesion to human foreskin fibroblasts through integrin

a6b1, to human platelets through integrin aIIb3, to endo-

thelial cells through integrin avb3, and to blood monocytes

through integrin aMb2 [22].

High levels of CTGF expression has been detected in

many fibrotic lesions, indicating its role in promoting

fibrosis. CTGF exhibits mitogenic and chemotactic effects

on fibroblasts [1] and is also reported to enhance the mRNA

expression of a1(I) collagen, fibronectin, and a5 integrin in

fibroblasts [25]. The finding that TGF-b increases CTGF

synthesis and that TGF-b and CTGF share many functions

in common, is consistent with the hypothesis that CTGF

is a downstream mediator of TGF-b [20]. In endothelial

cells, CTGF mediates several functions such as prolifera-

tion, migration, differentiation, and survival, leading to

enhanced angiogenesis [26, 27]. It also induces chondro-

cyte proliferation and differentiation [28, 29].

Expression of CTGF in different cancers

CTGF is believed to be a multifunctional signaling modulator

involved in a wide variety of biologic or pathologic processes,

such as angiogenesis, osteogenesis, renal disease, skin disor-

ders, and tumor development [2–6, 17]. There are at least 21

different human tumors or cancers that have been found to

have CTGF expression (Table 1), signifying its influence on

the biology and progression of cancer [10–16, 30–62]. Of

particular interest is the fact that CTGF is found to be

expressed in human tumor cells or surrounding stromal cells,

including acute lymphoblastic leukemia (ALL) [30, 31],

breast cancer cells [32, 34–39], cervical cancer [41],

chondrosarcoma [15], cutaneous fibrohistiocytic and vascular

tumors [42], esophageal cancer [12], gastric cancer [43],

glioblastoma and gliomas [11, 44], hepatocellular carcinomas

[45], laryngeal squamous cell carcinoma (SCC) [46], non-

small-cell lung cancer [47–49], melanoma [14, 62], myofib-

roblastic tumors [51], oral SCC [16], ovarian cancer [52],

pancreatic cancer [13, 53–56], prostate cancer [57], rhabdo-

myosarcoma [58], and Wilms tumor [59–61]. In

glioblastoma, CTGF is strongly stained in tumor cells and

proliferating endothelial cells, strongly emphasizing a role for

CTGF in angiogenesis [11]. Furthermore, the level of CTGF

Fig. 1 Structure of full-length and truncated CTGF, in comparison

with other members of CCN family proteins. IGFBP: insulin-like

growth factor-binding protein; VWC: von Willebrand type C motif;

TSP1: thrombospondin type 1 motif; CT: carboxyl-terminal cysteine

knots module. *: These isoforms are believed to originate from post-

translational processing. They are present in biological fluids and cell-

culture medium
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Table 1 Summary of the expression of CTGF in cancer cells

Cancers Cells expressing CTGF Effects of CTGF expression References

1. Acute lymphoblastic

leukemia (ALL)

1. Leukemic cells 1. Worsening of overall survival [30, 31]

2. B cell lineage of ALL

2. Breast cancer 1. Breast cancer cell 1. Promote osteolytic bone metastasis [10, 32–40]

2. Fibrous stroma cells 2. Promote angiogenesis

3. Induce apoptosis (MCF-7 cells)

4. Enhance breast cancer cell motility

3. Cervical cancer NM Cancer progression [41]

4. Chondrosarcoma Chondrosarcoma cells Negative correlation with proliferation,

tumor grade and prognosis

[15]

5. Cutaneous

fibrohistiocytic tumors

(dermatofibroma,

dermatofibrosarcoma

protuberans, malignant

fibrous histiocytoma)

Tumor cells Loss of CTGF expression when benign

fibrohistiocytic tumors achieve malignant

potency

[42]

6. Cutaneous vascular

tumors (angiolipoma,

angioleiomyoma)

Tumor cells Loss of CTGF expression when benign vascular

tumors achieve malignant potency

[42]

7. Esophageal cancer 1. Adenocarcinoma cells 1. Tumor progression and poor survival in

adenocarcinoma cells

[12]

2. Surrounding stroma cells 2. Longer survival in SCC

8. Fibrosarcoma Fibrosarcoma cell Enhanced angiogenesis [36]

9. Gastric cancer Cancer cells 1. Increased lymph node metastasis [43]

2. Poor survival

10. Glioblastoma and

glioma

1. Glioblastoma and glioma tumor cells 1. Stimulate angiogenesis [11, 44]

2. Proliferating endothelial cells in

glioblastoma

2. Positive correlation between CTGF mRNA

levels and tumor grade, gender and pathology

11. Hepatocellular

carcinoma (HCC)

NM 1. CTGF expression was higher in HCC tissue

compared to those of control

[45]

2. Positively correlated with venous invasion

and tumor grade

12. Laryngeal squamous

cell carcinoma (SCC)

Tumor cells 1. Negatively correlated with metastasis

and clinical staging

[46]

13. Lung adenocarcinoma Tumor cells 1. Inhibit invasion and metastasis [47–50]

2. Suppression of cell proliferation and signaling

transduction

3. Negatively correlated with patient survival

and metastasis

4. Inhibit angiogenesis

14. Melanoma Tumor stroma Correlated with invasive histological type [14]

15. Myofibroblastic tumorsa 1. Tumor cells Involved in the pathogenesis

of myofibroblastic tumors

[51]

2. Endothelial cells

16. Oral SCC Tumor cells 1. Attenuated cell growth [16]

2. Less potent tumorigenicity

17. Ovarian cancer Tumor cells Inhibit growth of ovarian cancer cells [52]

18. Pancreatic cancer 1. Pancreatic stellate cells 1. Increased proliferation and invasiveness

of PANC-1 cells

[13, 53–56]

2. Cultured pancreatic cancer cells 2. Enhanced pancreatic tumor growth

3.Cancer-associated fibroblasts

19. Prostate cancer Stromal cells CTGF-expressing stroma induced significant increases

in microvessel density and xenograft growth

[57]
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expression is positively correlated with bone metastasis in

breast cancer [10, 39], progression of cervical cancer [41],

poor prognosis in esophageal adenocarcinoma [12], aggres-

sive behavior of pancreatic cancer cells [13], invasiveness of

melanoma [14], lymph node metastasis and poor survival of

gastric cancer [43], progression of gliomas [44], recurrence

and metastasis of hepatocellular carcinoma [45], increased

proliferation, anchorage-independent growth and invasive-

ness of pancreatic cancer cells [54, 55] (Fig. 2). Based on

these studies, CTGF seems to be a positive regulator of tumor

development and progression.

In contrast to the above reports on CTGF as tumor inducer,

ectopic overexpression of CTGF in oral squamous cell car-

cinoma cells induces attenuated cell growth and decreases

tumorigenicity in an animal model [16]. CTGF has also been

found to induce apoptosis in the human breast cancer cell line

MCF-7 [33] while the expression of CTGF was negatively

correlated with proliferation activity and tumor grade of

chondrosarcomas [15], and also negatively correlated with

lymph node metastasis and clinical staging of laryngeal SCC

[46]. CTGF has been found to suppress cell proliferation and

behave as a tumor suppressor in non-small-cell lung cancer

[47–49]. In ovarian cancers, epigenetic silencing by hyper-

methylation of the CTGF promoter leads to a loss of CTGF

function, which may be a causative factor in the carcino-

genesis of ovarian cancer [52]. In addition, exogenous

restoration of CTGF expression or treatment with recombi-

nant CTGF inhibited the growth of ovarian cancer cells

lacking its expression, whereas knockdown of endogenous

CTGF accelerated growth of ovarian cancer cells expressing

CTGF gene [52]. Collectively, these results suggest that the

role of CTGF in different types of cancer may vary consid-

erably, depending on the tissue involved. The question as how

the action of CTGF protein is determined in a cell or tissue

context, is interesting and deserves further investigation [63].

Roles of CTGF on cancer cell invasion and metastasis

Cancer cell invasion is the most intricate step in the cas-

cade of events leading to metastasis, which occurs through

biological activities and interaction of cancer cells with the

surrounding environment. The invasion process is catego-

rized into three steps: binding of extracellular matrix

(ECM) with tumor cell; protease production; tumor cell

motility via matrix degradation, and after completing these

steps tumor cells enter into the blood stream and lymph

system to initiate distant metastasis [64–68]. Several fac-

tors including integrins, protease, metalloproteinases

(MMPs) and ECM components have been correlated with

cancer cell invasion and metastasis [69]. The MMPs

degrade basement membrane and stroma, facilitating the

invasion of the cancer cells into the adjacent tissues [70].

Metastasis is the dissemination of cancer cells from

primary tumor to distant site, which is a major prognostic

factor governing cancer patient mortality. The metastatic

process involves detachment of tumor cells from primary

tumor mass, micro-invasion of tumor cells into stromal

tissue, intravasation of tumor cells into blood vessels and

extravasation of tumor cell growth in secondary site

[71, 72]. Metastatic competence requires a complex set of

cellular functions that are associated with a cadre of

molecular and cellular changes [73, 74]. To enable

metastasis, tumor cells must coordinate the expression of

metastasis promoter genes and/or decrease the expression

of metastasis suppressor genes. Metastasis suppressor

genes are operationally defined as genes that encode pro-

teins which could suppress the formation of overt

metastases but exert no measurable effect on in vitro or

Table 1 continued

Cancers Cells expressing CTGF Effects of CTGF expression References

20. Rhabdomyosarcoma Tumor cells CTGF emerges as a survival

and differentiation factor

[58]

21. Wilms tumor Tumor cells 1. The expression of CTGF was suppressed

by WT1

[59–61]

2. May be related to tumor progression

a Including angiofibroma, malignant fibrous histiocytoma, infantile myofibromatosis, and malignant hemangiopericytoma; NM: not mentioned

Fig. 2 The roles of CTGF in various aspects of cancer progression
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in vivo proliferation [73, 74]. As a dynamic process,

metastasis requires cells to sequentially invade local tissues

and disseminate from the primary tumor, lodge in and

extravasate from the microvasculature at a secondary site,

and finally form microscopic colonies giving rise to clinical

metastases [75]. Proteins encoded by metastasis suppressor

genes can block any of the steps in this process, the net

result being suppression of overt metastases [76].

Recently, we found that CTGF appears to be a suppressor

of lung tumor invasion and metastasis [47]. Our studies

directly demonstrated that overexpression of CTGF not only

suppressed the ability of lung adenocarcinoma cells to

invade Matrigel in vitro, but also strongly inhibited tumor

metastasis in an animal model. Decreased CTGF expression

in tumor tissues was associated with advanced tumor stage,

lymph node metastasis, early postoperative relapse, and

reduced patient survival rates. We have also demonstrated

that the level of CTGF protein was significantly higher in

normal lung type I and II epithelial cells than in the majority

of metastatic adenocarcinoma specimens, suggesting that

the level of CTGF protein decreases during metastasis.

Furthermore, we showed that a metastasis suppressor gene,

collapsin response mediator protein 1 (CRMP-1), was

functionally involved in the CTGF-mediated invasion and

metastasis inhibition of human lung adenocarcinoma.

CTGF-mediated increase in CRMP-1 expression was abol-

ished by treatment with antibodies that specifically block the

function of integrins avb3 and avb5. In addition, antisense

CRMP-1 oligonucleotides essentially abolished the CTGF-

mediated inhibition of cell invasion. These data indicate that

CRMP-1 acts downstream of CTGF and is regulated by an

integrin-related signaling pathway.

Integrins are important receptors for CCN proteins, and

receptor activation may produce a variety of effects. CTGF

protein can bind directly to integrins avb3 and aIIbb3 [27].

Interaction of CTGF with integrin avb3 promotes endo-

thelial cell adhesion, migration, and survival and also

induces angiogenesis in vivo [27]. CTGF also stimulates

human skin fibroblast migration and proliferation through

integrin a6b1. In contrast, we show that both avb3 and

avb5 integrins were required for the inhibition of CTGF-

mediated invasion [47].

In addition, we also found that colorectal cancer patients

with decreased CTGF expression pronounced strong lymph

node metastasis, with low recurrence time, and a short

survival period [63]. Particularly, CTGF seemed to be an

independent prognostic factor that will allow the successful

differentiation of a high-risk population from the group of

patients with stage II and stage III disease. At a mecha-

nistic level, overexpression of CTGF in human colorectal

cancer cells results in a decrease in the invasive ability.

Consistent with these reports, reduced CTGF expression

significantly enhanced hepatic metastasis of colorectal

cancer cells in a mouse model. Interestingly, CTGF

transfection strongly reduced b-catenin/Tcf signaling and

the level of its downstream gene target MMP-7 in human

colorectal cancer cells [63]. The accumulating evidence

indicates that the signaling/oncogenic activity of b-catenin/

Tcf can be trans-repressed by the activation of nuclear

receptors such as the retinoic acid receptor, the vitamin D

receptor, and the androgen receptor. Our preliminary data

from microarray analysis show that retinoic acid receptor

mRNA was up-regulated in CTGF transfectants. It is

therefore possible that CTGF expression up-regulates

nuclear receptor genes and inhibits b-catenin/Tcf activity

by interacting with them [63]. We suggest that CTGF

inhibits colorectal cancer invasion and metastasis perhaps

through inhibition of the b-catenin/Tcf/MMP-7 pathway.

Furthermore, the ability of CTGF to inhibit metastasis and

invasion suggests that this growth factor may be a potential

candidate of therapeutic importance for patients with

colorectal cancer [63].

Roles of CTGF on cancer cell migration

Migratory ability of a cancer cell is a major prerequisite for

the successful execution of metastatic process, including

movement within the connective tissue of primary site,

entry of cancer cells into circulation by intravasation, and

invasion of the target organ by extravasation; therefore the

migration ability is positively correlated with tumor

metastasis [40]. In order to invade, a tumor cell must

undergo major changes in shape. Cellular motility depends

on localized actin polymerization at the leading edge of the

cells [77], and the polymerization and depolymerization of

actin filaments must be under dynamic control. Simulta-

neously, paxillin and vinculin interact at focal contacts of

the actin stress fibers, providing a link to the extracellular

matrix (e.g. fibronectin and vitronectin). These cytoskeletal

changes enable the invading cell to pass through the stro-

mal cells, extracellular matrix and endothelial cell layer.

Integrins, paxillin, selectins, transmembrane receptor

tyrosine kinases, phospholipids, focal adhesion kinases

(FAKs), GTPases and the S100 calcium binding protein A4

(S100A4) calcium binding protein have been described as

being involved in regulating the organization of the actin

cytoskeleton [78–80].

Previous large scale microarray analysis revealed that

CTGF is crucial for the formation of osteolytic bone

metastasis in beast cancer [10, 81]. Recently, we further

demonstrated that the molecular mechanism by which

CTGF-confers cellular metastatic ability of breast cancer is

mediated by S100A4 upregulation by integrin avb3 and/or

ERK1/2 [40]. This is based on the following evidence.

First, overexpression of CTGF appreciably increases the
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migratory ability of MCF-7 cells. Conversely, knockdown

of CTGF abolishes the migratory ability of MDA231 cells.

Second, CTGF expression leads to morphological altera-

tions and formation of F-actin and focal adhesions. Third,

ERK1/2 activation is essential for the CTGF-mediated

migratory effects. Fourth, blockade of the CTGF–integrin-

avb3 axis attenuates CTGF-induced ERK1/2 activation and

subsequent cellular migration. Fifth, the prometastatic

S100A4 gene is regulated by the signaling cascades of

CTGF–integrin-avb3–ERK1/2 and contributes to the met-

astatic ability. Finally, CTGF expression levels are

correlated with S100A4 expression levels in primary

human breast tumors [40].

Roles of CTGF on cancer cell angiogenesis

Angiogenesis, the formation of new blood vessels, is a

highly coordinated process involving several molecules

and is vital for tumor growth and metastasis [82–85].

Proteins mediating angiogenesis are widely known as

angiogenic factors, including vascular endothelial growth

factor (VEGF), basic fibroblast growth factor (bFGF), and

other growth factors. Among them, VEGF is the major

regulator of tumor-associated angiogenesis [86]. It has

previously been reported that VEGF-A protein expression

is strongly associated with many types of cancer progres-

sion and with clinical manifestation [87, 88]. Inhibition of

VEGF reduces angiogenesis and tumor growth in vivo

[88]. Conversely, VEGF overexpression is associated with

increased microvessel density, tumor metastasis, and poor

prognosis [89–95].

Hypoxia-inducible factor (HIF)-1 a is a transcription

factor that regulates the supply of blood to tissues through its

effects on VEGF expression [96]. HIF-1 a activity is induced

by hypoxia in almost all cell types; however, under normoxic

conditions, the protein is quite sensitive to ubiquitin-

dependent degradation. HIF-1 a protein degradation is

reduced under hypoxic conditions by posttranslational

modification and binding to the von Hippel-Lindau (pVHL)

tumor suppressor protein [97]. HIF-1 a binds to pVHL only

after it is hydroxylated by HIF-prolyl hydroxylase (PHD1)

and acetylated by arrest-defective 1 protein (ARD1) ace-

tyltransferase [98–101]. HIF-1 a protein levels also increase

in response to growth factor stimulation by mechanisms that

differ from those that occur under hypoxic conditions. These

oxygen-independent mechanisms are not clearly under-

stood, but they are thought to involve growth factors,

cytokines, and other signaling molecules that stimulate

synthesis of HIF-1 a or decrease its degradation [102–107].

One possible mechanism involves the activity of con-

nective tissue growth factor (CTGF), an extracellular

matrix—associated signaling molecule that binds directly

with moieties in the pericellular environment. CTGF has

recently been identified as a regulator of angiogenesis and

has many functions in normal and pathologic processes

[1, 6, 11, 17, 26, 27, 35–37, 57, 108–110]. Although CTGF

was originally purified from medium conditioned by

human umbilical vein endothelial cells [111], it can be

produced by and acts on many cell types, including fibro-

blasts, smooth muscle, endothelial, neural, and cancer cells

[28, 29, 47, 112–115]. CTGF can influence several func-

tions of endothelial cells, including in vitro proliferation

and tube formation [26], cell adhesion and migration [27],

and induction of angiogenesis in vivo [26, 27, 108].

However, it has also been reported that CTGF inhibits

angiogenesis in vitro through an interaction with VEGF

[111]. Angiogenic activity of VEGF was restored after the

CTGF–VEGF complex was digested by matrix metallo-

proteinase 3 or -7 [112]. Therefore, CTGF may play an

inhibitory role through VEGF-induced angiogenesis during

embryonic development, tissue maintenance, and the

pathological processes of various diseases. Although CTGF

itself is an angiogenesis factor, its interaction with other

molecules may alter its function.

One previous study revealed that stromal expression of

CTGF promotes angiogenesis of prostate cancer cells [57].

To evaluate the role of stromal-expressed CTGF in tumor

progression, either engineered mouse prostate stromal

fibroblasts expressing CTGF or 3T3 fibroblasts engineered

with mifepristone-regulated CTGF were combined with

LNCaP human prostate cancer cells in the ‘‘differential

reactive stroma (DRS)’’ xenograft tumor model. The

results showed that the expression of CTGF in tumor-

reactive stroma induced significant increases in microves-

sel density and xenograft tumor growth [57].

In breast cancer cells, CTGF has been found to be

abundantly present in MDA-MB-231 cells, and its gene

expression and protein secretion are up-regulated by

hypoxia [35]. In vivo experiments also confirmed that the

xenograft formation and neovascularization activity of this

breast cancer cell line could be suppressed by neutralizing

CTGF-specific polyclonal antibody [36]. In addition,

hypoxia-induced release of CTGF has been found to ini-

tiate the invasive angiogenesis cascade by modulating the

balance of extracellular matrix synthesis and degradation

via matrix metalloproteinases (MMPs) secreted by endo-

thelial cells in response to CTGF [37].

In contrast, CTGF may inhibit tumor angiogenesis by

regulating the expression of VEGF-A. Recently, we have

demonstrated that CTGF expression can inhibit tumor

growth in primary or metastatic sites by reducing VEGF-A

gene expression and its subsequent angiogenic effects in

tumor cells [50]. We also observed that the effect of CTGF

on VEGF-A gene expression was mediated by accelerating

HIF-1a protein degradation through ARD1-dependent
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acetylation. Most importantly, we have provided functional

evidence that CTGF acts as an angiogenesis suppressor,

inhibiting tumor growth and metastasis in mouse models of

human lung adenocarcinoma [50].

Roles of CTGF on cancer cell anoikis

Anoikis is a form of apoptosis induced by loss of cell

anchorage [116], a remarkably complex process involving

several adhesion molecules that interact with an array of

different structural components referred to as the extra-

cellular matrix (cell–matrix anchorage) and neighboring

homotypic or heterotypic cells (cell–cell anchorage). The

process of ‘loss of cell anchorage’ therefore embraces the

dissolution of potentially many different kinds of cell–cell/

cell–matrix interactions. Several means of cell anchorage

provide survival signals to the cell and therefore the term

‘anoikis’ describes rather the final outcome of what results

once these different means of cell adhesion are disturbed

than standing for a distinct and single molecular mecha-

nism leading to apoptosis [116].

Anoikis resistance or anchorage-independent survival

and growth are certain hallmarks of tumor cells. This

property of tumor cells suggests altered activities in tumor

cells that compensates for the cell survival signals lost by

disrupting cell–matrix interactions. However, the exact

mechanisms that are responsible for anoikis resistance of

naturally occurring human cancer cells have not been

clearly understood [117]. Recently, several studies found

that the anoikis resistance of lung adenocarcinoma may be

related to the expression of laminin-5 or Src [117–119].

However, we also found CTGF expression in lung adeno-

carcinoma cell lines may induce their sensitivity to anoikis

and may lead to inhibited metastasis potential (unpublished

results), indicating that CTGF may also play a role in

regulating anoikis of cancer cells.

Conclusion

CTGF is a multifunctional signaling modulator involved in

a wide variety of biologic or pathologic processes, such as

angiogenesis, osteogenesis, renal disease, skin disorders,

and tumor development. Although it was originally isolated

from the conditioned media of cultured human umbilical

vascular endothelial cells, it could also be detected in

endothelial cells, fibroblasts, cartilaginous cells, smooth

muscle cells, and some cancer cells. Recently, CTGF

expression has been found to regulate cancer cell migra-

tion, invasion, angiogenesis, and anoikis. Although CTGF

expression seems to be associated with progression of

many kinds of cancers, its expression may have tumor

suppressive effects in lung adenocarcinoma cells, colo-

rectal cancer cells and oral squamous cell carcinoma cells.

Therefore, the role of CTGF in different types of cancer

may vary considerably, depending on the tissue involved.

Furthermore, the expression of some important cancer

progression-related molecules, such as CRMP-1, HIF-1a,

b-catenin/Tcf/MMP-7, and S100A4, has been found to be

regulated by CTGF. Understanding the detailed mecha-

nisms involved in CTGF-mediated regulation will extend

us further insight on the progression and metastasis of

human cancers. Moreover, deciphering tumor suppressive

effects of CTGF may have future important therapeutic

applications.
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