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ABSTRACT

The task of an constructing energy function is essential for direct stability analysis of electric power
systems. This paper presents a general procedure for constructing analytical energy functions for detailed
lossless network-reduction power system stability models. The main contributions of this paper are: (1)
it develops canonical representations for lossless network-reduction power system models and shows that
such canonical representations cover existing stability models; (2) it derives theoretical results regarding
the existence of analytical energy functions for the canonical representations; (3) it presents a systematic
procedure for constructing corresponding energy functions.
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l. Introduction

There exists a rich history of direct stability
analysis based on energy function approaches. Devel-
opment of energy functions of electric power systems
can be traced back to Magnusson in the forties
(Magnusson, 1947), and this goal was pursued in the
fifties by Aylett (1958), in the sixties by Gless (1966)
and El-Abiad and Nagappan (1966), and in the seven-
ties by Williems (1971). The survey papers by Ribbens-
Pavella and Evans (1985), by Varaiya et al. (1985), by
Fischl et al. (1988), and by Chiang et al. (1995), and
books by Pai (1989), by Fouad and Vittal (1991), and
by Ribbens-Pavella and Murthy (1994) give exposi-
tions of recent results and methods concerning direct
transient stability analysis.

The accuracy of stability assessments highly
depends on the model precision of the underlying power
systems. Two different classes of power system models
for direct transient stability analysis have been pro-
posed: network-reduction models and network-preserv-
ing models (Chiang et al., 1995). Traditionally, direct
methods have been developed for network-reduction
models, where all of the load is expressed in constant
impedances, and the entire network representation is
reduced to the generator internal buses. Network-
preserving models have been proposed in the last decade

to overcome some shortcomings of the network-reduc-
tion models and to improve the modeling of generators,
exciters, automatic voltage regulators and load repre-
sentations. Please refer to Chiang, Chu, and Cauley’s
work for recent developments (Chiang et al., 1995;
Chu, 1996).

Construction of analytical energy functions is the
central problem in direct stability analysis. Unfortu-
nately, there does not exist a general formulation of
analytical energy functions for power system stability
models. The objective of this paper is to present a
general framework for constructing analytical energy
functions for lossless network-reduction power system
stability models. To this end, we develop canonical
representations for stability models and show that such
canonical representations include existing stability
models as special cases. We then conduct an analytical
study on the developed canonical representations. The
canonical representations facilitate the construction of
analytical energy functions. Given a new stability
model, the proposed canonical representations provide
a systematic way to construct an energy function for
the new model.

Il. Various Network-Reduction Power
System Models
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This section reviews several existing network-
reduction power system models and presents a general
representation which includes these existing models.
Throughout this paper, we consider a power system
consisting of n generators. Buses #1, ..., #n are
generator buses, and Bus #n+1 is the reference bus.

1. The Classical Model

In this model, a synchronous machine is repre-
sented by a constant voltage behind its transient reac-
tance (i.e., the flux linkages are assumed to be constant
during the transient period). Mathematically, the
dynamical behaviors of the i-th generator can be rep-
resented, using the infinite bus as a reference, by the
so-called second-order swing equations:

5,»:60,

M@,=-D®;+F, —P, i=1,2, .., n,

where
n+1 . n+1
P, = %‘,i VVB,sin(6—0,)+ j};i VV,C,cos(6,-6)).

V, is the constant voltage behind the direct axis tran-
sientreactance. M;is the generator’s moment of inertia.
D; is the generator’s damping. B,; and C; represent the
admittance and the transfer conductance of the i—j
element in the reduced admittance matrix of the system,
respectively. P,, is the mechanic power input to the
i-th generator.

2. The One-Axis Generator Model

To consider the effects of field flux decay, the
one-axis generator model uses one equivalent circuit
for the field winding of the rotor. As a result, the
voltage behind the direct transient reactance is no longer
assumed to be constant. Sasaki first included such a
model for direct stability analysis (Sasaki, 1979). The
dynamics of each generator are then described by the
following equations:

51‘ =,
n
Mo, =-Dw;+ P, - 12 V,V, ( B; sind; + C;, cosd, )
. j=1,i#y
T, —( "B
. . X;—X .

doi . l{: 1 _ Efdl di ,dl i V,

Xai — Xgi Xdi = Xy Xdi — Xy

+ Z V; ( Bjcosd; +Cs1n5)

j=1,i#j

@

where 8;=6,~0;, 7,}:,[ is the direct axis transient open-
circuit time constant, xz; is the direct synchronous
reactance, and x;l- is the direct synchronous transient
reactance.

3. The One-Axis Generator with a Simplified
Exciter Model

When the exciter control action is included in the
generator model, additional differential equations are
needed to account for it. The following first-order
simplified exciter model has been used:

LEfi=—Ep— MV, +1;,
where T,; is the time constant of AVR, y; is the feed-
back gain of AVR and /; is a constant gain used to
adjust the location of the desired operating points. If
the terminal voltage V,, of each generator has a linear
relationship with its quadratic component V., (i.e.,
Vu=kiViy, Where k;is a posmve constant), then by using
the relationship V,q,—xd,Id,+V (see Fig. 1), the generator
dynamics can be expressed as (Miyagi and Bergen,

1986; Pai, 1989)
8:‘ =0,
n
M,i;=—D@; + P, _,-=12,,~¢, VV; (B;sind, + C;; cosd, )
n
== 0V + BEy + i 12',#]' V; ( B cos0y + C;; sindy; )
SEp=— MV, — 0.E— i 12,1 y V; ( By cosd, + C;sindy)
+1, 2)
To;
where —-B;+ 1 =1 =i
xd Xy T Xy — Xdi Xai — Xai
n=B; + -, ¢=——, and {=—>"-are constants. Here,
xdl Xdi K Kdi
Vv, ..
Igi tqt Vi q-axis
1 : )
: ix’ I
' --s5-->" diqi
1
Iy =77
ti
Referencef 4_axis
Frame

Fig. 1. The phasor diagram of the one-axis generator with the sim-
plified exciter model.
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we follow the IEEE recommended notation (Pai, 1989),
which is somewhat different from that of Miyagi and
Bergen (1986) where industry notation is used.

lil. Compact Representations of
Lossless Network-Reduction
Models

A compact representation of the network-reduc-
tion power system model will be presented. It will be
shown that the above three network-reduction power
system models with lossless transmission networks can
be rewritten in the following compact form:

Ti=-2 U,y

y=z

e Dy O

Mz=-Dz 3 Ux,y), 3)

where xe IR", y and ze IR™, and T, M and D are positive
diagonal matrices. The smooth function U(x, y) sat-
isfies the following conditions:
(1) VU(x,y)=VU(x, y+2k;i7, ..., y+2k,n) for all
kez, i=1, ..., n.

(2)For i, k=1, ..., n and j=1, ..., m, there exist
polynomials, pyj(x1, ..., Xn)s P2ik(X15 --es Xm), and
P3i(x1, ..., X,,) With positive coefficients such
that
LU, y)|<pials - 5D
ayl » Y= P Lls- - s1%m
0 UG, )| < P (3] [ 5l)

I

90 <pr

axjayi U(x’y)‘—Pjy(l'xll""’lxml)7
respectively.

Three lossless network-reduction power system
models mentioned in Section II can be put into the
compact representation (3) and satisfy the conditions
(1) and (2). The corresponding variables x, y, z and
the function U(x, y) are summarized in Table 1. This
result can be verified by direct algebraic manipulations.
In Section V, we will demonstrate that the most com-
prehensive model, the one-axis generator with the
simplified exciter model (3), can be put into such a
compact representation and satisfies conditions (1) and
(2).

The task of deriving an energy function for net-
work-reduction power system models with nonzero

transfer conductance of the reduced Y-bus matrix is
challenging. Considerable efforts have been concen-
trated on determining the global energy function
analytically. Unfortunately, these efforts, based on
either the classical Lure-Postnikov-type Lyapunov
function approach or the first integral approach,
have been in vain. Narasimhamurthi (1984) has shown
that attempts to accommodate line losses by smooth
transformation of the energy functions for power sys-
tems without losses do not lead to a local Lyapunov
function. Moreover, other asymptotic behaviors, such
as periodic orbits, have also been discovered and
examined in the lossy network-reduction power system
model by Abed and Varaiya (1984) and Alexander
(1986). All of these results indicate some negative
aspects of constructing the global analytical energy
function for a lossy network-reduction power system
model.

IV. Analytical Energy Functions of
Lossless Network-Reduction
Power Systems

In this section, we will first discuss some funda-
mental properties of system (3). We will then present
a general procedure of constructing analytical energy
functions for lossless network-reduction power system
models.

Theorem IV.1: (Hyperbolicity of Equilibrium Points)
Consider the following system:

i==2 Ut y)

y'=—§y~U<x,y>. @)

If all of the equilibrium points of system (4) are
hyperbolic, then all the equilibrium points of system
(3) are hyperbolic. Moreover, (x,, y., 0) is a type-k
equilibrium point of system (3) if and only if (x,, y.)
is a type-k equilibrium point of the system (4).

Proof: See Appendix.

Having shown the static properties of the equi-
librium points of the compact representation of net-
work-reduction power system models (3), next we will
study the existence of the energy function for such a
compact representation (3). Recall the definition of
the energy functions: we say that a function V:IR" — IR
is an energy function for a given nonlinear system
X = f(x) if the following three conditions are satisfied:
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Table 1. Various Network-Reduction Power System Models and Corresponding Potential Energy Functions

Model System Equations x y z Potential Energy Function V(x, y)
Classical s=w,
Ic\illex:rlator M@, =~ Dla;, + Pm' -P, ¢ k) ) -z 1}:;‘= :+1%YBy cosa,] + Pmlﬁl
oce P,=Z)11"*'VVB;sin (§;- &)
One-Axis &=0,
Generator , . . - %20, 1Y V,B, cosd, + P, &,
M@,=-Do,+F, -¥/_, ,.,VV, B, sm5,j _ !
Model o Tu=laE T Vv é [0 1= (trexDB
1 (xdz xdz) 2
’ , + 7 VEp+ —— " VB
Toi y_o_1 g 1 = Ogi = Xa)Bii Y™ Xay 26— Xa)
Y= rEg————— Y% P
Xa— X Fa—Xa Xgi — Xgi -G )idx)Bu' V401 VB, cosd;
+Z%.1,1%,Y; B, cosd; Xy = Xg,
One-Axis =0, Vv T
Generator M, =—-D®;+ P, —Z}_1 ViV, B;sind; § ) ~Z{1Z] -, 1V VB, cosdy + B, G,
Plus First Order , n E ’
V=—0oV+BEy+2}_ V. cosd;; fd e
AVR Model == o+ B =1 ow By €080 oLy LGB o
SE ==Y, = OEp~2]-1 i B,V cos6;+, Y= Xa 20, — %)
—1_—?‘1’:%1& Vi+Z0.1,ix,Y, B, cosd;
di — dr
VAV -vicTlL
where
o _BY
A=diag] %
m i
_5; _5'_ =1
1L _1r
C =diag %1 &
-z 5
L E‘— ! i=1
l n
L= [0 ,# ]
Et: i=1
V=V, Enl_,

(1) The derivative of the energy function V(x) along
any system trajectory x(z) is non-positive, i.e.

V@)=L VEr@so.

(2)If x(¢) is a non-trivial trajectory (i.e. x(?) is not
an equilibrium point (e.p.)), then there does not
exist a time interval, say [#, £;], £,>f;, such that
V(x(®) = 0 for te [, t,]. Mathematically, this can
be expressed as follows: along any non-trivial
trajectory x(¢), the set

(e R:V(x(®)=0)}

has measure zero in IR.
(3) If a trajectory x(¢) has a bounded value of V(x())
for te IR™, then the trajectory x(¢) is also bounded.
Stating this in brief:

.

If V(x(¢)) is bounded, then x(¢) is also bounded.

Property (1) indicates that the energy is non-
increasing along its trajectory but does not imply that
the energy is strictly decreasing along its trajectory.
There may exist a time interval [¢,, £,] such that V(x(£))=0
for te[t;, t;]. Properties (1) and (2) imply that the
energy is strictly decreasing along any system trajec-
tory. Property (3) states that, along any system tra-
jectory, the energy function is a proper map, but that
its energy need not be a proper map for the entire
state space. Recall that a proper map is a function
f: X—Y such that, for each compact set De Y, the set
fUD) is compact in X (Abraham et al., 1988). Ob-
viously, an energy function is not a Lyapunov function.

The following theorem provides a sufficient
condition for the existence of an energy function for
the compact representation of the network-reduction
power system models.

Theorem IV.2: (Existence of an Energy Function)
For the compact representation of the network-
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reduction power system model (3), consider the func-
tion W: R"*?" 5 IR:

Wy, 2= K@+ Ux, ) =1 TMz+ U(x,3). (5)

Suppose that along every nontrivial trajectory (x(f),
y(8), z(t)) with bounded function value W(e, e, *), x(1)
is also bounded. Then, W(x, y, z) is an energy function
for system (3).

Proof: See Appendix.

Remarks:

In Theorem IV.2, a sufficient condition for the
existence of an energy function for the compact rep-
resentation (3) is provided. Also, an explicit analytical
energy function is presented. It is worth mentioning
that:

(1)The analytical energy function itself can be
written as the sum of two separate functions:

the kinetic energy function K(z)=l 7zTMz and
2

the potential energy function U(x, y). Such
formulations agree with a recent development of
direct methods for transient stability analysis in
which the controlling u.e.p. is detected via an
artificial, dimensional-reduction system whose
energy function is composed of U(x, y) only
(Chiang et al., 1987, 1994, 1995; Chiang and
Chu, 1995; Chu, 1996).

(2) The sufficient condition in Theorem IV.2 is
equivalent to condition (3) of the energy func-
tion. However, it provides a more convenient
form for verification. Moreover, the sufficient
condition can be further simplified by exploring
the special structure of the underlying power
system models. To elaborate on this point, we
next work on the one-axis generator with a
simplified exciter model and present a procedure
for comnstructing an analytical energy function
for the model.

V. Analgtical Energy Functions for
the One-Axis Generator with a
Simplified Exciter Model

The one-axis generator with a simplified exciter
network-reduction model is an aggregation of the one-
axis generator model and first-order exciter dynamics.
Our idea of constructing an energy function for this
class of network-reduction power system models is to
combine the energy function of the one-axis generator
model (1) with other terms introduced by the exciter
dynamics. First, consider the variables internal voltage

Chu

Viand exciter voltage Eg; together. Define Vi=(V;, Eg;)
and !

U, 8)=-3% %

i=1j=i+

1 VV,B;cosd; .

Sincefori=1, ..., n, the function U(V, 6) has the following
properties:

Wy,5) & s
Vo= j=12,i¢jB,-jVJcos,,

UV, 0) _ 0
oEy;

The voltage dynamics V; at each generator i can also

be expressed as

. aU(V,d
Y=‘AM"C1_(3VI—)+Lia
where
-4
A=l " {
Tl ¢
[ & &
1 _1
c=| ¥ &
i _ 1 N
&
L=r0. 471 ©
1= H E .
Thus, the element s; in C; can be.arbitrarily chosen
because aUa(EL’éLO. Here, s, is a free parameter and
fdi
can be chosen to be larger than % such that C; is a
i

symmetric positive definite matrix.
We will next consider the overall dynamical
equation. Let

V=(Vy, ..., V)T
A=block diag [Ay, ..., A,]
C=block diag [Cy, ..., C,]
L=[Ly, ..., L,]"

Define

U, 5)=%VTC'1AV—VTC‘1L—P,,{5+ uw, d).
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It is easy to see that U(V, 8) is a modification of the
potential energy function —P,,{ 6+ U(V, 6) of the one-
axis generator model with the new items introduced by
the simplified exciter model. Since the function U(V,
0) has the properties

U (V, 5)_ UV, 5)_P
35,- - 351- m

UV, 0d)

WUV, 8) _ iyy o
T—C AV—-C 'L+ aV ’

7

the overall dynamical equation (2) can also be ex-
pressed as

1y __ UV, 8)
CV=- T
S=w
Mm=_pw—a£(§5'—5). (8)

From the formulation of Eq. (8), it is clear that Eq. (8)
also belongs to the compact representation of the
network-reduction power system (3). It remains to

B, 0 Bpcosd, O

0 0 0 0

Bj,cosd; 0 Bycosby' 0

d=| o0 0 0 0
B,cosd, 0  B,cosh, O

| O 0 0 0

check that the potential energy function U(V, §)
satisfies conditions (1) and (2). First, since the
overall dynamical equation (2) is periodic with
respect to the variable &, it is easy to see that con-
dition (1) is automatically satisfied. Applying the
partial derivative to Eq. (7), we get the following
equations:

J

’aU(v,a) _
90;

n
- Y. BV.cosb;—P,
={rizj 9 yoom

n
<, 2. BVl IR

=pli(]Vll""’|VnD

dU(V, d)

Fa5, |- BuiVisindul
<By | V1%l
=pu IVl 1D
JdU(V, 8)
Tovas =|~ ByV; cosd|
<B;|Vj|

=P35j(|Vl|,-'-a|Wz|)-

Clearly’plt(lvll, cens |Vn|),P2ik(|V1|’ ceey IVn|)9 andp3ij(|V1I’
..., |V,|) are polynomials with positive coefficients.
Thus, condition (2) is also satisfied.

We will next present a sufficient conditions for
the existence of an analytical energy function and
construct an explicit energy function by exploring the
special structure of the one-axis generator with the
simplified exciter model. Note that the dynamics of
the voltage variable V can also be expressed as the
following equations:

V=—(A+CZ(0)V+L, 9)

where
B,cosd, 0 |

0 0
Bycosd, 0

0 0
B,c0s8,, 0O

0 0 |

By examining the special structure of the vector
field of Eq. (9), the following theorem can be derived.

Theorem V.1 (Existence of Analytical Energy Func-
tions for One-axis Generator with Simplified Exciter
Models)

~ Consider the one-axis generator with the simpli-
fied exciter model (2). Define

W (V@) , &1) , aXt))
= %a)TMaH U, &)

=L oMo+ LV AV -VICT'L- B8
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n n

_i§1 j=;+1 ViviBi cosdy,
where A, C, and L are defined by Eq. (6). Suppose
that along any nontrivial trajectory (V(#), 6(t), a(¢)) of
system (2) with a bounded value of W(V(2), 6(¢), a(¢)),
the set I'={teIR*: det(A+CZ(6(¢)))=0} has a measure
zero; then W(V(f), 6(1), @(¢)) is an analytical energy
function for system (2).

Proof: See Appendix.

Remarks:

(1) Mathematically, the sufficient condition in
Theorem V.1 ensures that the boundness of V(#)
can be guaranteed by the boundness of V().
Since V(¢) is bounded, based on Theorem III.2,
it follows that W(V(r), &(¢), w(t)) is indeed an
analytical energy function for system (2).

(2) For general nonlinear systems, there exist some
state variables which are bounded but whose
derivatives are unbounded. Please refer to Desoer
and Vidyasagar (1975) for more concrete ex-
amples. However, the sufficient condition pre-
sented in Theorem V.1 is not too restrictive since
the free parameters s, in C matrix can be em-
ployed to simplify the condition det(A+CZ(J))#0.

IV. Conclusion

We have developed a general framework for
constructing analytical energy functions of network-
reduction power system models. In particular, we have

(1) developed canonical representations for network-
reduction power system models and shown that
such canonical representations cover existing
stability models,

(2)derived theoretical results regarding the exist-
ence of analytical energy functions for the ca-
nonical representations,

(3) constructed an analytical energy function for
network-reduction models.

Appendix

Proof of Theorem IV.1:

First, all of the equilibrium points of system (3) can be char-
acterized by the following set:

E={&x.y,2:5;

U(x »=0, z=0, —Dz—a%U(x,y)=0}

={(x,y,0):VU(x,y)=0}.
To prove this result, we will use the Sylvester’s Inertia Theorem

(Wimmer, 1974). The Jacobian of system (3) evaluating at the
equilibrium point (x,, y,, 0) is

Chu
J(x.,%,0)
U(xe,ye) Ulx,,y) 0
! 0o o0
=0 I 0 0 0 I
0 o0 M!
% ay Ulx,,y) - U(xe,ye) -
=AB.

Since all of the critical values of U(x, y) are regular, i.e., V2U(xe Yo
is nonsingular, B and J(x,, y,, 0) are also nonsingular. Let

H(x,, ye)=block diag [-V2U(x,, ), -M™.
It is clear that H(x,, y.) is a nonsingular Hermitian matrix, and that

J(xe*yevO)H(xe’ye)+H(xe’ye)~]T(xe’ye10)

217! 0 0
= 0o - 0 0 >0.
0 0 2M~ DM !

Applying the Sylvester inertia theorem, we conclude that In(H(x,,

ye)) = In(J(x,, y., 0)). Therefore, all the equilibrium points of system

(3) are hyperbolic, and
n'u(j(xe ’ ye 3 O)) = nu(H(xe,ye)) = nu(j(xe ’ye)) 3

where J(¢, *) denotes the Jacobian matrix of system (4). This result

also indicates the second statement of the theorem. This completes
the proof.

Proof of Theorem IV.2:
We will check conditions (1)-(3) of the energy function:
(1) Differentiating W(x(#), y(#), z(#)) along the trajectory:

T
W@, @), z(z))__ﬂaa_w; y+a§; :
_oUT 19U _ 7D
== T gy T D=0 (10)

This inequality shows that condition (1) of the energy func-

tion is satisfied.

Suppose that there is an interval te[t;, ;] such that

W@ , (@) , 2())=0; hence, z(£)=0 and x()=0 for te[ty, t,].

However this also implies that y(f) is a constant. It then

follows that the system is at an equilibrium point; hence,

condition (2) of the energy function also holds.

(3) Since x(¢t) is bounded along the nontrivial trajectory
with bounded W(e, ¢, *), only components y(¢) and z(#) will
be examined in condition (3). We will use Barbalat’s Lemma
and the covering map to attack this problem.

(i) From Eq. (10), it follows that

W), y0) , 20) < - dx0) [
W@, y0) , 20) < - Bz

2

~—

for some positive numbers a and b, respectively.
Since along the system trajectory, W(x(z), y(¢), z(¢))
is monotonically decreasing and bounded:
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W(x(e0), y(e=), 2(eo))=Hm W), 50) , 20)
exists, and

W(x(e2), y(eo), 2(2))~W(x(0), y(0), z(0))
- L T W), Y0, e <~ aJ: |G Par

W(x(ce), y(o), 2(c0))-W(x(0), ¥(0), z(0))
= fo T W), YO, 20)dt <~ b jo " |2t .

Therefore, %(¢) and z(f)e L,[0, o). Since x(¢) and z(r)
are both continuous, they are also bounded.

(ii) From the hypothesis that x(¢) is bounded, the system
dynamic equation (3) indicates that 3(f) is also
bounded. Since z(f)e Ly[0, «)NL.[0, =) and
2(f)e L..[0, =), by Barbalat’s lemma (Sastry and
Bodson, 1989), z(r)—0 as t—eo.

Differentiating 2(¢), from system (3),

Mz:—Dz—ai2y U(x,y)z—axiay U, y)x.

By assumption (3), both a%U(x,y) and

) Y w
Fxdy U(x, y) are bounded. Therefore, z(t)e L[0, ).

Since z(#)—0 as t—oo, by Rudin (1976), z(t)—0 as
t—ee. From system equation (3), it follows that
% U(x, y)—0 asymptotically.

(iii) Because of the periodic structure of the variable y,
we can define a covering map

7 :R™ " > R™x[0,27]%...%[0,27]
H/__/

n

and a continuous function

T:R™x[0,27]x...X[0,27> R
—

n

such that U(x, y) is a lifting of T (Fy(x,)), i.e.,
U (my(x, y)=U(x, y) for all (x, y)eIR™*". Since
9
oy
T, 8% T (my(x, y) = 0. Also, W (x,y, 2)=W(m,(x,y,

U(x,y)— 0, with respect to the covering map

2)) satisfies conditions (1) and (2) of the energy

function for the restriction dynamics on

R™x[0,27]%x...%x[0,27]. Note that, under the re-
\w__/

n

striction space R™x[0,27]x...x[0, 27, m,(y()) is
R/’__//
n
bounded since [0, 27]X ... X [0, 27] is compact. By
g\/___/

n
condition (1) of the energy function W (x,y, z), every
boundary trajectory (x(¢), m,(y(#)), z(¢)) will converge
to one of the equilibrium points. Thatis, 7, (y(£) will
converge to a point y* asymptotically. Therefore,
there exists a T>0, a neighborhood N of y* such that
m(y()eN for r>T. Now, consider the preimage
7; }(N) of N it is the union of the disjoint open set
{Ug} in R™. Since y(t)e L..[0, =) and the projected

trajectory 7,(y(#)) is path connected and, hence, con-
nected, y(#) can not pass more than one disjoint open
set of {U,} in an arbitrarily small time. In other
words, after £>7, y(z) will belong to only one of the
disjoint open sets, say Ugq+. Therefore, y(¢) is also
bounded.

From parts (1)-(3), x(¢), y(¢) and z(¢) are bounded, and W(x(z), y(t),

z(¢)) is an energy function.

Proof of Theorem V.1:

From Theorem IV.2, it follows that the proof is essentially
simplified to show that, along every nontrivial trajectory with a
bounded energy function, the voltage magnitude V is also bounded.
We will explore the special structure of the vector field of the one-
axis generator with the simplified exciter model. From Eq. (10),
it follows that V is also bounded along every nontrivial trajectory
with a bounded energy function. Since

V=(-A-CX(®) 'v-L),

if det(—A—CZX()) has a measure on RR*, then except for a finite point
on R*, V exists and is also bounded. This completes the proof.
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