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ABSTRACT

For a Brownian motion B=(B,),5p with By=0, let X=(X,);»0 and ¥,=(¥,(#)),50 be two processes defined
by

' 5] Sn—1
X,=Ld331fo dez...ﬁ) dB, £ (51,52,-152)s

1A

J 51 Sn-1 2
);,(t):[fods,ﬁ) dszn.fo sy F2(51525 00050

where O<s,<s,_1<. .
assume E (X2)=E (12 (o)) <oo.
The main result in this paper 1s:

.<sp<s1<t, f 1s predictable in s, and deterministic in the first n—1 variables.

>

Also,

For all n21, 0<p<1, 0<b<2, b’>1, there exists some constant C such that

Ellog(v/X; +1) 1< 4, ,+5 PE[(log(¥,(L)+ 1))

E [log(%,(L)+ 1)1 A, o+ (b'Y P E[(log(V/ X, +1))

* . .
where X, =sup,<,|X;|, L is an arbitrary random time and

-4,
_ dne_ 4 _27™(2-b)
Ab'n_nC+nC——2_b2 mexp( e ),

2(1-2b")
-

- 4/, n?
Ay pr=net+2 2(2b'~1)eXp(
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. Introduction

Let (Q, F(F))0, P) be a filtered probability
space satisfying the usual condition, and B=(B);o
be a Brownian motion with respect to (F)g Where
B0=0.

The famous Burkholder-Davis-Gundy inequali-
ties state that if F is a moderate function, there exist
Cr, cp such that

E(F(B}))SCrE(F(JT)), 1)

E(F(JT))<czE(F(B})) @)

Brownian motion, non-moderate function, multiple stochastic integrals

for all (F,) stopping times, T.

We recall that an increasing function F from 9%,
to &K, with F(0)=0 is called moderate if there exists
a>1 such that

F(ox)
SUPX>07(—X)—<°°-

Itis interesting to ask how (1) and (2) might be modified
to deal with non-moderate functions, such as the ex-
ponential function. The main idea is due to Jacka and
Yor. In Jacka and Yor (1993), they found a way to
solve it, and stated the following exponential type
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inequalities:
For O0<p<2, there exist constants A, A’, u, u” such
that

*.p 2
Elexp(B. )Y 1SA+uE[exp@ (VL )2-p]
2
E[exp(m)"]SA'm'E[expe'(B,f)iTpE]

for an arbitrary random time L, if and only if 6>2%
p
o>,
T

In Jacka and Yor (1993), they also showed the
LP-norm inequality for the couple (X. ,¥,(>)). Our
work in this paper is inspired by these two results. We
will give an estimation of exponential type inequalities
of multiple stochastic integrals for Brownian motion
(see Propositions 5, 6). Moreover, the inequalities can
also be established for some moderate functions, such
as logarithmic type inequalities for (B, ,#"'>) and (X*,
Y.

Next, we present some notations that we use
throughout this paper.

Let £ be the collection of random times, i.e. L={L:
L is an F-measurable, nonnegative random variable. },
and 7={T: T is (F,) stopping time.}. Let (X, Y) be a
pair of increasing, optional processes. Define

respectively.

P.(x, y)=P(X;>x, Y;<y) for any LeL,
P*(x, y)=supre L (x, ¥),
P*(t)=supy20P*(ty’ )’)

Jacka and Yor (1993) showed that for every x, y=0,
P*(x; y)=supre Pr(x, ).

1
Il. Inequality for (B;,¢?)

The following lemma in Jacka and Yor (1993) is
a step crucial to solving our problems in this paper.
Lemma 1: (Jacka and Yor’s (1993) integral crite-
rion).

Let F and G be two increasing, nonnegative, right
continuous functions from R, to R,. Define for each
m>0

Fl'(x)
¢

z_fdx*( ).

Let A,, be the best constant A appearing in

E(F(X;))<A+mE(G(Yy)) for any LeL; 3)

then A,,<I,, so that the inequality (3) holds for some
A if I <oo.

Although the purpose of the above lemma is to
treat with non-moderate functions, in the next two
propositions, we can still give two-sided inequalities
for logarithm functions.

Proposition 1. For O<p<1, 0<b<2, there exists A, such
that

E[log(v/Bf +1)154,+b™7 E[(log(vL +1)¥]

32 _2-b
for all Le L, Ay=2 *5p beXP( 16 -

Proof: Define F, G: %,—» R, by

1 p
F(x)=(log(x*+1))",
G (x)=(;log(x+1));

then
F'(x)=(exp(x?)-1Y,
G (x)=exp(bxP)-1.

By the scahng property of Brownian motion, P*(x)
for the couple (B, ,1'/2) is given by P*(x)=P*(B, 2x)

S2P(INI2x)S2exp(—§ x?), where N is a standard normal

random variable.
Using an integral criterion, it is enough to cal-
culate

Fl(x)

— ).
G! (x)

I= f axpr (0

For 0<b<2, 0<p<1, 1<x<oo, we have

= (exp(xP)-1)
L=| dxepr[—222= 2 7
! jO [ exp(bxl/l’)—l ]

Y
<2f 1dx+2f dxexp[ - 1(ﬂ)]
exp2bx

32
<2425 _£=b
2+2 bexp( )

The result follows.
Propeosition 2. Suppose 0<p<l, 0<b’<
A, such that

; there exist

Ellog(VL+1Y 1< 4, + (b)Y PE[(log(\/B} +1))]
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4, 64
where Le £ and Ay,=7+ 7t3(1—2b')v

Proof: Define F, G: J,— %K, by

_ X1 -2b) )
16 )

xp(

F(x)=(log(x+1)",

1 LY
G(x)=(;log(x2+1)) ;

then
G (x) mexp(x7)-1,
F1(x)=(exp(b’xP)~1)".

P*(x) for the pair (t%,B;k) is given by
P*(x)=P(T;>x%), where Ty=inf{t=0: |B|=1}.

It follows that

oo ; 2 2
P*(X)=n§0(—1) mexp(—%xZ)
2
S%CXP(—% 2y,

Since O<p<l1, 0<b'<% , simple calculation gives

(exp(x"7)-1)
exp((b' x"7)—1)

11=f°°dxp*[
0

oo 2 l/p — 2
S%J dxexp[—%(————(e){pxl) ! 5
0 exp((bx"P)—1)

1 w 2 2P
s}rj 1dx+%j dxexp[- L (P
0 0 8 exp4b’x/1’

_m(1-2b")
TR

xp(

This completes the proof.

In the following, we imelgoing to extend the
inequalities for the couple (B, ,#2) to multiple stochas-
tic integrals for Brownian motions. Then, it can be
seen that the main result of Jacka and Yor (1993) is
a special case of Propositions 5 and 6.

ll. Inequalities for (X=,Y, (<))

We consider the n-multiple stochastic integrals of
the form

t s Sp—
XFf stljlstz...f VB, (512500 008)s
0 0 0 n

¢ L Y
);(r):[fodslfo dsz...ﬁ) ds, f7(s1,82,---,8,)]1

where f(..., *) is measurable in all its arguments, de-
terministic in the first (n—1) time variables and is
predictable in the n-th variable. Furthermore, we assume
that E(X2)= E(Y*(e0))<oo .

For X=(Xy)20, Y,=(Y,(1))>g9, we define these no-
tations:

Xm=f0 dB, fi_y(5)
=J;) dBSlJ;) dBS2.fn—2('sl ,Sz)

hed 51 Sp—-2
=f0 stlfo dB‘f”fo dB, _ fi(81500-1501)

had 51 Sn—1
=fp deljo dBSz...fo dB, £ (5,505,
Y (e0)=|X..],

o 1
R (=)= [ ds 2, (s )2,

bl s Sn-1
);(oo):f dslfldsz...f ds, f2(81,55,...18,).
0 0 0

With abbreviation, we denote Yy (ee) by Y, for
0<k<n; otherwise, if (X, Y) is a pair of increasing,
optional processes, we also denote P*(¢) by P;‘y(l‘).
In fact, the integral criterion is based on the esti-
mation of the upper bound for P*. Jacka and Yor
(1993) offered a method for finding the upper bound
for P*.

Lemma 2 (Jacka and Yor).
Suppose A and C are two increasing right con-

tinuous predictable processes with A;=Cy=0 which
satisfy
E(Af)<a,E(CT)

for all p>0 and all stopping times 7,
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where
c1+dip.
a,<K(co+dyp)1*17;

then
dy u
P*(t)SK(d—) utexp(b—c)exp(—3),
1

dy, + cod

= =—td1 _L

where u=u(t) 4 and b dy

Lemma 3. For C, ¢, , >0, if ¥y, Y}, ..., Y, are defined
as above and satisfy

1) P;:*,,k“(t)SCexp(—ctﬂ), then
* B
P,b*,yn(t)SnCexp(—ct").
(2) P;:H%*(t),étﬁexp(—ctﬂ), then
# B B
Pyny}b*(t)sm"exp(—-ct").
Proof: (1) By induction, assume that the result

holds for n—1; then for any y>0, and x,r>0, we
have

P(Y, 2xt, ¥, <x)

<P(Y 2xt,%,_ <y)+P(Y,_ 2y,Y,<x)

B
S(n—l)Cexp(—c(xyt)mﬂCeXp(—C(g)ﬁ%

1/n

Setting y=xt"", we obtain

P(Y* 21, ¥, <x)<nCexp(~cib).
The result follows:
(2) P(YL2xt,% <x)
SP(L2xt,Y,_ <y)+P(%_12y.% <x)

<Y exp(-c (2

B B
+(n=1)(F)m-Texp(—c(§)a-T).

n—1

n

Setting y=uxt , the result follows again.

Now we could use Lemma 2, Lemma 3 and the
following results that Jacka and Yor (1993) showed to
getthe upper bounds of P*. Jacka and Yor (1993) stated
that for all 0<m<n-1, p>0,

EL(% (T) 120, E[ (%, (T)Y1, @)
E[(%, (T)F12a,E[(, (T))] )

P
for all stopping times 7, where a,<C(4(p+ %))2 for
j4
some constant C, a,< (e(P+%)) 'z
Applying Lemma 2 to the inequalities (4) and (5),
we get

s 2
P’i(* (t)SCexp(—§).

Yer
P k(1)< £
Yool % (1)<t exp(—;).

Then Lemma 3 yields
2
Py, (1)SnCexp(—g-). (6)

2
B (NS Pexp(-1). )

The integral criterion of Lemma 1 relys essen-
tially upon the upper bound of P*. Hence, these two
upper bounds (6), (7) in the above could lead to the
following results.

Proposition 3. For all n>1, 0<p<1, 0<b<2, there exists
Ap , such that

E[(log(vX, +1))]

<A, ,+b PE[(log(Y,(L)+1))],
j
2" (2-b)

4
4ne ,n
where A, ,=nC+nC——2"exp( Ine

2-b )-
Proof: We define F, G, and continue the proof by using
2/n
(6): P;)*,Yn (t)SnCexp(—t—ge— ) as in Proposition 1.

This leads to the following result:
Proposition 4. For all n>1, 0<p<1, b’>1, there exists
A, p such that

E[log(¥,(L)+1)] .

<A, p+ (B Y PE[(log(v X, +1))1,

4/n n? 2(1-2b")
2 2(217,_1)ex ( I ).
Proof: Define F, G: R,—» %K, by

where A, y=ne’+

F(x)=(log(x+1))",
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G(x)=(ﬁlog(m1>>f’;

then

1
F ' (x)=exp(x")-1,

—1 ’ 3 2
G (x)=(exp(b'x")-1) .

2
By (7): P;j,x*u)s'lx"exp(——) . we have

11=J P (exp(x")-1) B
0 exp((b'xP)=1)

1 2
oo Py _ n
gnf dx(Ml%)
O exp((b'x")-1)
1 2
-exp( IM)

¢ exp(b’ P )=1)"

Define f(x)=xexp(—%) for x>0; the first derivative of
e

f issues that f(x) is dominated by e*. For b’>1, x>1,
%21, the inequality becomes
1 2

1 oo PN_1\?
IISnf ezdx+nf exp( (exp(x 1) D )
0 1

(exp(b’x")—1)"

2(1-2b")x
n

o 4
Snez+nj dx27 exp( )
1

—2b’
exp(z(ln b )).

The result follows.
Actually, Propositions 3 and 4 give us the two-
sided logarithmic type inequalities for the pair (Xm
Y,(e0)). Furthermore, they are the extensions of Propo-
sitions 1 and 2. As we choose n=1 and f=1 in Propo-
sitions 3, 4, and compare it to Propositions 1, 2, we
could have the different constants between them.
Naturally, this is due to different estimations for P*.
Finally, we are going to give the generalization
of Jacka-Yor’s exponential type inequality for Brown-
ian motion.
Proposition 5. For all n=1, O<p<2, there exists 4, ,
such that

. _w»
Elexp(X; )" 1<A, ,+E[exp(b¥,(L))"* P,

-p

where A,,,b=nC(1+(§-1— ” -1) ) , provided b>

r
(8e)2-p .
Proof: Define F, G: .-, by

F(x)=exp(x7),
2p

G (x)=exp(bx"(2-P));
then
F7l(x)=(logr)?,

_n(2-p)
Glx)=b >

n(2-p)
(logx) 27

By the integral criterion, we have

n(2-p)

11=rde*(b‘ % (logc)?).
0

2

Using (6): P%‘*,&SnCexp(—é—e) , and some simple

estimations and calculations can give
1 w 1. =k
IISnC(f dx+f dxexp(—gb P (logx)))
0 1

2-p
SnC(1+(8i 7 1))

2-p
provided b ? >8e. This completes the proof.
Proposition 6. For all n>1, O<p<2, there exist A, ,
such that

2p
E[exp(¥,(L))71SA, ,+E[exp(b' X} =711,

2-p g %
where A, =n(1+(e2b’? -1) b’ 7 ) | provided

2
'>exp( £ )
Proof: Defme F, G as in Proposition 5, by (7): Py xs

,@ <nt" exp(——) and we have

n{2-p) n
* (logr)*))

11<n(f dx+j dxP* (b’
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»

b’m)

2

p -2
=n(1+(e2p’ 7 -1)

Z;P
if 0<p<2, b’ " >é.
This finishes the proof.

In fact, Theorem 1 in Jacka and Yor (1993) is the
particular case of Propositions 5 and 6 if we choose
n=1, and f=1 in Propositions 5 and 6. As we choose
n=1 and f=1 in Propositions 5 and 6, we compare it
with Theorem 1 in Jacka and Yor (1993), and the
differences between them are the constants A and A
»A’and A .. Obviously, this is caused by the different

estimations for P*.
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A B B 2 B BE AR 0 A 55

JER R

PPN 2 &

wm =

i B — 877 BB B B=(B) 203 Bo=0 + & M fE BB X=X 0 » Yo=(Yu())e0

! 1 Sn—1
X’=Ld3”fo stz...L dB, f(51,52.--15,)

t 51 Sp—1 2 1/2
Y,l(t)=[L dslj; dSZ...J;) dsnf (31,52,.“,5”)]

RO, <8,1<...<5p<51<! » fYE s, R MR AT TR » 7ERT (=) EBE B R BEHER » W AW R E(X2)=E (3} () <.
ERMXHEBEGLRE

BT B 21, 0<p<] » 0<b<2 + b'>1 + TFETEAp, n * Ay o[58 75
E[log(y/ X: +l)p]SAb,,,+b_pE[(log(Y;,(L)+1))”],

E[log(Y,(L)+1)P1<A, 4+ (b’ PE[(log(y/ X: +1))p],

EHNLEEBK RN CREX—¥% . A

2% (2-b)
dne

Ab,n:nC+nC%24/"exp(— ),

2(1-2b")

A,,,b/=ne2+24/" exp( = ).

n
2(2b'-1)

- 156 -



