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Differential Cellular Distribution of
Retinoic Acid during Staurosporine
Potentiation of Retinoic
Acid-Induced Granulocytic
Differentiation in Human Leukemia
HL-60 Cells
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Abstract

Pretreatment of cells with staurosporine, a protein kinase C (PKC) inhibitor,
was found to potentiate the granulocytic differentiation induced by a brief
(2 h) retinoic acid treatment. By cell cycle analysis, staurosporine was found to
have little effect on the cell cycle. Retinoic acid was distributed equally in the
nuclei (40%) and in the plasma membrane (40%) of staurosporine-pretreated
cells while less than 20% of retinoic acid was found in the membrane of con-
trol non-staurosporine-pretreated cells during the retinoic acid-induced differ-
entiation. These results indicate that the enhancing effect of staurosporine
may be somehow associated with the localization of retinoic acid in the plas-
ma membrane of the cell.
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back again, thereby removing the potential for uncon-
trolled growth of the tumor cells.

Tumors are usually recognized by the fact that their
cells show abnormal growth. Tumor cells differ from nor-
mal cells in that they are no longer responsive to normal
growth-controlling mechanisms. Current chemothera-
peutic drugs act for the most part by killing cancer cells
directly. Their use in patients, however, is limited due to
high toxicity. Much attention is paid to averting their tox-
icity and increasing their therapeutic efficacy. Re-
searchers have also begun to focus their studies on agents
that act instead by changing the biological properties of
cancer cells so that they lose one of their major character-
istics, namely, the ability to divide continuously. Recent
work on tumor differentiation aims to shift the balance

The human promyelocytic leukemia cell line HL-60
differentiates to become morphologically and functional-
ly mature granulocytes in the presence of retinoic acid [2].
Clinical trials and case reports thus far show variable suc-
cess of therapy using retinoic acid in leukemia. In general,
the antiproliferative activity of retinoic acid is a reversible
phenomenon [5]. Therefore, much attention has been
focused on the interaction of retinoic acid with other
agents that can facilitate retinoic acid-induced differenti-
ation.

Okazaki et al. [20] have shown that staurosporine, a
microbial alkaloid produced by Streptomyces actuosus,
can potentiate retinoic acid-induced differentiation. Orig-
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inally described as an inhibitor of phospholipid- and
Ca**-dependent protein kinase (protein kinase C; PKC)
[9], staurosporine is found to bind to the ATP-binding
domain (catalytic site) of PKC [8]. It has also been
reported that staurosporine inhibits a number of other
protein kinases in vitro, including pp605 tyrosine kinase
[17], insulin receptor tyrosine kinase [6], cGMP-depen-
dent protein kinase (protein kinase G) [18], and p34¢de2
kinase and p34¢dc2-like kinase [7].

Sphinganine, another inhibitor of PKC [16], which
interacts with the regulatory domain of PKC [10], has a
similar potentiation effect on retinoic acid-induced differ-
entiation [22]. We have earlier demonstrated that pre-
treatment of cells with sphinganine could potentiate gran-
ulocytic differentiation induced by a brief (2 h) retinoic
acid treatment [1 [-13]. Most of the retinoic acid (>70%)
was found to be accumulated in the nuclei and only a
minor portion (<20%) in the plasma membrane in control
or sphinganine-pretreated cells during the induction of
differentiation [12]. Sphinganine therefore regulates the
induction of differentiation not by changing the extent of
accumulation and differential distribution of retinoic acid
in cells, but by allowing cells to accumulate in an extended
G//S phase. The G/S phase is the period in the cell cycle
at which retinoic acid has the greatest effect on the induc-
tion of differentiation. In this paper, we present results
showing that pretreatment of cells with staurosporine can
also potentiate brief retinoic acid-induced differentiation.
Whereas sphinganine blocks the cells’ progress through
Gy/S phase, pretreatment with staurosporine exerts little
effect on the cell cycle. In contrast to the control or sphin-
ganine-pretreated cells, retinoic acid is found to be dis-
tributed equally in the nuclei (40%) and in the plasma
membrane (40%) of staurosporine-pretreated cells. Our
results suggest the possible involvement of a membrane
signal transduction mechanism during retinoic acid-in-
duced differentiation.

Methods

Drugs

Unless otherwise indicated, all chemicals were purchased from
Sigma Chemical Company (St. Louis, Mo., USA). All trans-retinoic
acid and staurosporine were dissolved in ethanol (Merck; Darmstadt,
Germany) at 2 and 0.5 mA/, respectively. Stock solutions were stored
at -20°C. Before use, each stock solution was diluted with culture
medium to the required concentration. The final concentration of
solvent was no more than 0.5%, which had no effects on HL-60 cell
proliferation and differentiation.

Radiochemicals
[®H]retinoic acid (50.7 Ci/mmol) was obtained from Du Pont
New England Nuclear (NEN) Company (Boston, Mass., USA).

Cell Cycle Analysis

To estimate the proportions of cells in different phases of the cell
cycle, cellular DNA contents were measured by flow cytometry as
described by Ormerod [21]. Briefly, cells (2 x 10° cells) were fixed by
70% ethanol in phosphate-buffered saline (PBS) buffer in ice for
30 min and then resuspended in PBS containing 40 pg/ml propidium
iodide and 0.1 mg/ml RNase (Boehringer, Germany). After 30 min at
37°C, 2 x 104 cells were analyzed on a FACStar cytofluorometer
(Becton-Dickinson; San Jose, Calif., USA) equipped with an argon-
ion laser at 488 nm.

Fractionation of HL-60 Cells

Cells were incubated with [3H]retinoic acid for various times
before they were suspended in chilled TM buffer (0.01 M Tris-HCl,
pH 7.6, containing [ mA MgCly) and were homogenized for 18
strokes with an all-glass homogenizer (Wheaton; Millville, N.J,,
USA). The nuclei were then collected by centrifugation at 500 g for
Smin. The supernatant was further centrifuged at 10,420 g for
45 min. The final supernatant (cytosol fraction) and the pellet (mem-
brane fraction) were collected separately. The nuclei, cytosol and
membrane fractions were resuspended in TM buffer. Each fraction
(100 pl) was then added into 5 ml scintillation fluor (Merck), and was
counted for radioactivity (Beckman LS5000 TF; Beckman Instru-
ments, Palo Alto, Calif., USA).

Results

Staurosporine Pretreatment Potentiated Retinoic

Acid-Induced Differentiation

A short exposure (2 h) to retinoic acid induced little
effect on cell growth inhibition and induction of differen-
tiation in HL-60 cells. Cell growth on day 4 after the
removal of retinoic acid (1 pAf; 2 h) was only reduced to
85% of that in control cells (no drug treatment) and less
than 40% of the cells resembled mature cells (table 1). In
contrast, a short exposure to retinoic acid induced differ-
entiation and cell growth inhibition to a greater extent in
HL-60 cells that had been pretreated with staurosporine
(5 nM; 24 h pretreatment) indicating that staurosporine
pretreatment potentiated the retinoic acid-induced (2 h
short exposure) differentiation. As shown in table 1, there
were a higher percentage of mature cells and a greater
decrease in the rate of cell growth in staurosporine-pre-
treated cells during the brief retinoic acid-induced differ-
entiation: as compared to 35% of cells without staurospo-
rine pretreatment which differentiated, more than 60% of
the staurosporine-pretreated cells became mature cells as
assessed by either morphological of functional methods.
The cell growth of staurosporine-pretreated cells was
found to be reduced to 69% of the control on day 4 after
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Table 1. Effect of staurosporine on retinoic acid (RA)-induced
differentiation of HL-60 cells

4+1

1 - - 100 5+1

2 - + 100 8§x2 §+2

3 - 59+ 3* 81+ 7* 824 3*
4 2h° - 85+4 35+4 3242

5 2he beforef 69+ 6% 65+ 5% 60+ 6*
6 2h° afters 86+7 3613 30£5

HL-60 cells (2 x 103 cells/ml) were not treated, pretreated (24 h)
or posttreated with 5 nM staurosporine. RA (1 pM) was added to the
medium. After 2 h incubation, the drugs were removed (washed 3
times with PBS). Cell growth inhibition and differentiation (morpho-
logical and functional assessment) were assessed on day 4 after the
removal of RA. For posttreatment, staurosporine was supplied after
the removal of RA. * p < 0.05 (32 test), vs. control (2 h brief RA expo-
sure without staurosporine).

2 Cultures from each set were harvested and monitored for cell
number by counting cells with hemocytometer. Cell growth was
expressed as the percentage relative to control (no drug treatment).

b Morphological assessment of the induced cells was performed
using the Wright-Giemsa staining method. The percentage of mature
cells (myelocytes, metamyelocytes, banded and segmented neutro-
phil) was presented here.

¢ Functional assessment of the induced cells was performed by
nitroblue tetrazolium reduction assay.

4 Continuous treatment.

¢ 2 htreatment.

f  Treated before RA short exposure.

8 Treated after RA short exposure.

retinoic acid removal. When staurosporine was added
after the retinoic acid removal, however, no similar po-
tentiating effect was observed (line 6, table 1). The post-
treatment with staurosporine did neither increase the per-
centage of mature cells nor the inhibition of cell growth.
These results, therefore, suggest that the effects of a com-
bination treatment of retinoic acid with staurosporine
depend on the time of addition of staurosporine, i.e.
before or after treatment with retinoic acid.

Staurosporine Had Little Effect on Cell Cycle

Stevens et al. [22] have shown that sphinganine can
potentiate retinoic acid-induced differentiation. Our pre-
vious studies have also demonstrated that pretreatment
with sphinganine can modulate the reversibility of the
effects induced by brief retinoic acid treatment [11, 13].

More recently, we have shown that the effect of retinoic
acid on the induction of granulocytic differentiation is cell
cycle phase-dependent [12]. Sphinganine pretreatment
accumulates HL-60 cells in the G,/S phase, and in this
phase, cells are highly responsive to retinoic acid. To
obtain information on the approximate stage of the cell
cycle after the staurosporine treatment, flow cytometry on
DNA distribution was therefore performed (fig. 1). Expo-
sure of cells to 5 nM staurosporine for 24 h did not cause
HIL-60 cells to be arrested in any specific cell cycle phase
(fig. 1b). This was consistent with a previous report indi-
cating that low concentrations of staurosporine had little
effect on the cell cycle [3]. It can, therefore, be reasonably
assumed that the mechanism of action of staurosporine in
potentiating retinoic acid-induced differentiation may be
different from that on sphinganine, whose effect on reti-
noic acid-induced differentiation is to block the cell cycle
at G,/S phase.

Retinoic Acid Distributed Equally in Nuclear and

Membrane Fractions

To elucidate the possible mechanism of action of stau-
rosporine in the potentiation of retinoic acid-induced dif-
ferentiation, we examined the effect of pretreatment with
staurosporine on the accumulation and distribution of
[*H]retinoic acid in the cell nuclei, cytosol and plasma
membrane during and after the brief retinoic acid expo-
sure. The results showed that there were no differences in
[3H]retinoic acid accumulation or excretion during and
after the brief retinoic acid exposure in cells with or with-
out staurosporine pretreatment (fig. 2a). However, the
majority (>70%) of [*H]retinoic acid was found in the
nuclei in control (fig. 2b), whereas in staurosporine-pre-
treated cells, [*H]retinoic acid was found distributed
equally in the nuclei (40%) and in the plasma membrane
(40%) at the early time (<24 h) after the retinoic acid
exposure (fig. 2¢). This result differed from that obtained
from sphinganine-pretreated cells, in which the majority
of retinoic acid (>70%) was found in the nuclei of the cells
[12]. Furthermore, it is interesting to note that in stauro-
sporine-pretreated cells, retinoic acid was translocated
from the membrane to the nuclei after 24 h of retinoic
acid exposure (fig. 2c), at which time over 70% of retinoic
acid was then found in the nuclei. These results indicate
that the enhancing effect of staurosporine may be some-
how associated with the localization of retinoic acid in the
plasma membrane at the early time (<24 h) of retinoic
acid treatment. It is possible that the early initial stage of
retinoic acid-induced cellular differentiation may involve
membrane signal transduction.
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Fig. 1. Cell cycle distribution of untreated control cells (a) or cells
treated with staurosporine (b) is described. HL-60 cells were incu-
bated with or without 5 nAf staurosporine for 24 h and then were
washed free of drug (washed 3 times with PBS) before aliquots of
cells were sampled for flow-cytometric analysis.

Fig. 2. Intracellular accumulation and distribution of [*H]retinoic
acid (RA). Celis were cultured without any drugs in the medium (O)
or pretreated with 5 nM staurosporine (@) before 1 pM retinoic acid
and 2 pCi [PH]retinoic acid were added. After 2 h of [*Hlretinoic acid
incubation, the drugs were removed (washed 3 times with PBS). At
various times (indicated) after the washing procedure, the intracellu-
lar levels of [3H]retinoic acid were determined. Each point is the
mean = SD (n = 4). At 0, 18 or 24 h after washing procedure, cell
fractionations were carried out and the distributions of [*H]retinoic

acid were determined. Bars represent SD (n = 4). a Intracellular accu-
mulation of [*H]retinoic acid at various times after washing proce-
dure. b Intracellular distribution of [*H]retinoic acid in control cells
at 0, 18 and 24 h after washing procedure. ¢ Intracellular distribution
of [3H]retinoic acid in staurosporine-pretreated cells at 0, 18 and 24 h
after washing procedure. At 0h after washing procedure, the total
accumulation of retinoic acid was 250 fmol/106 cells. At 18 or 24 h
after washing procedure, the total accumulation was about 50 fmol/
106 cells Nuclei; [ = cytosol; []= membrane.
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Discussion

Some discrepancies exist in the literature regarding the
details of the interactions between retinoic acid and the
nuclear retinoic acid receptor family [14]. Retinoids have
also been known to affect the properties of lipid bilayers
and membranes [4, 24]. Some investigators have reported
the location of retinoids within bilayers and the interac-
tions of these ligands with phospholipids [4, 19, 24]. In
our present study, 40% of retinoic acid in the cells was
found in the plasma membrane fraction of staurosporine-
pretreated cells: the amount is twice that of control cells
(fig. 2¢). In parallel to the 2-fold increase in retinoic acid
distribution in the membrane, a 2-fold higher level of
induction of differentiation in staurosporine-pretreated
cells than in control cells was seen (table 1).

Much evidence has so far suggested the presence of
retinoic acid receptors in the nuclei. Qur present study has
demonstrated that the plasma membrane may be another
important target for retinoic acid in the induction of gran-
ulocytic differentiation. Previously, Yen et al. [25] have
shown that a drug interaction that is limited to the cell
surface is sufficient for the induction of differentiation.
Recently, Almagor and Bar-Tana [1] have demonstrated
that retinoic acid inhibits the myristoylation of a 25-kDa
membrane protein in HL-60 cells. They suggest that the
nonmyristoylated state of this membrane protein could
perhaps signal the differentiation of HL-60 cells induced
by retinoic acid. The present data offer another insight
into the mechanism of action of retinoic acid, i.e., the sig-
nal transduction for retinoic acid-induced differentiation
may be initiated and mediated through the membrane.

In addition, it has been suggested that although the ini-
tial process of differentiation induced by retinoic in HL-~
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