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ABSTRACT

Due to advances in very large scale integrated circuit (VLSI) technology, the chip area of integrated
circuits (IC) has increased significantly.  However, power efficiency and performance have not propor-
tionally improved.  The main reason is the very high capacitive load of the global clock.  On the other
hand, the asynchronous circuit needs no global clock and it can overcome the difficulties that are met
in synchronous circuit design.  This paper describes a technique for asynchronous circuit design which
uses a new asynchronous control unit that is composed of pass transistors.  This asynchronous control
unit has the advantages of simplicity and ease of implementation.  We used the Taiwan Semiconductor
Manufacturing Company (TSMC) 0.6 µm single-poly double-metal process to design and implement an
8−b×8−b pipelined multiplier associated with an asynchronous control unit.  HSPICE simulation results
show that the feed through rate of the inputs can be as high as 250 MHz.
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I. Introduction

Digital sequential circuits can be classified into
two categories, synchronous circuits and asynchronous
circuits.  In synchronous circuits, a system clock signal
is needed to force the states to transition correctly and
properly.  On the other hand, asynchronous circuits do
not have system clock signals; state transitions are
caused by changes in inputs (Hauck, 1995).  The in-
ternal states of synchronous circuits are controlled by
clock triggered flip-flops; therefore, synchronous cir-
cuits do not have state race problems (Unger, 1995).
In traditional synchronous circuits, blocks of logic
circuits are activated by a globally distributed clock
signal.  As the chip area increases, the route length of
the global clock becomes very long; hence, the capaci-
tor load becomes very significant, which may cause
clock skew.  Clock skew may degrade the performance
of the system.  In order to increase the speed of a circuit,
dynamic circuits are used to implement the circuit.
However, the procedures involved in charging and
discharging a dynamic circuit may consume power; the
higher the clock frequency, the more power is con-
sumed (Hauck, 1995).

The asynchronous circuit does not have the prob-
lems encountered in the synchronous circuit.  The events
of asynchronous circuits are activated by input signals
instead of the global clock (Hauck, 1995).  Therefore,
we do not need to worry about problems caused by the
global clock.  Since there is no global clock, there is
no dynamic power consumption, and theoretically,
asynchronous circuits consume less power than syn-
chronous circuits (Hauck, 1995).  Since activation of
asynchronous circuits is triggered by input signals, an
asynchronous system has “average-case” performance
instead of the “worst-case” performance in a synchro-
nous system.  Therefore, an asynchronous system
potentially has higher speed than a synchronous system.
In synchronous circuits, in order to make the system
work properly, delay elements have to be added (Hauck,
1995).  Because the very large scale integrated circuit
(VLSI) process technology is dependent prone, param-
eters of delay elements varies in different VLSI
processes.  Therefore, a given product may have to be
redesigned to fit a new VLSI process.  This charac-
teristic may increase the design and implementation
complexity, and may even shorten the life cycle of the
product.  On the other hand, the design methodologies
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for asynchronous circuits are the same in all of the
VLSI processes.  Therefore, asynchronous circuits can
be easily changed to a new VLSI process (Hauck,
1995).

Although asynchronous circuits have good
characteristics, they also have their drawbacks.  The
most important one is in the design of the control
scheme.  In order for asynchronous circuits to work
properly, asynchronous controllers must be embedded
into the circuits.  Therefore, the asynchronous control
unit is the core of the asynchronous circuit design.
Several approaches to this problem have been proposed
by researchers (Hauck, 1995; Sutherland, 1989; Myers
and Meng, 1993; Meng et al., 1991; Cho et al., 1992;
Dean, 1992; Furber et al., 1993; Furber, 1993; Martin
et al., 1994; Paver, 1994; Richardson and Brunvand,
1995; Burns, 1991).  However, some of them are vary
complicated, and some are impractical for implemen-
tation in a real circuit (Hauck, 1995; Burns, 1991).

Asynchronous circuits can be roughly classified
into several categories (Hauck, 1995), including
bounded delay models, micropipelines (Sutherland,
1989; Furber et al., 1993), self timed circuits (Dean,
1992; Richardson and Brunvand, 1995), delay insen-
sitive circuits, and quasi delay insensitive circuits.  The
bounded delay models are used in the conventional
approach.  When designing an asynchronous circuit in
the bounded delay model, we have to generate the flow
table and assign states very carefully to prevent critical
races.  Due to unpredictable delays, much effort is
required.  Because of these uncertainties, basically, the
bounded delay approach is not practical for real circuit
design (Hauck, 1995).  The other approaches, including
micropipelines, self timed circuits, delay insensitive
circuits, and quasi delay insensitive circuits, are clas-
sified as handshaking mechanism approaches and are
commonly used in asynchronous circuit design (Cho
et al., 1992; Dean, 1992; Furber et al., 1993; Furber,
1993; Martin et al., 1994; Paver, 1994; Richardson and
Brunvand, 1995).

In synchronous circuits, a global clock signal is
used to coordinate signals in between stages.  Similarly,
a handshaking mechanism is used in an asynchronous
circuit to coordinate signals in between stages by using
control signals (like “request” and “acknowledge”)
instead of the system clock signal.  The handshaking
mechanism is depicted in Fig. 1, which shows only
three stages: stage i−1, stage i , and stage i+1.  Acti-
vation of the control signal in stage i−1 causes the data
(signal) of stage i−1 to flow to stage i .  Completion
of the data transition of stage i  activates the control
signal of stage i .  Activation of the control signal of
stage i  deactivates the control signal of the previous
stage (stage i−1), and causes the data (signal) of stage

i  to flow to stage i+1.  The data flow of stage i+1 may
activate the control signal of stage i−1, and completion
of the data transition of stage i+1 activates the control
signal of stage i+1.  Therefore, if we can insert a
handshaking mechanism block in each stage of the
digital system, the system can transition to the right
state and work properly.

A new asynchronous control unit similar to hand-
shaking is proposed in this paper.  It has a simple
architecture and can be implemented in real VLSI
circuits easily.  Using this new control unit, we have
designed and implemented a pipelined multiplier.  This
pipelined multiplier verifies the usefulness of the
proposed asynchronous control unit.

This paper is arranged as follows.  Section I is
the introduction.  In Section II, the novel asynchronous
control unit and the asynchronous pipelined scheme are
presented.  Section III discusses the architecture of the
multiplier.  In Section IV, we discuss the design of an
8−b×8−b asynchronous pipelined multiplier.  Finally,
we conclude this paper in Section V.

II. New Control Unit and the Struc-
ture of Asynchronous Circuits

The control unit is the core of an asynchronous
circuit design.  Recently, asynchronous circuit design
has used event logic to control the system (Hauck,
1995; Sutherland, 1989).  Muller C-element uses the
approach of event logic (Sutherland, 1989).  This con-
trol unit is used to control the changes of handshaking
signals in order to enable or disable the function of
internal logic blocks.  The Muller C-element is useful,
but it is not practical (Hauck, 1995).  For practical
design of asynchronous circuits, we propose another
architecture for the asynchronous control unit.

The basic structure of an asynchronous circuit is
composed of several stages.  Except for the first and
last stages, each stage is connected by two stages, the
preceding stage and the succeeding stage.  There is a
control block and an executing logic block in each

Fig. 1. The handshaking scheme used in asynchronous circuits.
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stage.  In order to find the proper control signals, we
use differential logic, such as complementary pass logic
(CPL) (Bellaouar and Elmasry, 1995), to implement the
circuits.  The executing logic block is composed of
latches and differential logic.  Similar to the protocol
mentioned in Fig. 1, we use a “generate complete” (GC)
signal to represent the control signal.  The executing
logic block will generate a GC signal to indicate that
the function generated in that stage has finished.  Our
proposed control unit tries to use the characteristics of
the GC signal.  In our asynchronous system (as shown
in Fig. 6), the GC signal is sent to both the previous
stage and the succeeding stage to indicate that the job
has finished in the current stage.  When the previous
stage receives the GC signal (GCi), this signal acts like
an acknowledge signal in that it tells the previous stage
that the current stage has finished the job.  The previous
stage can then send new data to the current stage.  When
the succeeding stage receives the GCi signal, this GCi
signal acts like a request signal in that it tells the
succeeding stage that the current stage has finished the
job, and that the data are on the way to the succeeding
stage, and it also activates the executing logic of the
succeeding stage.  Therefore, a good handshaking pro-
tocol (in which GCi is both an acknowledge signal sent
to the previous stage and a request signal sent to the
next stage) is formed and functions normally and
smoothly.

Let us use a symbolic graph to describe the func-
tion of GCi .  Figure 2 shows several stages of an
asynchronous circuit.  GCi and Φi are the handshaking
signal “generate complete” and the reset signal for
the i th stage, respectively.  As long as Φi equals 1,
GCi−1 is reset.  At the very beginning, the system is
reset, and all the GCj’s and Φi’s are zeroes (start step).
Suppose that GC0 is activated, and that after some delay
time, stage 0 finishes executing and sends the complete
signal GC1 to stage 1 (step 1).  After some delay time,
stage 1 finishes its logic operation, and the finished
state activates Φ1 and GC2 (step 2).  The activation of
Φ1 thus resets GC0 (step 3).  After Φ1 becomes 0, GC0

can again accept additional data or signals from the
external circuits (step 4).  At the same time, GC2

continues working, propagating signals and data to the
following stages (step 4).  Stage by stage, the data or
signals are propagated to the final stage, and the job
is finished.  If the second piece of data is fed into the
system with some delay time, our architecture can work
properly.  The symbolic graph for this kind of situation
is shown in Fig. 3.  In step 3 of Fig. 3, data input stops.
However, we find that the process continues working,
propagating to stage 3 in step 4.  Finally, the input data
are fed into the system in step 5.  The previous process
continues on to the next stage regardless of the present
data input.  On the other hand, if one of the stages takes
more time than some other stages, this architecture can
still work.  Figure 4 shows an example.  Suppose stage
2 needs more time to execute data.  In step 3 of Fig.
4, we find that GC2 has not been activated, and that
the system stops there to wait for the execution of stage
2.  In step 4, stage 2 finally finishes executing, and
GC2 is activated; then the system continues operating,
and the next batch of data is fed into the system.  From
Figs. 2-4, we find that the system can coordinate well
and work smoothly.

Based on the protocol mentioned in the previous
paragraph, a control unit has been designed and is
shown in Fig. 5.  In Fig. 5, GCi is the “generate com-
plete” signal of the current stage, GCi−1 is the “generate
complete” signal from the previous stage, and GCi+1

is the “generate complete” signal in the following stage.
This control unit can operate the same protocol men-
tioned in the previous paragraph.  GCi−1, GCi, and
GCi+1 all together activate the “enable” signal to trigger

Fig. 2. State flow of the asynchronous control cheme for the normal
case.

Fig. 3. State flow of the asynchronous control scheme for discon-
tinuous data feed.

Fig. 4. State flow of the asynchronous control scheme for slower
stage 2.
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the latches in the current stage.  The architecture of
the asynchronous control unit is very simple.  The
components of this control unit consist of only trans-
mission gates and inverters, and the unit can be imple-
mented very easily.

We will next discuss in more detail the function
of this control unit that is embedded into asynchronous
circuits.  Figure 6 shows part of an asynchronous circuit.
In each stage, there are two multiplexers which form
the control unit.  The circle on the upper multiplexer
indicates the GCi+1 complement.  The logic part is
implemented using differential logic circuits.  Initially,
both of the outputs of the differential logic circuits are
reset to ‘0’ (or ‘1’).  The GC circuit consists of a two-
input exclusive-or gate, and both of the outputs of the
differential logic circuits are fed to the inputs of the
GC circuit.  When the logic function finishes, the
outputs of the differential logic generate two exclusive
outputs that set GC to 1 and thus generate the complete
signal.  Initially, we set all the GC circuits to 0 and
reset the enable signal.  As soon as GCi−1 is set to ‘1’,
stage i  is enabled, the latch in the logic block latches
the data from stage i−1, and at the same time, both of
the differential outputs are reset to ‘0’ (or ‘1’).  After
the logic block finishes its operation, the GC becomes
‘1’, forces the upper multiplexer to select   GCi + 1, forces
stage i+1 to accept data from stage i  and activates stage
i+1.  Only when stage i+1 finishes its operation can
it be activated by stage i−1.  Based on this handshaking
mechanism, the asynchronous circuits operate stage by
stage and funct ion normal ly.   Based on th is
characteristic, the asynchronous unit can be applied to
a pipelined system.  We will describe a real circuit
architecture which uses this control unit in the next
section.

III. The Architecture of the Asynchro-
nous Pipelined Multiplier

Because asynchronous circuits work stage by stage,
they are very similar to the pipelined architecture.  In
the pipelined architecture, latches are needed to sepa-
rate the stages.  The latches in the asynchronous
pipelined scheme have two important functions.  One
is to latch data for the current state, which is similar
to the conventional synchronous mode.  The other
function is to modify the wave form of the signal.  Here,
we use CPL to implement the logic block of asynchro-
nous circuits.  Due to the characteristics of CPL, the
output signal is not full swing, and non-full-swing
signals may be restored by the latches to full swing
wave forms.  The block diagram of an asynchronous
circuit with latches is shown in Fig. 7.  From Fig. 7,
we find that the GC signal is detected from the latch.
In order to perform this function, the latch is designed
in a complex mode, composed of dynamic and static
latches, and the schematic diagram is shown in Fig. 8.
The dual outputs of the CPL are fed into the dynamic
latch to form the executing complete signal.  When the
CPL logic part has finished executing, the dual signals
are latched by the dynamic latch and activate GC to
1.  The GC signal can then be propagated to both the
previous stage and the following stage.  The GC signal
sent to the previous stage will enable the system to

Fig. 5. The new asynchronous control unit.

Fig. 7. Pipelined architecture of asynchronous circuits.

Fig. 6. The architecture of a system with asynchronous control units.
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receive new data from the previous stage or the external
world.  The GC signal sent to the following stage can
make the following stage ready to receive data from
the current stage.  When the GC signal of the current
stage has been transmitted, GC itself should be clear,
and the current stage can then receive a new set of data
from the previous stage again.  The dynamic latch can
then automatically reset GC.  The static latch is a set-
reset (SR) latch.  This SR latch can statically latch data
to make sure that the next stage will have correct and
stable data.  If the fan-in is more than one, we can use
the architecture shown in Fig.  9 to implement the GC
signal.

Based on the design described in the previous
paragraph, a pipelined multiplier has been designed.
The architecture of the multiplier is shown in Fig. 10.
The Booth algorithm (Koren, 1993) is applied to this
multiplier.  This multiplier has several components,
including a Booth decoder, several 4-2 compressors
(West and Eshraghhian, 1993), and a conditional-sum
adder (Hwang, 1979).  There are many partial products
in a multiplier, and the Booth decoder can reduce the
number of product terms and, thus, reduce the hardware
cost.  The 4-2 compressors can sum up to four partial

Fig. 8. The complex latch.

product terms concurrently.  Using the 4-2 compressor
approach can prevent carries to propagate to the higher
position and can increase the speed of the multiplier.
Finally the conditional-sum adder can sum the result
of the final two partial product terms to obtain the real
multiplication product.  The conditional-sum adder is
very suitable for the pipelined architecture (Hwang,
1979); therefore, we used this architecture to design
and implement the pipelined multiplier in order to
demonstrate the validity of the proposed asynchronous
architecture.  The architecture shown in Fig. 10 can
be fit to a pipelined multiplier of any length.  Without
loss of generality, we have designed an 8−b×8−b
multiplier.

IV. Circuit Design and Implementa-
tion

The multiplication procedures for the multiplier
are divided into ten stages to fit the pipelined
architecture.  Here, the Booth decoder is divided into
two stages, the 4-2 compressors are separated into two
stages, and the conditional-sum adder is implemented
in five stages.  We have used the CPL circuit to design
and implement each stage.  Since the design is asyn-
chronous, we do not need to worry about the clock
frequency.  The multiplier keeps working as long as
there are data in the multiplicand and multiplier.  Based
on this design arrangement, during every 4 ns, the
system can feed another set of data to the multiplier.

The test chip was fabricated using Taiwan Semi-
conductor Manufacturing Company (TSMC) 0.6 µm
single-poly-double-metal complementary metal-oxcide-

Fig. 9. The GC Circuits.

Fig. 10. Block diagram of the multiplier.
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semiconductor field effect transistor (SPDM CMOS)
technology.  We used the fully custom design method
to complete the circuit layout.  The die size was about
970 µm×1048 µm, and 6428 transistors were used.  The
multiplication speed of the asynchronous pipelined
multiplier can operate to a clock frequency of 250 MHz.
Figure 11 shows the HSPICE simulation results for 100
MHz/200 MHz/250 MHz input data rates.  The speed
and power dispassion simulation results for the mul-
tiplier are summarized in Table 1.  A photograph of
the die of the multiplier is shown in Fig. 12.

V. Conclusions

In this paper, we have proposed an asynchronous

controller with a simple architecture which is com-
posed of transmission gates (pass transistors) and
inverters.  Based on this approach, the asynchronous
circuit can obtain good performance.  We have also
tested the validity of the control unit by designing and
implementing a pipelined multiplier.  This pipelined
multiplier can feed data every 4 ns and work very well.
The design of the multiplier is based on the module
scheme, and it can be expanded to any bit size.  Besides
the pipelined scheme, the asynchronous control unit
can be applied to any kind of digital system.
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