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ABSTRACT

In this paper, we present a new address translation and memory protection model to manage the
wide 64-bit virtual address space, called the segment-based translation and protection (SBTP) model. It
partitions a 64-bit virtual address space into 2*? segments with equal size of 2%2 bytes. The SBTP model
maintains a segment table to record used segments for each process. As a result of caching the per-process
basis segment table on a designed memory cache, called the segment look-aside buffer (SLB), the virtual
address translation time and protection rights verification time can be reduced. Furthermore, by separating
the hardware mechanisms of address translation and protection, mapping information stored in the trans-
lation look-aside buffer (TLB) can be shared by all the processes and need not be flushed on each context
switch. Thus, the cost of context switching compared with that conventional architectures is greatly reduced.
Simulation results show that the proposed memory architecture effectively improves the performance of
wide virtual address translation and memory protection for single address space operating systems.
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|l. Introduction

Because most current computer architectures are
moving to 64-bit microprocessors, such as Alpha by
DEC (Sites, 1992), PA-RISC by HP (Lee, 1989), R4400
by MIPS (Kane and Heinrich, 1992) and UltraSPARC
by SUN (Yung, 1995), the single address space oper-
ating system concept has been proposed to utilize the
wide (64-bit) virtual address space (Chase et al., 1994;
Bartoli et al., 1993; Okamoto et al., 1992; Chase,
1992). In these operating systems, all processes are
spread over a 64-bit virtual address, where each process
has its private portion in the 64-bit virtual address but
can access others by issuing a 64-bit virtual address,
as shown in Fig. 1. In this model, virtual address
translation and memory protection are provided not
through conventional address space boundaries, but
through protection domains that describe the access
rights of the pages or segments.

However, most 64-bit architectures are still housed
32-bit operating systems, such as UNIX, which is a 32-
bit operating system and cannot fully explore the
functionality of the 64-bit architecture (Koldinger,
1992), especially in virtual memory management.
Therefore, in this paper, we address how the movement
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Fig. 1. Single address space environment.

to the 64-bit virtual address space and single address
space operating systems affects traditional translation
and protection methods on wide address architectures.
We also propose a new scheme that can efficiently
translate the wide 64-bit virtual address and effectively
verify access rights for single address space operating
systems.

The paper is organized as follows: In Section II,
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we examine several virtual memory management ar-
chitectures and address their drawbacks when they
are applied to the single address space operating system
with wide virtual address. In Section III, we present
a virtual address translation and memory protection
architecture, called the segment-based translation and
protection model (SBTP model) which is specially
designed for single address space operating systems
with a 64-bit virtual address space. Section IV presents
the simulation methodology and the simulation results
by comparing different wide address architectures.
Section V concludes this paper.

Il. Related Virtual Address Manage-
ment Architectures

In this section, we survey a number of memory
management architectures and evaluate their applica-
bility to wide virtual address translation and access
right protection.

1. Virtual Address Translation Architecture
Virtual-to-physical address translation is an im-

portant factor determining system performance. In this
section, we will present five translation architectures

and explain why they are not suitable for translating

wide virtual addresses.

A. Forward-Mapped Page Table and Guarded Page
Table

The forward-mapped page table scheme uses the
virtual address as an index to a hierarchical page table
as shown in Fig. 2. The leaf nodes store page table
entries while intermediate nodes store pointers to the
next level. Considering the page table size, translating
a 64-bit address space requires that the number of levels
be up to seven or more. Thus, the overhead for re-
solving a translation look-aside buffer (TLB) miss is
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Fig. 2. Forward-mapped virtual address translation.
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Fig. 3. Guarded page table.

seven memory accesses. In addition, the key drawback
is that the implementation for the seven-layer page
table will exponentially exhaust memory resources. For
example, a forward-mapped page table of 16TB is
required to cover a 2%-bit virtual address space.
Therefore, the scheme is not suitable for wide address
translation.

The guarded page table scheme, a variant of the
forward-mapped page table, has been proposed to handle
sparse virtual address space management. As shown
in Fig. 3, the top level of the page table is indexed using
the upper bits of the virtual address. The guard is then
compared with the remaining most significant bits of
this address. If there is a match, the pointer contained
in the entry is followed to the next level. The operation
continues until all the bits are consumed. A guarded
page table reduces both the translation time and memory
overhead required for the tree-based page table. The
drawbacks are that it is still a memory-traversed trans-
lation scheme, and that it does not provide protection
and sharing information inherently.

B. Hashed Page Table and Clustered Page Table

Large address space systems often use hashed
(inverted) page tables (Albert and Mergen, 1988; Huck
and Hays, 1993). The simplest implementation uses
an open hash table with a hash function that maps a
virtual page number to a bucket. Each page table entry
in the hash table stores the mapping information for
one page, a tag identifying the virtual page number,
and the next pointer. Hash tables use chaining to handle
hash overflows (Fig. 4). During page table look-up,
the hash function indexes into an array of hash nodes
and traverses the hash bucket until a page table entry
is found with a tag matching the faulty address.
Extending hashed page tables to 64-bit addresses is
straightforward, the difference is that the tag and pointers
are now eight bytes each, resulting in sixteen bytes of
overhead for each eight bytes of mapping information.

Clustered page tables (Talluri er al., 1995), a
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Fig. 4. Hash page table.

variant of hashed page tables, store mapping informa-
tion for several consecutive pages with a single tag and
the next pointer as shown in Fig. 5. Many page table
operations in a clustered page table are similar to those
in a hashed page table. During page table lookup, for
example, the virtual page number is split into a virtual
page block number (VPN) and a block offset (Boff).
The VPN participates in the hash function, and the
block offset indexes into the array of mappings in the
page table entry (PTE) with a matching tag. Thus, if
the virtual address space is sparse, the memory over-
head is much less than that of linear page tables, and
the translation time is much less than that of the original
hash tables. In summary, hashed page tables and
clustered page tables have less memory overhead, but
their translation time highly depends on the hash func-
tion and the program locality.

C. Software Loaded TLB

The 64-bit architectures, such as MIPS processors
(Manskey, 1991) or DEC Alpha (Sites, 1992), now
support software loaded TLB, which turns page table
design into an operating system issue (Uhlig, 1994).
If a miss occurs, the processor traps to a fault handler,
which is a part of the operating system. The handler
searches a system-maintained table for address trans-
lation as well as protection information and then inserts
it into the TLB. This approach hides the hardware
complexity by means of software manipulation, but the
latter requires an unpredictable amount of time for TLB
miss resolution.

2. Protection Architecture
Another important issue in a multi-process oper-

ating system is that of providing efficient inter-process
communication. However, bad design of objects

sharing between processes will damage the involved
processes. A well-designed protection architecture
prevents a process from being damaged by other pro-
cesses but allows it to share common memory resources
with others.

A. Protection Look-aside Buffer Schéme

The protection look-aside buffer (PLB) scheme
is a solution which provides parallel look-up for trans-
lation and protection information (Koldinger, 1992).
In this scheme, the TLB contains the usual translation
information, and the PLB contains protection informa-
tion, such as access rights. In addition, process-specific
validation data is cached on the PLB.

As shown in Fig. 6, the TLB and the PLB are
searched in parallel. A successful TLB operation re-
turns the physical address, and an unsuccessful one
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Fig. 6. Protection look-aside buffer.
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generates a translation fault. The PLB search generates
a protection fault if it is unsuccessful. The TLB is,
thus, completely process-independent and does not need
to be flushed at all during context switching. Further-
more, if the PLB entry is tagged with a process iden-
tifier, the PLB does not need to be flushed during
context switching too. An improvement is to add a
virtually indexed cache. It is noteworthy that the data
cache can also be shared by different protection do-
mains. The virtual indexed cache is a data cache
indexed by a virtual address. In contrast, the physically
indexed cache is a data cache indexed by a physical
address.

B. Page Group Protection Model on HP PA-RISC

Segmented systems (e.g., the IBM 801 (Albert et
al., 1988), INTEL X86 and HP PA-RISC (Lee, 1989))
support uniform sharing to some degree. The first
phase of address translation on segmented architectures
concatenates a global segment identifier with a seg-
ment offset, yielding a long-form address from a global
virtual address space. The segment identifier is re-
trieved from a segment table or a vector of segment
registers associated with the current domain. The
segment table is typically accessed by the high order
bits of the domain specific address. Domains define

a local view of portions of the global address space’

by overlaying global segments into their private seg-
ment registers. Segmented systems are able to imple-
ment a high degree of sharing and module protection,
but they are not suitable for implementation of single
address space operating systems because, except for the
HP PA-RISC architecture, they lack a cross-segment
pointer. A page-group model implemented in HP PA-
RISC defines logical groupings of pages. Each page
is a member of a single page-group, and a protection
domain is defined by the set of page-groups that it can
access. In PA-RISC, the TLB entry for a page includes
a set of access rights and a field called an access
identifier (AID) that contains a page-group number, in
addition to translation information, as shown in Fig.
7.

In each memory access, the TLB is searched using
the virtual page number, and returns the physical
address translation and the AID for the page. The
processor must then determine if an access to the page-
group specified in the AID is permitted in the current
protection domain. If the page-group number in the
AID matches one of the PIDs, or if the AID field is
zero, then the exact access rights allowed are deter-
mined by a combination of: (1) the access rights speci-
fied for the page in the Rights field of the TLB entry,
(2) the current processor privilege level (PL in Fig. 7),
and (3) a write-disable bit in the PID register (D in Fig.
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Fig. 7. Page-group protection model on HP PA-RISC.

7). The set of page-groups accessible to the current
domain is stored in a set of four page group registers.
Because the page-group model requires only one set
of access rights per page, protection and translation
information can be combined in a TLB without dupli-
cating translation data. However, four page-group
registers do not satisfy the needs of single address space
operating systems, which always attach 4~16 segments
to each protection domain. Thus, a fault handler is
required which replaces the protection information,
and the performance of the model is determined by the
efficiency of the handler. In the original designs of
both the PLB scheme and the Page Group Protection
Model, there was no hardware facility to speedup the
retrieval of protection information when a cache miss
occurs.

Ill. Segment-Based Translation and
Protection

In this section, a scheme for virtual address trans-
lation and protection, called the segment based
translation and protection model, will be proposed
to improve the performance in 64-bit virtual address
translation and protection. The SBTP model can
also be applied to virtual memory architectures that
use software loaded TLB by slightly modifying
the TLB fault handler. Thus, the cost of flushing
the TLB for each context switch can be greatly re-
duced.

1. SBTP Model

A translation and protection model in a single
address space operating system defines the range of a
64-bit virtual address space to which each process can
access. In our proposed SBTP model, the left-most 32
bits of a 64-bit virtual address represents the segment
identifier, and the other 32 bits represent the offset in
a segment, as shown in Fig. 8. The segment is a
minimum protection and allocation unit provided by
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Fig. 8. Single address space on a segment-based protection model.

the virtual memory management. Each segment plays
the role of a stack, temporary heap, memory mapped
file or library code.

With the SBTP model, the operating system kernel
must maintain translation tables for each segment and
protection tables for each process. Primitively, each
process running on such a system can access (read/
write/execute) any data or code segment in the whole
address space (2°? segments) if this process has the
access capabilities of all the segments. However, a
process is limited to access of some segments to which
the process has access capability. A collection of
capabilities of a process forms a protection domain of
this process. Each capability consists of a 32-bit seg-
ment identifier, a 5-bit long segment, a 4-bit access
right owned by the process and a 20-bit base address
pointing to a translation page table for the segment.
Thus, in total, eight bytes are needed for a protection
table entry. The 20 bits from 32 to 51 in the 64-bit
virtual address are used as an index to a two-level page
table for translation. The 5-bit long segment is suf-
ficient to record the usage of the 20 bits (2° = 32 >
20). When the value of the segment length field is
smaller than 10 (less than 10 bits are used), the SBTP
model speeds up by looking up the second-level page
table instead of the first-level page table.

2. Hardware-supported SBTP Model

To reduce the time needed for virtual address
translation and protection verification, a new memory
cache called the segment look-aside buffer (SLB) is
introduced. SLB is a fully associative cache with
16~32 entries. It is used to cache the protection table
entries used by the SBTP model. In context switching,
the SLB is flushed and then filled with the protection
table entries of the new process. Thus, the SLB
contains the capabilities of the new process, and
SLB cache faults never occur within the time slice
unless illegal references to an unattached segment
occur.

A virtually indexed cache is also embedded into
the memory architecture. Figure 10 depicts the high-
level organization of the SLB, TLB and a virtually
indexed cache. At each memory reference, SLB, TLB
and the virtually indexed cache are accessed in parallel.
The segment identifiers are looked up in the SLB,
which is extracted from the left-most 32 bits of the
virtual address. The virtual page number is looked up
in the TLB, which is extracted from the left-most 52
bits of the virtual address. The whole 64-bit virtual
address is looked up in the virtually indexed cache for
a data hit or miss. The lock set bit (1.s.) in the TLB
provides a page-level lock mechanism. The owner of
a segment can set its page’s lock bit in the TLB to
prevent other processes from accessing this page. This
page-level lock functionality is widely demanded by
database applications.

During operations on these three cache structures,
several conditions can occur:

(1) Condition 1: If cache hits occur on the SLB, TLB
and the virtually indexed cache, the protection
information and the lock information are ex-
tracted directly from the entries of the SLB and .
TLB, and access rights are verified at the same

time. Ifitis a legal reference, a data block in

the virtually indexed cache is accessed imme-
diately.

(2) Condition 2: If cache hits occur on the SLB and
TLB, but a miss occurs on the virtually indexed
cache, virtual-to-physical address translation is
performed. Translation mapping information is
then stored in the TLB. At the same time, the
access right is verified, and the instruction is
restarted.

(3) Condition 3: If a hit occurs on the SLB only, the
access right is verified, and the base address of
the page table of the address’s segment is ex-
tracted by the TLB fault handler, which searches
for this segment in the page table. A two-level
forward-mapped page table is used to handle the
remaining 32-bit virtual address translation, and
each level is indexed with a 10-bit virtual ad-

64-bit virtual address
[32-bit Segment ID | 32-41 | 42-51 | Offset |
1

32 bits \ :

110 bits H
10 bits ' '
b .
)
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Fig. 9. Segment-based protection model.
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Fig. 10. Segment look-aside buffer.

dress, as also shown in Fig. 9. If the segment
size is less than 1024 pages, only a one-level
page table needs to be traversed. After the TLB
mapping information is refilled by the fault
handler, the instruction is restarted.

(4) Condition 4 : If no match occurs on the SLB or
if the access is illegal, the protection fault han-
dler is signaled to refill the SLB and the pro-
tection table, or it sends an illegal reference
signal to the current protection domain.

The SBTP Model combining the SLB, TLB and
virtual indexed cache has the following merits:

(1) By separating the hardware support mechanisms
for translation and protection, translation infor-
mation can be shared by all the processes and
does not need to be flushed in every context
switching. Thus, the cost of flushing the TLB
for context switching is greatly reduced.

(2) By caching higher order virtual address trans-
lation information in the SLB, the TLB refilling
time is reduced. Only one or two level page
tables need to be traversed when a miss occurs
in the TLB.

(3) The number of cache misses on the SLB is much
smaller than that on a page based protection
cache such as the PLB scheme. Furthermore,
in our SBTP model, the protection table can be
represented as a hashed table. Thus, the pro-
tection cache refilling time can be greatly re-
duced.

(4) By maintaining page based protection on the
TLB, some page operations can be supported in
our segment based protection model.

3. SBTP Model with Modified Software-Loaded
TLB Support

In a software-loaded TLB architecture, the TLB

entries are intended for individual address spaces which
combine translation and protection information, and
need to be flushed every context switching. The flush-
ing operation removes not only the protection infor-
mation, which is different for each process, but also
the translation information, which is identical for all
processes. Improvements for the flushing overhead are
provision of validate/invalidate bits in the TLB entries
and separate translation and protection tables in the
TLB miss handler. On each protection domain switch-
ing (context switch), the system invalidates all the TLB
entries (sets the validate bit FALSE but does not flush
it), and when a TLB miss occurs (caused by the in-
validate state), the TLB miss handler searches the
protection table for a match to the virtual page number
if there is an entry indexed by the faulted virtual page
number in the TLB. If access to the address is per-
mitted, the handler only needs to validate the TLB
entry to complete the cache miss. Otherwise, the
TLB fault handler searches both the protection and
translation tables to reload the TLB entry. If we can
guarantee that the searching time in the protection
table is less than that in the translation table, the
cost of context switching may be reduced by invali-
dating the TLB entries instead of flushing. Therefore,
we modify the software-loaded TLB structure to
provide fast protection table lookup in the SBTP
model.

Shown in Fig. 11 is a hybrid scheme which uses
both the forward-mapped page table and the hashed
page table. If a virtual page number matches the
invalidated TLB entry, only the hashed table needs to
be traversed to find a corresponding protection table
entry in the per-process basis protection table. If a
translation information fault occurs, the hash page table
is traversed first to find the protection information and
the base address of the page table, and a one or two-
level forward-mapped page table is traversed to find
the translation information. The simulation in Section
IV shows that the translation time and memory over-
head of this modified software-loaded TLB method are
reduced.

Virtual Address
[ Segip | offset ]
Protection Table Entry

To one or two level forward mapped

@ PTE v ) page table for this segment
/ L
? Open Hash Table per Process
Hash Base

Fig. 11. Applying the SBTP model to the modified software loaded
TLB.

- 621 -



S.P. Shieh et al.

IV. Simulation and Performance
Evaluation

In this section, we will present the simulation
methodology, give the simulation results based on com-
parison of different wide address architectures and
show that our approach performs better than others.

1. Simulation Model

Since a 64-bit operating system environment was
not available, we built an environment which could
effectively simulate the 64-bit virtual memory access
pattern of the processes in a system. We implemented
a 64-bit virtual address simulation environment on a
32-bit operating system. The simulation environment,
called the Single Address Space Operating System
(SASOS) simulator, was built upon Linux Slackware
1.2.3, which collects the 32-bit memory reference
behavior of the simulated processes and then generates
64-bit address traces as input to the hardware simu-
lator.

Figure 12 shows the relationship between the 32-
bit workloads, the SASOS simulator, the memory ar-
chitecture simulator, the hardware simulator and the
Linux operating system. The SASOS simulator was
implemented through the UNIX system call ptrace(),
which allows us to trace a process in single step mode
and thus the memory reference and register values can
be easily intercepted. The workload returns execution
right after every instruction execution, and the SASOS
simulator can grab the workload’s memory reference
and produce 64-bit virtual address which is then sent
to the hardware simulator for advance simulation. The
SASOS simulator maps 32-bit memory reference be-
havior to the 64-bit single address space. A 64-bit
virtual address is generated by combining the 32-bit

Memory Architecture
Simulator
Hardware
Simulator
Work-
oadl (Run) 0a 0a Simulator

Linux Slackware 1.2.13
Intel 486 DX2-66

Fig. 12. Relationship between different simulators of our simula-
tion.
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Fig. 13. Simulation process.

segment ID and its 32-bit offset. The reason why we
used 32-bit benchmarks as input forour simulation is
that a 64-bit environment and 64-bit program where
not available. We needed an approach which could
produce the program trace without any loss of correct-
ness, thus, we implemented the simulation environment
to on-time simulate 64-bit memory access behavior
under 32-bit operating systems. There were three major
access patterns in the simulator: text segment accesses,
data segment accesses and system calls. Figure 13
shows that we intercepted each mmap() or mprotect()
system call to create a new segment for use in the SBTP
model and re-mapped the data or code access address
to a new 64-bit virtual segment address. We also
implemented various hardware architectures in the
hardware simulator module, including the conventional
TLB scheme, the modified TLB scheme, the PLB
scheme, the modified PLB scheme and the proposed
SLB scheme. When a simulated hardware cache fault
occurred, the memory architecture simulator was in-
voked. The memory architecture simulator also built
several schemes, including forward mapped, hashed
and clustered page tables schemes.

2. Evaluation Consideration

We evaluated these schemes using metrics of
memory-overhead, which consider the memory space
consumed in maintaining virtual address mapping and
protection domain specification as well as translation
and protection time, which is the time spent searching
the memory hierarchy for translation and protection
information. The address translation and protection
time can be calculated as follows :

Ttranslation = Rhit X TIhit + Rmiss X TmiSSv
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Table 1. Workload Characteristics

Process number Segment number Number of shared segments Number of
segments per
process
Arithmetic(1) 6 21 0 7
Compress(6) 6 32 2 7
Dhrystone(6) 6 32 2 7
Gee(2) 2 11 1 5
Misc(5) 5 27 2 7
System(2) 6 36 6 6
where 8
B
Thiranslation : Iranslation and Protection time needed :§ B SBTP
to translate a 64-bit virtual address to g & Guard
a physical address; 2 G Cluster 16
= {7 Hash
Ty ¢ translation time for a TLB hit; E X 5
Z. aritoh compress dhry system misc  gce

Thiss : translation time for a TLB miss;
Ry : probability of a hit;
Roiss : probability of a miss.

If a TLB hit occurred, the translation time was
the same no matter which approaches were used.
Therefore, we only compared the time spent handling
a TLB miss. Our simulation environment did not allow
us to measure such case directly. Instead, we used the
average number of memory access to handle a TLB
miss as an indirect metric (Talluri et al., 1995). This
metric would be proportional to the page table access
time if the (second level) cache rarely contained page
table data and other overheads was minimal.

Different protection architectures affect the miss
ratio of the TLB, and the miss ratio of the TLB also
impacts the system performance very much. We com-
pare three architectures below:

(1) The conventional memory architectures: TLB is
used for a single process and need to be flushed
at each context switching. TLB faults occur
frequently after context switching.

(2)The TLB is tagged with the process identifier:
the TLB does not to be flushed when a context
switching occurs. However, different processes
occupy different TLB entries if they share the
same virtual page.

(3) The separated translation and protection scheme
TLB is shared by all the processes but not the
PLB.

Finally, we studied the miss ratio of the protection

Fig. 14. Memory overhead of translation schemes with a single
translation page table.

look-aside buffer on different memory architectures.
The miss ratio in the protection cache heavily affects
the system performance.

3. Simulation Results

Six generic programs where selected as workloads,
including: Gee and Compress, which come from the
SPEC92 (Reilly, 1991) suite and are generic multipro-
gramming benchmarks; Arithmatic, System, Misc and
Dhrystone, which come from the Byte (Price, 1989)
benchmark suite and are commonly used as UNIX
system performance benchmarks. Each of them con-
tains several programs used to evaluate different sys-
tem performance factors. We invoked multiple copies
of these benchmarks at each instant. Table 1 lists related
parameters. The first column shows the workload
name, and the number in parentheses specifies the
number of copies run at the same time. The second
column shows the maximum process number when the
workload is running. The third column represents the
total number of segments allocated on this workload.
Also, the number of shared segments and the number
of segments per process are shown in the last two
columns individually.

The first simulation was conducted to determine
the impact of the page table size. Figure 14 shows
relative page table sizes, which are normalized to hashed
page table for various workloads when the system
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Fig. 17. Miss ratio on the TLB and modified TLB with 128 entries.

maintains a single translation table and multiple pro-
tection tables. The simulation result shows that the
clustered page table with 16 sub-blocks needs less
memory overhead, and that the SBTP model can reduce
the memory overhead to a reasonable size which is
lower than that of the hashed page table in general.
Though the guarded page table greatly reduces the
memory overhead compared to the original forward
mapped page table, it is still not applicable to 64-bit
virtual address architectures, unless the page table is
stored in kernel address space (Silha, 1993).

Figure 15 displays relative page table sizes which
are normalized to hashed page table sizes for various
workloads when the system maintains multiple page
tables for all processes. The simulation result shows
that the SBTP model has the least memory overhead,
because the segment translation page table is shared.

The second simulation compared the translation
time needed by different page table structures. In Fig.

16, the simulation results show that the SBTP needs
fewer memory accesses when the TLB is refilled. In
the clustered and hashed page table schemes, the number
of memory accesses per TLB fault depends on the
workload of the system, because different workloads
have different memory access patterns. Figure 16 also
shows that the SBTP model with a modified software
loaded TLB reduces the cost of flushing the TLB at
every context switching by reserving shared TLB entries.
The translation time for the shared entry is reduced to
the time needed to traverse the protection table only.

Figure 17 shows a comparison of the TLB miss
ratios on different architectures. With the hardware
separating protection and translation mechanism, when
the TLB (S-TLB) is shared by all the processes, the
miss ratio on the shared TLB architecture is reduced.
Compared with a TLB tagged with a process identifier
(T-TLB), the S-TLB reduces the use of the TLB entries
which are mapped to the same translation information
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'
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Fig. 18. Miss ratio on a TLB tagged with a process identifier.
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Fig. 19. PLB and SLB miss ratio per context switch (32 entry fully
associative PLB and SLB).
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Fig. 20. SLB miss ratio per context switch with 16 cache entries.
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by different processes, as shown in Fig. 18.

The miss ratio of the PLB and SLB tagged with
the process identifier is shown in Fig. 19. It is pre-
dictable that the segment based look-aside buffer (SLB)
has lower miss ratio than page based look-aside buffer
(PLB). The result reveals two additional pieces ‘of
information. First, the PLB miss ratio is high for some
workloads. Because of the lack of an efficient protec-
tion data structure, the performance of the PLB system
may be poor for some workloads. Second, on average,
the SLB miss ratio is almost zero. The SLB with the
tagged process identifier has better performance than
the SLB which purges protection data at each context
switching. Figure 20 shows that SLB misses seldom
occur, even when the size of the SLB is reduced to 16
entries. This is because of the memory reference lo-
cality; the small SLB (16~32 entries) with the tagged
process identifier is sufficient for caching segment-
based protection information.

V. Conclusion

In this paper, we have proposed a virtual memory
protection and translation model, called the SBTP model,
and a segment look-aside buffer to support memory
management for a single address space. We also have
presented a modified software-loaded TLB scheme for
this model if a system does not support a hardwired
segment look-aside buffer. Simulation results show
that the proposed model effectively improves the
performance of virtual address translation and protec-
tion verification for single address space operating
systems on wide address architectures.
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