A Necessary and Sufficient Condition on Decomposable Convex Programming

LIANG-JU CHU

Department of Mathematics National Taiwan Normal University Taipei, Taiwan, R.O C

(Received August 31, 1995; Accepted January 26, 1996)

ABSTRACT

This paper considers a kind of decomposible convex programming: (P) $\min\{f(x); x \in C\}$, and its corresponding decomposible variational inequality DVI(f, C), where $f(x) := f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$, $\forall x := (x_1, x_2, \dots, x_n)$ and $C := C_1 \times C_2 \times \dots \times C_n$. Under the constraint qualification $0 \in ri(\pi_{i=1}^n(coD(\partial f_i) - C_i))$, we show that x is a solution to DVI(f, C) if, and only if, x is an optimal solution of (P).

Key Words: maximal monotone, (BH)-operator, Y*-operator, duality mapping, decomposible variational inequality, decomposible convex programming

I. Introduction

Suppose that f_i is a proper closed convex function on a reflexive Banach space X_i , and that C_i is a nonempty closed convex subset of X_i , for each $i=1, 2, 3, \dots, n$. Define

$$f(x) := f_1(x_1) + f_2(x_2) + \dots + f_n(x_n), \ \forall x := (x_1, x_2, \dots, x_n),$$
$$X := X_1 \times X_2 \times \dots \times X_n,$$

and

$$C:=C_1\times C_2\times\cdots\times C_n$$

In this paper, we consider the decomposible convex programming

(**P**)
$$\min\{f(x); x \in C\},$$

and the corresponding decomposible variational inequality

DVI(f, C): Find
$$x := (x_1, x_2, \dots, x_n) \in C$$
 and $x^* := (x_1^*, x_2^*, \dots, x_n^*) \in \partial f(x)$ such that

$$\langle y_i - x_i, x_i^* \rangle \ge 0$$
, $\forall y_i \in C_i$, $\forall i=1, 2, \dots, n$,

where ∂f denotes the subdifferential operator of f, defined by

$$\partial f(x) := \{x^* \in X^*; f(z) - f(x) \ge \langle z - x, x^* \rangle, \forall z \in X\}.$$

For the convex function

$$f(x):=f_1(x_1)+f_2(x_2)+\cdots+f_n(x_n), \ \forall x:=(x_1, x_2, \cdots, x_n),$$

we have

$$\partial f(x) = \partial f_1(x_1) \times \partial f_2(x_2) \times \cdots \times \partial f_n(x_n).$$

Also, we define the normality operator of the set C to be

$$N_C(x) := \{x^* \in X^*; \langle y - x, x^* \rangle \le 0, \forall y \in C\}, \forall x \in C.$$

Indeed, the normality operator of C is just the subdifferential of the indicator function δ_C , where

$$\delta_C(x) := \begin{cases} 0, & \forall x \in C \\ +\infty, & \forall x \notin C \end{cases}.$$

Thus, we have (see also Clarke, 1989)

$$N_C(x)=N_{C_1}(x_1)\times N_{C_2}(x_2)\times \cdots \times N_{C_n}(x_n),$$

$$\forall x := (x_1, \ x_2, \ \cdots, \ x_n) \in C.$$

It can be shown that solving the problem DVI(f, C) is equivalent to solving the usual variational inequality:

VI(f, C): Find $x \in C$ and $x^* \in \partial f(x)$ such that

$$\langle y-x, x^* \rangle \ge 0, \ \forall y \in C.$$

Equivalently, $x \in C$ satisfies the nonlinear equation

$$0 \in \partial f(x) + N_C(x)$$
.

In this paper, we shall only be concerned with the case where each X_i is a reflexive Banach space. Asplund (1967a), together with a result of Troyanski (1971), has shown by means of a theorem of Lindenstrauss that there exists an equivalent norm on X_i which is everywhere Fréchet differentiable except at the origin and whose polar norm on its dual X_i^* is everywhere Fréchet differentiable except at the origin. For simplicity of notation, we may assume that the given norm on each X_i already has these special properties. For a set-valued operator $T:X\to 2^{X^*}$, the domain, the range, the graph, and the inverse of T are denoted by

$$D(T) := \{ x \in X; \ T(x) \neq \emptyset \},\$$

$$R(T):=\cup\{T(x);\ x\in D(T)\},\$$

$$G(T):=\{(x, x^*)\in X\times X^*; x^*\in T(x)\},\$$

and

$$T^{-1}(x^*) := \{ x \in X; x^* \in T(x) \}.$$

Recall that a set-valued operator $T:X\to 2^{X^*}$ is monotone if

$$\langle x'-x, y'-y\rangle \ge 0, \ \forall (x, y), \ (x', y') \in G(T).$$

T is maximal monotone if T is monotone and there exists no other monotone set-valued operator whose graph properly contains the graph of T. It is known (Rockafellar, 1966, 1970a, 1970b) that the subdifferential operator of a proper closed convex function is maximal monotone. T is called a (BH)-operator if

$$\inf_{(x,x^*)\in G(T)}\langle x-\overline{x},x^*-\overline{x}^*\rangle>-\infty,$$

$$\forall \overline{x} \in D(T), \ \forall \overline{x}^* \in R(T).$$

For $Y^* \subset X^*$, T is called an Y^* -operator if, for all $\overline{y}^* \in Y^*$, there is some $\overline{x} \in X$ such that

$$\inf_{(x,x^*)\in G(T)}\langle x-\overline{x},x^*-\overline{y}^*\rangle>-\infty.$$

Such operators have been studied extensively in both theory and applications. For details, see the work by Brézis (1973) and Phelps (1989) and the references cited therein. Also, we let J be the duality map (see Asplund, 1967b; Brézis, 1973; Cudia, 1974; Isac, 1992;

Moreau, 1965, 1967; Rockafellar, 1970c; Troyanski, 1971). That is, $J:X \rightarrow X^*$ is a norm preserving map such that

$$\langle x, J(x) \rangle = ||x||^2 = ||J(x)||^2$$
.

It is easy to show that

$$\frac{1}{2}\left\|z\right\|^{2} \geq \frac{1}{2}\left\|x\right\|^{2} + \left\langle z - x, J(x)\right\rangle, \quad \forall z \in X,$$

It follows that $J(x) \in \partial j(x)$, where $j(x) := \frac{1}{2} ||x||^2$.

We remark that x is an optimal solution of (P) if, and only if, $0 \in \partial (f+\delta_C)(x)$, and in general we have

$$\partial f(x) + N_C(x) = \partial f(x) + \partial \delta_C(x) \subset \partial (f + \delta_C)(x).$$
 (1)

Therefore, the solution of VI(f, C) is always an optimal solution of the problem (P) but not converse in general. In finite-dimensional space under the welll-known constraint qualification

$$ri(domf) \cap riC \neq \emptyset$$
,

Rockafellar(1970a, theorem 23.8) shows that

$$\partial (f + \delta_C)(x) = \partial f(x) + N_C(x)$$
.

Under this constraint qualification, any optimal solution of (P) is also a solution to VI(f, C). Here, riC denotes the relative interior of C; that is, the interior taken in the closed affine hull of C and domf denote the effective domain of f, defined by

$$dom f := \{x \in X; f(x) < +\infty\}.$$

In this paper we will show that x is a solution to DVI(f, C) if, and only if, x is an optimal solution of (P), under the more general constraint qualification

$$0 \in ri(\pi_{i=1}^n(coD(\partial f_i) - C_i)).$$

It should be noted that our constraint qualification is definitely weaker than that of Rockafellar. A simple example in an infinite-dimensional Hilbert space X would be the following: suppose that y is a nonzero linear functional on X which is not continuous. Let Y be a hyperplane in X (i.e., a linear variety of codimension 1) given by

$$V = \{x \in X; \langle x, y \rangle = 0\},$$

and let C be a one-dimensional subspace such that X=V+C. Let f be the indicator function of V. Then,

 $dom f = V = D(\partial f)$ is non-closed but convex and dense in X since y is not continuous in X. Thus,

$$ri(domf)=riV=int_{cl(affV)}V=int_XV=intV=\emptyset.$$

It follows that $0 \in X = riX = ri(V + C) = ri(coD(\partial f) - C)$, but $ri(domf) \cap riC = \emptyset \cap riC = \emptyset$. Here, we denote by coA, affA, clA and intA the convex hull, the affine hull, the closure, and the interior of A, respectively.

The following basic identity and inclusion (see Clarke, 1989; Rockafellar, 1970a) will be used later. For any closed convex function f on X, we have

$$ri(domf) = co(ri(domf)) \subset coD(\partial f) \subset co(domf) = domf.$$

For any subsets A and B of X, we have

$$coA \times coB = co(A \times B)$$
,

and

$$coA + coB = co(A + B)$$
.

For any subsets A_i and B_i of X, $i = 1, 2, \dots, n$, we have

$$(A_1 \times A_2 \times \cdots \times A_n) - (B_1 \times B_2 \times \cdots \times B_n)$$

$$=(A_1-B_1)\times(A_2-B_2)\times...\times(A_n-B_n).$$

II. Preliminary Results

We begin with some well-known results, which we shall use in proving our main results.

Proposition II.1. (Rockafellar, 1970c) If $T:X\to 2^{X^*}$ is a monotone operator, then T is maximal monotone if, and only if, $R(T+J)=X^*$.

The following proposition, essential due to Browder (1968), is a generalization of the fundamental Hilbert space theorem of Minty (1961):

Proposition II.2. If $T:X\to 2^{X^*}$ is a maximal monotone operator and $\lambda>0$, then $R(T+\lambda J)=X^*$ and $(T+\lambda J)^{-1}$ is a single-valued maximal monotone operator from X^* to X, which is demicontinuous.

Proposition II.3. (Rockafellar, 1970c) If T_1 , $T_2:X\to 2^{x^*}$ are maximal monotone operators such that

$$D(T_1) \cap int D(T_2) \neq \emptyset$$
,

then T_1+T_2 is a maximal monotone operator.

Next, we will show a basic property. From this, we can conclude that the sets ri(domf), $coD(\partial f)$, and

domf have the same closed affine hull.

Proposition II.4. Suppose that Y^* is a convex subset of X^* and that

$$\emptyset \neq riY^* \subset S \subset clY^* \subset X^*$$
.

Then the sets S and Y^* have the same closed affine hull.

Proof. Let v be a common vector of S and riY^* , and let A(S) and V(S) denote the closed affine hull of S and the closed subspace of X^* generated by S, respectively. Then

$$A(S)=cl \ aff(S)=cl(v+span(S-S))$$

$$=v+cl \ span(S-S)=v+V(S)$$
.

Similarly, we have

$$A(Y^*)=cl$$
 $aff(Y^*)=v+V(Y^*).$

Thus, to show that $A(S)=A(Y^*)$, we only need to show that $V(S)=V(Y^*)$. It, therefore, suffices just to show

$$V(clY^*)\subset V(riY^*).$$

For any $u \in clY^*$, there exists a net (u_{δ}) in Y^* such that $u=\lim u_{\delta}$, and for $\lambda \in (0, 1]$ we define

$$u_{\delta}(\lambda) := (1-\lambda)u_{\delta} + \lambda v.$$

It is easy to check that $u_{\delta}(\lambda) \in riY^*$, and for each δ we have

$$\lim_{\lambda \downarrow 0} u_{\delta}(\lambda) = u_{\delta}.$$

This information implies that

$$\begin{split} u_{\delta} - v &= \lim_{\lambda \downarrow 0} \left(\, u_{\delta}(\lambda) - v \, \right) \, \in &cl \; span(riY^* - riY^*) \\ &= &V(riY^*). \end{split}$$

It follows that

$$u=v+\lim(u_{\delta}-v)\in v+cl\ V(riY^*)=v+V(riY^*).$$

Hence, $clY^* \subset v + V(riY^*)$. It follows that

$$clY^*-clY^*$$

$$=(clY^*-v)-(clY^*-v)\subset V(riY^*)-V(riY^*)$$

$$=V(riY^*),$$

which implies that

$$V(clY^*)=cl \ span(clY^*-clY^*)\subset cl \ spanV(riY^*)$$

= $V(riY^*)$.

Therefore, we can conclude that riY* and clY* have the same closed affine hull, and the assertion follows.

Using the above propositions, we now establish a technical result, which is the tool used to prove our main theorems.

Proposition II.5. If $T:X\to 2^{X^*}$ is a maximal monotone Y^* -operator and $R(T)\subset cl(coY^*)$, then $ri(coY^*)\subset R(T)$. Moreover, if $ri(coY^*)\neq \emptyset$, then $ri(coY^*)=riR(T)$.

Proof. We first show that T is a coY^* -operator. Let $\overline{y}^* = \sum_i \lambda_i \overline{y}_i^*$, where $\overline{y}_i^* \in Y^*$, $\lambda_i \ge 0$, $\sum_i \lambda_i = 1$, $\forall i = 1, 2$, Since T is an Y^* -operator, for each i there are $\overline{x}_i \in X$ and $\mu_i > -\infty$ such that

$$\mu_i \leq \langle x - \overline{x}_i, x^* - \overline{y}_i^* \rangle, \quad \forall (x, x^*) \in G(T).$$

Equivalently,

$$\mu_{i} - \langle \overline{x}_{i}, \overline{y}_{i}^{*} \rangle \leq \langle x, x^{*} \rangle - \langle x, \overline{y}_{i}^{*} \rangle - \langle \overline{x}_{i}, x^{*} \rangle,$$

$$\forall (x, x^{*}) \in G(T).$$

Let $\overline{x} := \sum_{i} \lambda_{i} \overline{x}_{i}$. Then, for $(x, x^{*}) \in G(T)$ we have $\sum_{i} \lambda_{i} \mu_{i} - \sum_{i} \lambda_{i} \langle \overline{x}_{i}, \overline{y}_{i}^{*} \rangle$

$$\leq \langle x, x^* \rangle - \langle x, \sum_i \lambda_i \overline{y}_i^* \rangle - \langle \sum_i \lambda_i \overline{x}_i, x^* \rangle.$$

Define

$$\mu:=\sum_{i}\lambda_{i}\mu_{i}-\sum_{i}\lambda_{i}\langle\overline{x}_{i},\overline{y}_{i}^{*}\rangle.$$

It follows that

$$-\infty < \mu + \langle \overline{x}, \overline{y}^* \rangle$$

$$\leq \langle x, x^* \rangle - \langle x, \overline{y}^* \rangle - \langle \overline{x}, x^* \rangle + \langle \overline{x}, \overline{y}^* \rangle$$

$$= \langle x - \overline{x}, x^* - \overline{y}^* \rangle.$$

We can, therefore, conclude that T is a coY^* -operator. So, now we may suppose without loss of generality that Y^* is convex. Note that, for any $y^* \in riY^*$, there is some $\alpha > 0$, so that whenever $z^* \in V := cl \ span(Y^* - Y^*)$ with $\|z^*\| \le \alpha$, we have $y^* + z^* \in Y^*$. Since T is an Y^* -operator, there exist some $\overline{X}(z^*) \in X$ and $\mu(z^*) > -\infty$ such that

$$\mu(z^*) \le \langle x - \overline{x}(z^*), x^* - y^* - z^* \rangle , \ \forall (x, x^*) \in G(T).$$
(2)

By Proposition II.2, for $\epsilon > 0$ there is some $u_{\epsilon} \in X$ such that

$$y^* \in (T + \epsilon J)(u_{\epsilon}), \tag{3}$$

which implies that

$$(u_{\epsilon}, y^* - \epsilon J u_{\epsilon}) \in G(T). \tag{4}$$

Combining Eq. (2) with Eq. (4), we then have

$$\mu(z^*) \leq \langle u_{\epsilon} - \overline{x}(z^*), -\epsilon J u_{\epsilon} - z^* \rangle \tag{5}$$

Since $J(\bullet) \in \partial(\frac{1}{2} \| \bullet \|^2)$,

$$\left\langle \overline{x}(z^*) - u_{\epsilon} , \, \epsilon J \, u_{\epsilon} \right\rangle \leq \frac{\epsilon}{2} \left\| \overline{x}(z^*) \right\|^2 - \frac{\epsilon}{2} \left\| u_{\epsilon} \right\|^2.$$

It follows that if $z^* \in V$ with $||z^*|| \le \alpha$, and $\epsilon > 0$, then

$$\langle u_{\epsilon}, z^* \rangle \le \langle u_{\epsilon}, z^* \rangle + \frac{\epsilon}{2} \| u_{\epsilon} \|^2$$

$$\le \frac{\epsilon}{2} \| \overline{x}(z^*) \|^2 + \langle \overline{x}(z^*), z^* \rangle - \mu(z^*).$$
 (6)

Using the above result, we now prove that, for all $z^* \in V$,

$$\sup_{0 < \epsilon \le 1} |\langle u_{\epsilon}, z^* \rangle| < + \infty.$$
 (7)

Define

$$\beta\left(z^{*}\right):=\frac{1}{2}\left\| \left. \overline{x}\left(z^{*}\right)\right\| ^{2}+\left\langle \left. \overline{x}\left(z^{*}\right),z^{*}\right\rangle -\mu\left(z^{*}\right),$$

and

$$\gamma(z^*) := \max \{ |\beta(z^*)|, |\beta(-z^*)| \}.$$

By Eq. (6), for $z^* \in V$ with $||z^*|| \le \alpha$, and $0 < \epsilon \le 1$, we have

$$|\langle u_{\varepsilon}, z^* \rangle| \le \gamma(z^*) \,. \tag{8}$$

For $z^* \in V$ with $|z^*| > \alpha$, we let $\lambda := \frac{|z^*|}{\alpha}$ and $z_1^* := \frac{1}{\lambda} z^*$; then $z^* = \lambda z_1^*$ and $|z_1^*| = \alpha$. It follows from Eq. (8) that

$$|\langle u_{\epsilon}, z_{1}^{*} \rangle| \leq \gamma(z_{1}^{*}), \quad \forall 0 < \epsilon \leq 1.$$

Hence, we have

 $\forall 0 < \epsilon \le 1$.

$$\left|\left\langle u_{\epsilon}, z^{*}\right\rangle\right| = \lambda \left|\left\langle u_{\epsilon}, z_{1}^{*}\right\rangle\right| \leq \lambda \gamma \left(z_{1}^{*}\right) = \frac{\left\|z^{*}\right\|}{\alpha} \gamma \left(\frac{\alpha}{\left\|z^{*}\right\|} z^{*}\right),$$

(9)

Combining Eq. (8) and Eq. (9) yields

$$\sup_{0 < \epsilon \le 1} |\langle u_{\epsilon}, z^* \rangle| < + \infty, \quad \forall z^* \in V.$$

Next, we define ${}^{\perp}V:=\{x\in X\mid \langle x\,,y^*\rangle=0,\ \forall y^*\in V\}$ and let $U:=X/{}^{\perp}V$. Since X is assumed to be reflexive, we may identify the dual space U^* (see Rudin (1991, theorem 4.9)) with $({}^{\perp}V)^{\perp}$, which is V. Thus, for $x\in X$, we may define $[x]:=x+{}^{\perp}V\in U$ and define $\langle [u],\bullet\rangle:U^*\to R$ by $\langle [u],u^*\rangle:=\langle u,u^*\rangle$. It is easy to check that the map is well-defined since for all $y\in {}^{\perp}V$ and $u^*\in U^*=V$, we have

$$\langle [u], u^* \rangle = \langle u + y, u^* \rangle = \langle u, u^* \rangle$$

By Eq. (7), we then have

$$\sup_{0<\epsilon\leq 1}\left|\left\langle \left[u_{\epsilon}\right],u^{*}\right\rangle \right|<+\infty,\ \forall u^{*}\in U^{*}.$$

From the uniform boundedness principle, we obtain

$$\sup_{0 \le \epsilon \le 1} \left\| \left[u_{\epsilon} \right] \right\| < + \infty \,. \tag{10}$$

Now we will show that, for all $u \in X$ with $Ju \in V$,

$$||u|| \le ||[u]||. \tag{11}$$

For any $\delta > 0$, since

$$||[u]|| := \inf \{||u - y|| | y \in {}^{\perp}V \},$$

there exists some $y \in {}^{\perp}V$ such that

$$||u-y|| < \delta + ||[u]||$$
.

It follows that, for any $Ju \in V$, we have $\langle y, Ju \rangle = 0$; therefore,

$$\|u\|^{2} = \langle u, Ju \rangle = \langle u - y, Ju \rangle \le \|u - y\| \|Ju\|$$

$$\le (\delta + \|[u]\|) \|u\|.$$

Equivalently, $||u|| \le \delta + ||[u]||$, $\forall \delta > 0$. Thus, for all $u \in X$ with $Ju \in V$, we have $||u|| \le ||[u]||$. Note that, from Eq. (4), we see that

$$Ju_{\epsilon} \in \epsilon^{-1}(y^* - Tu_{\epsilon}) \subset \epsilon^{-1}(Y^* - R(T))$$

$$\subset \epsilon^{-1}(Y^* - clY^*) \subset cl \ span(Y^* - Y^*) = V. \tag{12}$$

By Eqs. (10), (11), and (12), we conclude that the set $\{u_{\epsilon} \mid 0 < \epsilon \le 1\}$ is bounded. Since

$$\|u_{\epsilon}\|^{2} = \langle u_{\epsilon}, Ju_{\epsilon} \rangle = \|Ju_{\epsilon}\|^{2},$$

the set $\{Ju_{\epsilon} \mid 0 < \epsilon \le 1\}$ is also bounded. So, when ϵ converges to 0, we may assume that $y^* - \epsilon Ju_{\epsilon}$ converges to y^* , and that u_{ϵ} converges weakly to some $u \in X$. Since T is monotone, by Eq. (4) we have

$$\langle z - u_{\epsilon}, z^* - (y^* - \epsilon J u_{\epsilon}) \rangle$$
, $\forall (z, z^*) \in G(T)$.

Letting $\epsilon \rightarrow 0$, we obtain

$$0 \le \langle z - u, z^* - y^* \rangle$$
, $\forall (z, z^*) \in G(T)$.

Since T is a maximal monotone operator, $(u, y^*) \in G(T)$; that is, $y^* \in R(T)$. Thus, $ri(coY^*) \subset R(T)$.

Moreover, we know that

$$\emptyset \neq ri(coY^*) \subset R(T) \subset cl(coY^*).$$

Applying Proposition II.4 with S:=R(T), we obtain that the sets R(T) and coY^* have the same closed affine hall; call it A. Working in A, we take the interior operation int_A and get

$$int_A(coY^*)=int_A(ri(coY^*))\subset int_A(RT)\subset int_A(cl(coY^*))$$

= $int_A(coY^*)$.

It follows that

$$ri(coY^*) \subset riR(T) \subset ri(coY^*).$$

Thus, we conclude that $ri(coY^*)=riR(T)$.

III. Main Results

In this section, we establish the main results. Indeed, under the constraint qualification

$$0 \in ri\left(\pi_{i-1}^{n}\left(coD\left(\partial f_{i}\right)-C_{i}\right)\right)$$

the two problems DVI(f, C) and (P) have the same solution set. Besides previous propositions in Section II, we need the following:

Lemma III.1. If $T:X\to 2^{X^*}$ is a monotone operator and $\lambda>0$, then $T+\lambda J$ is a (BH)-operator.

Proof. Let $\overline{x} \in D(T+\lambda J)=D(T)$ and $\hat{x^*} \in R(T+\lambda J)$. For any $(x, x^*) \in G(T+\lambda J)$, there is some $y^* \in T(x)$ such that $x^*=y^*+\lambda Jx$. It follows that

$$\frac{\langle x - \overline{x}, x^* \rangle}{\|x\|} = \frac{\langle x - \overline{x}, y^* \rangle}{\|x\|} + \frac{\lambda \langle x - \overline{x}, Jx \rangle}{\|x\|}.$$

Notice that

$$\frac{\left\langle x-\overline{x}\right.,\,y^{*}\right\rangle}{\left\|x\right\|}\geq-\left\|\,y^{*}\right\|-\frac{\left\|\,\overline{x}\right.\left\|\,\left\|\,y^{*}\right.\right\|}{\left\|x\right\|}\;.$$

Since $\frac{\|\overline{x}\|^2}{2} \ge \frac{\|x\|^2}{2x} + \langle \overline{x} - x, Jx \rangle$, we have

$$\frac{\left\langle x-\overline{x}\right.,Jx\right\rangle }{\left\|x\right\| }\geq \frac{\left\|x\right\| }{2}-\frac{\left\|\overline{x}\right\| ^{2}}{2\left\|x\right\| }.$$

It follows that

$$\frac{\lambda \langle x - \overline{x}, Jx \rangle}{\|x\|} \ge \lambda \left(\frac{\|x\|}{2} - \frac{\|\overline{x}\|^2}{2\|x\|} \right);$$

hence,

$$\frac{\left\langle x-\overline{x}\,,x^*\right\rangle}{\left\|x\right\|}\geq -\left\|y^*\right\|-\frac{\left\|\overline{x}\,\right\|\left\|y^*\right\|}{\left\|x\right\|}+\lambda\left(\frac{\left\|x\right\|}{2}-\frac{\left\|\overline{x}\,\right\|^2}{2\left\|x\right\|}\right).$$

Thus, we can conclude that

$$\lim_{\substack{(x,x^*)\in G(T+\lambda J)\\|x|\to +\infty}}\frac{\left\langle x-\overline{x},x^*\right\rangle}{\left\|x\right\|}=+\infty\,.$$

Now, let $\alpha > 0$ be such that for any $(x, x^*) \in G(T + \lambda J)$ with $||x|| \ge \alpha$, we have

$$\frac{\langle x - \overline{x}, x^* \rangle}{\|x\|} \ge 1 + \|\hat{x^*}\|.$$

If $||x|| \ge \beta := ||\overline{x}|||\hat{x}^*||$, then

$$\frac{\left\langle x-\overline{x}^{\cdot},\hat{x^{*}}\right\rangle}{\left\|x\right\|}\leq\frac{\left\|x\right\|\left\|\hat{x^{*}}\right\|}{\left\|x\right\|}+\frac{\left\|\overline{x}^{\cdot}\right\|\left\|\hat{x^{*}}\right\|}{\left\|x\right\|}\leq\left\|\hat{x^{*}}\right\|+1\;.$$

It follows that for $(x, x^*) \in G(T + \lambda J)$ with $||x|| \ge \gamma := \max \{ \alpha, \beta \}$, we have

$$\frac{\langle x - \overline{x}, x^* \rangle}{\|x\|} \ge 1 + \|\hat{x}^*\| \ge \frac{\langle x - \overline{x}, \hat{x^*} \rangle}{\|x\|},$$

which yields

$$\langle x - \overline{x}, x^* - \hat{x^*} \rangle \ge 0$$
. (13)

On the other hand, by the monotonicity of $T+\lambda J$, for $(x, x^*) \in G(T+\lambda J)$ with $||x|| \le \gamma$, and $(\overline{x}, \overline{x}^*) \in G(T+\lambda J)$, we have

$$\langle x - \overline{x}, x^* - \overline{x}^* \rangle \ge 0$$
.

It follows that

$$\langle x - \overline{x}, x^* - \widehat{x^*} \rangle \ge \langle x - \overline{x}, \overline{x}^* - \widehat{x^*} \rangle \ge -\|x - \overline{x}\| \|\overline{x}^* - \widehat{x^*}\|$$

$$\ge -(\gamma + \|\overline{x}\|) \|\overline{x}^* - \widehat{x^*}\|.$$

Combining Eq. (13) with Eq. (14), we obtain

$$\inf_{(x \ x^*) \in G(T+\lambda J)} \langle x - \overline{x}, x^* - \hat{x^*} \rangle$$

$$\geq \min \{0, -(\gamma + \|\overline{x}\|) \|\overline{x}^* - \hat{x}^*\| \} > -\infty.$$

This implies that $T+\lambda J$ is a (BH)-operator.

We next prove an extensive result of Brézis and Haraux (1976) in a reflexive Banach space. Indeed, Brézis and Haraux (1976, theorem 3) show that if T_1 and T_2 are monotone (BH)-operators from a Hilbert space into itself such that T_1+T_2 is maximal monotone, then $R(T_1+T_2)\cong R(T_1)+R(T_2)$; that is,

$$clR(T_1+T_2)=cl(R(T_1)+R(T_2)),$$

and

$$intR(T_1+T_2)=int(R(T_1)+R(T_2)).$$

Theorem III.2. If T_1 , $T_2:X\to 2^{X^*}$ are monotone (BH)-operators such that T_1+T_2 is maximal monotone, then

$$ri(coR(T_1)+coR(T_2))\subset R(T_1+T_2)\subset R(T_1)+R(T_2).$$

Moreover, if $ri(coR(T_1)+coR(T_2))\neq\emptyset$, then

$$riR(T_1+T_2)=ri(R(T_1)+R(T_2))=ri(coR(T_1)+coR(T_2)).$$

Proof. Let $T:=T_1+T_2$, and $Y^*:=R(T_1)+R(T_2)$. Then $R(T)=R(T_1+T_2) \subset R(T_1)+R(T_2)=Y^* \subset cl(coY^*)$. For $\hat{y^*}=\hat{y_1^*}+\hat{y_2^*}$, where $\hat{y_i^*}\in R(T_i)$, $\forall i=1, 2$, and $\overline{x}\in D(T)=D(T_1)\cap D(T_2)$, since each T_i is a (BH)-operator, we have

$$-\infty < \inf_{(x, y_i^*) \in G(T_i)} \left\langle x - \overline{x}, y_i^* - \hat{y_i^*} \right\rangle = : \mu_i.$$

Thus, we have

$$-\infty < \mu_{1} + \mu_{2}$$

$$\leq \inf_{(x, y_{1}^{*}) \in G(T_{1})} \left\langle x - \overline{x}, (y_{1}^{*} + y_{2}^{*}) - (\hat{y_{1}^{*}} + \hat{y_{2}^{*}}) \right\rangle$$

$$= \inf_{(x, x^{*}) \in G(T)} \left\langle x - \overline{x}, x^{*} - \hat{y^{*}} \right\rangle.$$

It follows that T is an Y^* -operator. Notice that

Decomposible Convex Programming

$$R(T_1+T_2) \subset coR(T_1) + coR(T_2)$$

$$= co(R(T_1)+R(T_2)) \subset cl(co(R(T_1)+R(T_2))).$$

Now by Proposition II.5 with $T=T_1+T_2$ and $Y^*=R(T_1)+R(T_2)$, we have

$$\begin{split} ri(coR(T_1) + coR(T_2)) &= ri(co(R(T_1) + R(T_2))) \\ &= riR(T_1 + T_2) \square R(T_1 + T_2) \square R(T_1) + R(T_2) \square coR(T_1) + coR(T_2) \\ &= co(R(T_1) + R(T_2)) \square cl(co(R(T_1) + R(T_2))). \end{split}$$

Applying Proposition II.4, together with nonemptiness of $ri(coR(T_1)+coR(T_2))$, we conclude that the above sets have the same closed affine hull. Taking the interiors with respect to this common closed affine hull yields

$$riR(T_1+T_2)=ri(R(T_1)+R(T_2))$$

$$=ri(coR(T_1)+coR(T_2)).$$

The following theorem generalizes Rockafellar theorem 23.8 in Rockafellar (1970a) to a reflexive Banach space.

Theorem III.3. Under the constraint qualification

$$0 \in ri(\pi_{i=1}^n(coD(\partial f_i) - C_i)),$$

the operator $(\partial f_1 + N_{C_1}) \times (\partial f_2 + N_{C_2}) \times ... \times (\partial f_n + N_{C_n})$ is maximal monotone. Moreover, one has

$$\partial (f + \delta_C)(x) = \partial f(x) + N_C(x)$$
.

Proof. We first show that

$$(\partial f + N_C)(x) = (\partial f_1 + N_{C_1})(x_1) \times (\partial f_2 + N_{C_2})(x_2)$$
$$\times \dots \times (\partial f_n + N_{C_n})(x_n)$$

is a maximal monotone operator. By Proposition II.1, it is sufficient to prove just that

$$R(\partial f + N_C + J) = X^*$$
.

For any fixed $x_0^* \in X^*$, we define $S_1, S_2: X^* \to X$ by

$$S_1(x^*) := (\partial f + \frac{1}{2}J)^{-1}(x^*),$$

and

$$S_2(x^*) := -\left(N_C + \frac{1}{2}J\right)^{-1}\left(x_0^* - x^*\right).$$

It is clear from Proposition II.2 that S_1 and S_2 are maximal monotone single-valued operators. Thus,

$$D(S_1) \cap int D(S_2) = x \neq \emptyset.$$

By Proposition II.3, we conclude that S_1+S_2 is also a maximal monotone operator. Since by Lemma III.1 each S_i^{-1} is a (BH)-operator, each S_i is also a (BH)-operator. It follows from Theorem III.2 that

$$ri(coR(S_1)+coR(S_2)) \subset R(S_1+S_2).$$

Since

$$R(S_1)=D(\partial f)=D(\partial f_1)\times D(\partial f_2)\times ...\times D(\partial f_n),$$

and

$$R(S_2) = -D(N_C) = -C = -(C_1 \times C_2 \times ... \times C_n),$$

it follows that

$$\begin{aligned} &0 \in ri\left(\pi_{i=1}^{n}\left(coD\left(\left.\partial f_{i}\right)-C_{i}\right)\right) \\ &=ri\left(\pi_{i=1}^{n}coD\left(\left.\partial f_{i}\right)-\pi_{i=1}^{n}C_{i}\right) \\ &=ri\left(co\left(\pi_{i=1}^{n}D\left(\left.\partial f_{i}\right)\right)-C\right) \\ &=ri\left(coD\left(\left.\partial f\right)-C\right) \\ &=ri\left(coR\left(S_{1}\right)+coR\left(S_{2}\right)\right)\subset R\left(S_{1}+S_{2}\right). \end{aligned}$$

Thus, $0 \in R(S_1 + S_2)$. Let $x^* \in X^*$ be such that $0 \in S_1(x^*) + S_2(x^*)$. It follows that there is some $y^* \in S_1(x^*)$ such that $-y^* \in S_2(x^*)$. We then have

$$x_0^* = x^* + (x_0^* - x^*) \in (\partial f + \frac{1}{2}J)(y^*) + (N_C + \frac{1}{2}J)(y^*)$$
$$= (\partial f + N_C + J)(y^*).$$

We conclude that $\partial f + N_C$ is a maximal monotone operator. Since, by Eq. (1),

$$G(\partial f + N_C) \subset G(\partial (f + \delta_C)),$$

it follows that

$$G(\partial f + N_C) = G(\partial (f + \delta_C));$$

hence,

$$(\partial f + N_C)(x) = \partial (f + \delta_C)(x)$$
.

Finally, we are ready to prove the main theorem,

which shows that x is a solution to DVI(f, C) if, and only if, x is an optimal solution of (P) under a kind of constraint qualification.

Theorem III.4. Under the constraint qualification

$$0 \in ri\left(\pi_{i=1}^{n}\left(coD\left(\partial f_{i}\right)-C_{i}\right)\right)$$

the two problems DVI(f,C) and (P) have the same solution set.

Proof. By the previous remark, it is well-known that every solution to DVI(f,C) is an optimal solution of (P). Thus, it is sufficient to show that every optimal solution of (P) is also a solution to DVI(f,C). Let x be an optimal solution of (P). Then we have

$$0 \in \partial (f + \delta_C)(x)$$
.

By Theorem III.3, we obtain

$$0 \in \partial (f + \delta_C)(x) = \partial f(x) + N_C(x)$$
.

It follows that x is also a solution to DVI(f, C). Thus, we complete the proof.

References

- Asplund, E. (1967a) Averaged norms. Israel J. Math., 5, 227-233.
 Asplund, E. (1967b) Positivity of duality mappings. Bull. Amer. Soc., 73, 200-203.
- Brézis, H. (1973) Operateurs Maximaux Monotones et Semi-Groupes de Contractions Dans les Espaces de Hilbert. North-Holland, New York, NY, U.S.A.
- Brézis, H. and A. Haraux (1976) Image d'une somme d'operateurs monotones et applications. Israel Journal of Mathematics, 23(2), 165-185
- Browder, F. E. (1968) Nonlinear maximal monotone operators in Banach space. *Math. Ann.*, 175, 89-113.
- Browder, F. E. (1984) Coincidence theorems, minimax theorems

- and variational inequalities. Comtemporary Math., 26, 67-80. Chu, L. J. (1995) An Extension of Brézis-Haraux Approximation. (in preparation).
- Clarke, F. H. (1989) Optimization and Nonsmooth Analysis. Center de Recherches, Mathématiques Université de Montréal, Montréal, Canada
- Cudia, D. F. (1974) The Geometry of Banach spaces. Smoothness. Trans. Amer. Math. Soc., 110, 284-314.
- Isac, G. (1992) Complementarity problems. Lecture Notes in Mathematics., 1528. Springer-Verlag, New York, NY, U.S.A.
- McClendon, J. F. (1983) Minimax and variational inequalities for compact spaces. Proc. Amer. Math. Soc., 89(4), 717-721.
- McLinden, L. (1990) Stable monotone variational inequalities. *Math. Prog.*, **48**, 303-338.
- Minty, G. J. (1961) On the maximal domain of a monotone function. *Michigan Math. J.*. 8, 135-137.
- Minty, G. J. (1964) On the monotonicity of the gradient of a convex function. *Pacific J. Math.*, 14, 243-247.
- Moreau, J. J. (1965) Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Frace, 93, 273-279.
- Moreau, J. J. (1967) Fonctionelles convexes. *Mimeographed Lecture Notes*, College de France, France.
- Phelps, R. R. (1989) Convex functions, monotone operators, and differentiabitity. *Lecture Notes in Math.*, 1364. Springer-Verlag, New York, NY, U.S.A.
- Rockafellar, R. T. (1966) Characterization of the subdifferentials of convex functions. *Pacific. J. Math.*, 17, 497-510.
- Rockafellar, R. T. (1969) Convex Functions, Monotone Operators and Variational Inequalities, pp. 35-60. Seattle, WA, U.S.A.
- Rockafellar, R. T. (1970a) Convex Analysis. Princeton Univ. Press, Princeton, NJ, U.S.A.
- Rockafellar, R. T. (1970b) On the maximal monotonicity of subdifferential mappings. Pacific J. Math., 33(1), 209-216.
- Rockafellar, R. T. (1970c) On the maximality of sums of nonlinear monotone operators. *Transactions of the Americian Mathematical Society*, 149, 75-86.
- Rockafellar, R. T. (1970d) On the virtual convexity of the domain and range of a nonlinear maximal monotone operator. *Math. Ann.*, 185, 81-90.
- Rudin, W. (1991) Functional Analysis, 2nd Ed., Mc-Graw Hill, Inc., New York, NY, U.S.A.
- Troyanski, S. (1971) On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces. Studia Math., 37, 173-180.

Decomposible Convex Programming

一個關於可分割凸規劃的充要條件

朱亮儒

台灣師範大學數學系

摘 要

本文考慮以下的可分割凸規劃問題(*P*): $min\{f(x); x \in C\}$ 和對應的可分割變分不等式DVI(f,C): 找 $x:=(x_1,x_2,...,x_n) \in C$ 和 $x^*:=(x_1^*,x_2^*,...,x_n^*) \in \partial f(x)$ 使得 $\langle y_i-x_i,x_i^* \rangle \geq 0$, $\forall y_i \in C_i$, $\forall i=1,2,...,n$,其中 $f(x):=f_1(x_1)+f_2(x_2)+...+f_n(x_n)$, $\forall x:=(x_1,x_2,...,x_n)$,且 $C:=C_1\times C_2\times...\times C_n$ 。在下面的限制條件下 $0\in ri(\pi_{i=1}^n(coD(\partial f_i)-C_i))$,我們證明了:x是問題(*P*)的一個最優解的充要條件爲x也是問題(*DVI*(f,C)的一個解。