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ABSTRACT

This paper considers a kind of decomposible convex programming: (P) min{ f(x); xe C}, and its
corresponding decomposible variational mnequality DVI(f, C), where f(x):=fi(x1)+fo(x2)+... +fu(x,), VX:=(x,
X2, ..., Xp) and C:=CxCyx --xC,. Under the constraint qualification 0€ ri (A= (coD(3f£)-C,)), we
show that x is a solution to DVI(f, C) if, and only if, x 1s an optimal solution of (P).

Key Words: maximal monotone, (BH)-operator, Y*-operator, duality mapping, decomposible variational
inequality, decomposible convex programming

I. Introduction
Suppose thatf, is a proper closed convex function
on areflexive Banach spaceX;, and that C;is a nonempty
closed convex subset of X,, for each i=1, 2, 3, ---, n.
Define
J):=fi(x)+fo(x) 4 +fo(xn), Vi=(x1, X3, ...y X,),
X=X XXX XX,
and

C:=C1XC2X"‘XC".

In this paper, we consider the decomposible convex
programming

(P) min{f(x); xe C},

and the corresponding decomposible variational in-
equality

DVI(f, C): Find x:=(xy, x5, -, x,)e C and x*:=(x" , x, ,
-+, x2)€ If(x) such that

(oi—x,%)20, VyeC, Vi=1, 2, -, n,

where Jf denotes the subdifferential operator of f,
defined by

Hf(x):={x*e X*; ()~f(x)2(z—x,x*), VzeX}.

For the convex function
S :=filxp+fa(x)++fulxn), Vxi=(x1, X2, =, X,),
we have

H(xX)=0f1(x1)X I (x2)X--- X (x,).

Also, we define the normality operator of the set C to
be

Ne(x)i={x*e X*; (y—x,x%) <0, Vye C}, VxeC.

Indeed, the normality operator of C is just the
subdifferential of the indicator function &,, where

0, VxeC
+oo, Vxg C-

6C (x) i= {
Thus, we have (see also Clarke, 1989)
Ne(x)=Nc (x )XN¢,(x2)X- XN, (%),
Vx:=(xq, xp, -+, x,)€C.
It can be shown that solving the problem DVI(f, C)
is equivalent to solving the usual variational in-
equality:
VI(f, C): Find xe C and x*e df(x) such that

y—x,x*¥) 20, VyeC.
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Equivalently, xe C satisfies the nonlinear equation

Oe Jf(x)+Nc(x).

In this paper, we shall only be concerned with the
case where eachX;is areflexive Banach space. Asplund
(1967a), together with aresult of Troyanski (1971), has

‘shown by means of a theorem of Lindenstrauss that
there exists an equivalent norm on X; which is every-
where Fréchet differentiable except at the origin and
whose polar norm on its dual Xi* is everywhere Fréchet
differentiable except at the origin. For simplicity of
notation, we may assume that the given norm on each
X, already has these special properties. For a set-valued
operator T:X—2*", the domain, the range, the graph,
and the inverse of T are denoted by

D(T):={xeX; T(x)#0},

R(T):=U{T(x); xe D(T)},

G(T):={(x, x*)e XXX*; x*e T(x)},
and

T (x*):={xe X; x*e T(x)}.

Recall that a set-valued operator T:X—2%" is
monotone if

(& —x,¥ =3 20, Y(x, y), (v, ¥)e G().

T is maximal monotone if 7 is monotone and there
exists no other monotone set-valued operator whose
graph properly contains the graph of 7. It is known
‘(Rockafellar, 1966, 1970a, 1970b) that the subdif-
ferential operator of a proper closed convex function
is maximal monotone. T is called a (BH)-operator if

inf  (x—%,x*—T*>—-0o,
(x,x*)e GI)

VZeDT), Vx*e R(T).

For Y*cX*, T is called an Y*-operator if, for all
Y*eY*, there is some X €X such that

1 - ¥ % __ ¥ —_
(X,xy)lgcm(x X, x*—JH*) > oo,

Such operators have been studied extensively in both
theory and applications. For details, see the work by
Brézis (1973) and Phelps (1989) and the references
cited therein. Also, we let J be the duality map (see
Asplund, 1967b; Brézis, 1973; Cudia, 1974; Isac, 1992;

Moreau, 1965, 1967; Rockafellar, 1970c; Troyanski,
1971). Thatis, J:X—X* is a norm preserving map such
that

(e, Iy =lxF =1I@P .
It is easy to show that
P23 xP+-x,J0), VzeX,

It follows that J(x)e dj(x), where j(x):=%||x||2.

We remark that x is an optimal solution of (P) if,
and only if, 0e d(f+5c)(x), and in general we have

Ifx)+Nc(x)=f(x)+I8c(x)<of+8c) (x)- 1)

Therefore, the solution of VI(f, C) is always an optimal
solution of the problem (P) but not converse in general.
In finite-dimensional space under the welll-known
constraint qualification

ri{domp)NriC#4,
Rockafellar(1970a, theorem 23.8) shows that

I(f+8c) (x)=f(x)+Nc(x).

Under this constraint qualification, any optimal solu-
tion of (P) is also a solution to VI(f, C). Here, riC
denotes the relative interior of C; that is, the interior
taken in the closed affine hull of C and domf denote
the effective domain of f, defined by

domf:={xe X; f(x)<+oo}.

In this paper we will show thatx is a solution to DVI(Y,
C) if, and only if, x is an optimal solution of (P), under
the more general constraint qualification

Oeri(m-1(coD( 2f)-C;)).

It should be noted that our constraint qualification
is definitely weaker than that of Rockafellar. A simple
example in an infinite-dimensional Hilbert space X
would be the following: suppose that y is a nonzero
linear functional on X which is not continuous. Let
V be a hyperplane in X (i.e., a linear variety of co-
dimension 1) given by

V={xeX; (x,y=0},

and let C be a one-dimensional subspace such that
X=V+C. Let f be the indicator function of V. Then,
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domf=V=D(df) is non-closed but convex and dense in
X since y is not continuous in X. Thus,

ri(domf)=riV=int a0, V=intyV=intV=0.

It follows that Oc X=riX=ri(V+C)=ri(coD(df)—C), but
ri(domf)nriC=fnriC=0. Here, we denote by coA, affA,
clA and intA the convex hull, the affine hull, the closure,
and the interior of A, respectively.

The following basic identity and inclusion (see
Clarke, 1989; Rockafellar, 1970a) will be used later.
For any closed convex function f on X, we have

ri(domf)=co(ri(domf))ccoD(df)cco(domf)=domf.
For any subsets A and B of X, we have
coAXcoB=co(AXB),
and
coA+coB=co(A+B).
For any subsets A, and B,of X, i =1, 2, ---, n, we have
(A XApX--XA)~(BXByX---XB,)
=(A|-B)X(A,—By)x..X(A,—B,).

Il. Preliminary Results

We begin with some well-known results, which
we shall use in proving our main results.

Proposition IL.1. (Rockafellar, 1970c) If T:X—2%" is
a monotone operator, then 7T is maximal monotone if,
and only if, R(T+J)=X*.

The following proposition, essential due to
Browder (1968), is a generalization of the fundamental
Hilbert space theorem of Minty (1961):

Proposition IL.2. If T:X—2*" is a maximal monotone
operator and A>0, then R(T+AJ)=X* and (T+AJ) ' is a
single-valued maximal monotone operator from X* to
X, which is demicontinuous.

Proposition I1.3. (Rockafellar, 1970c) If T}, T,: X—2%
are maximal monotone operators such that

D(T)intD(Ty)#Y,

then T1+7T, is a maximal monotone operator.
Next, we will show a basic property. From this,
we can conclude that the sets ri(domf), coD(df), and

domf have the same closed affine hull.

Proposition I1.4. Suppose that Y* is a convex subset
of X* and that

f£riY*cScclY*cX*.
Then the sets S and Y* have the same closed affine hull.
Proof. Let v be a common vector of S and riY*, and
let A(S) and V(S) denote the closed affine hull of S and
the closed subspace of X* generated by S, respectively.
Then

A(S)=cl aff(S)=cl(v+span(5-S))

=v+cl span(S—-S)=v+V(S).

Similarly, we have

A(Y¥)=cl aff(Y*)=v+V(¥*).

Thus, to show that A(S)=A(Y*), we only need to show
that V(§)=V(Y*). It, therefore, suffices just to show

V(cIY*)CV(riY*).

For any ue clY*, there exists a net (us) in Y* such
that u=lim ug and for Ae (0, 1] we define

us(Ay:=(1-Nug+A v.

It is easy to check that us(A)e riY*, and for each & we
have

lim us(M)=us.
This information implies that
us—v=1lim(us(A)—v) ecl span(riY*—ri¥*)
Ao
=V(riY*).
It follows that
u=v+lim(usg—v)ev+cl V(riY*)=v+V(ri¥*).
Hence, clY*cv+V(riY*). It follows that
clY*—clY*
=(clY" —v)—(clY*—v)cV(riY*)-V(riY*)

=V(riY*),
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which implies that
V(clY*)=cl span(clY*—clY*)ccl spanV(riY*)
=V(riY*).

Therefore, we can conclude that riY* and clY* have
the same closed affine hull, and the assertion
follows.

Using the above propositions, we now establish
a technical result, which is the tool used to prove our
main theorems.

Proposition IL.5. If T:X—2*" is a maximal monotone
Y*-operator and R(T)ccl(coY*), then ri(coY*)cR(T).
Moreover, if ri(coY*)20, then ri(coY*)=riR(T).

Proof. We first show that T is a coY*-operator. Let
Y*=X A7y, ,where ¥," e Y* 120, X A =1, Vi=1, 2,
... Since T'is an Y*-operator, for each i there are X, eX
and y;>—eco such that

#sle-T, 0= ), V(x, x)eG).
Equivalently,

t=(x,, ¥ s, ) =G, 7)) (3 2,

Y(x, x*)e G(T).

Let ¥:=2 A4X;. Then, for (x, x*)e G(T) we have

It follows that
o<+ (T, T
<, %) —(x, TR (%, x)+ (%, 7%
=(x—-T,x*—7*)_

We can, therefore, conclude that T is a coY*-operator.
So, now we may suppose without loss of generality that
Y* is convex. Note that, for any y*e riY*, there is some
>0, so that whenever z*e V:=cl span(Y*-Y*) with
lz*|<c, we have y*+z*e Y*. Since T is an Y*-operator,
there exist some ¥ (z¥)e X and u(z*)>—c such that

U(EF)S(x =T (@), x*—y*—z%) |, V(x, x*)e G(T).
2)

By Proposition I1.2, for €>0 there is some u.€ X such
that

y*e (T+el)(ue), 3)
which implies that

(ue, y*—€Ju)e G(T). @)
Combining Eq. (2) with Eq. (4), we then have

W(z¥)<(ue — X (%), — eJu,—z%) )
Since J()e A L 1eP),

(F@)-ue, Jud <] 7@ -5 ]uf -
It follows that if z*e V with |z*|<¢, and €>0, then

(e, 7)< (ue, 2% + S ucf’

SENTEHF+(T@, %) - 1E"). (6)

Using the above result, we now prove that, for all
Z*eV,

sup [{ue,z*)|<+oo. @)
O0<e<l
Define
B =2 1T +(x @, %) -p@EY),
and
Y@ :=max {|B(9)],|B(-z9)|}.
By Eq. (6), for z*e V with | z*|<c, and 0<e<1, we have
[(ue, 24 < ¥(2*). €]

>3
For z*e V with | z*|>c, we let /1:="—Za—u and z; : = Lox.
then z¥=4z{ and |z |=c. It follows from Eq. (8) that

[{ue, 20| < 7)), V0<e<l.

Hence, we have

*
|(ue,z*>|=/1|(ue,ZT>lS7w(zf)="—%—"Y(H‘Z‘—}Tz*),

V0<e<1. )
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Combining Eq. (8) and Eq. (9) yields

sup l(ue,z*>|<+oo, Vz*eV.
0<e<l

Next, we define “V:={xe X| (x,y*)=0, Vy*e V}
and let U:=X/'V. Since X is assumed to be reflexive,
we may identify the dual space U* (see Rudin (1991,
theorem 4.9)) with (*V)*, which is V. Thus, for xe X,
we may define [x]:=x+'Ve U and define ([u], *}:U*—>R
by ([ul, u*):=(u,u?). It is easy to check that the map
is well-defined since for all ye*V and u*e U*=V, we
have

(], w¥y=(u+y, u¥)=(u, u*)
By Eq. (7), we then have
sup [([u), u™)| <+, Yure U*.
O<e<l
From the uniform boundedness principle, we obtain

(10)

sup [[u]]<+oo.
O0<e<1

Now we will show that, for all ue X with JueV,
Jul<|[u]}. an
For any 6>0, since
[[u]]: = inf (Ju-y]|y € *V},
there exists some ye'V such that

fu—yl<d+]u].

It follows that, for any JueV, we have (y,Ju=0;
therefore,

[l =, Ju) = (u=y, Juy <Ju—y| | Jul
SO+ [[ul)]u].

Equivalently, |u]<d+|[u]|, V&0. Thus, for all ue X
with Jue V, we have [u| <|[u]|. Note that, from Eq. (4),
we see that

Juce €' (y*~Tu )c e (Y*—R(T))

ce (Y*—clY*)ccl span(Y*=Y*)=V. (12)
By Egs. (10), (11), and (12), we conclude that the set
{uc | 0<e<1} is bounded. Since

2

i)

ﬂu€"2=<ue"’ue>=u‘]ue

the set {Ju, | 0<e€<1} is also bounded. So, when €
converges to 0, we may assume thaty*—eJu, converges
toy*, and that u. converges weakly to someue X. Since
T is monotone, by Eq. (4) we have

@—ue, 2= (y*—€u)) , V(z, 2)e G(I).
Letting €—0, we obtain
0<(z—u,z*—y*, V(z, 2¥)e G(T).
Since T'is a maximal monotone operator, (i, y*)e G(T);

that is, y*e R(T). Thus, ri(coY*)cR(T).
Moreover, we know that

gri(coY*)cR(T)ccl(coY*).
Applying Proposition I1.4 with S:=R(7T), we obtain
that the sets R(T) and coY™* have the same closed affine

hall; call it A. Working in A, we take the interior
operation int, and get

im‘A(coY*)=intA(ri(coY*))CintA(RT)cintA(ci(coY*))
=inty(coY*®).
It follows that
ri(coY*)criR(T)cri(coY¥).
Thus, we conclude that ri(coY*)=riR(T).

Ill. Main Results

In this section, we establish the main results.
Indeed, under the constraint qualification

Oeri(ml_,(coD( df,)-C))),

the two problems DVI(f, C) and (P) have the same
solution set. Besides previous propositions in Section
II, we need the following:

Lemma IIL1. If 7:X—2*" is a monotone operator and
A>0, then T+AJ is a (BH)-operator.

Proof. Let ¥ e D(T+AJ)=D(T) and x* € R(T+AJ). For
any (x, x*)e G(T+AJ), there is some y*€ T(x) such that
x*=y*+AJx. Tt follows that

(x—T,x*)=(x—7,y*)+l<x—T,Jx)
| x] x| IxI -

Notice that
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<x_T5y> " *" I[x""y*“
Ix1 I
2 2
Since ﬂ;" ZIXTIV,+(T—x,Jx) , we have
=T 09 x| _|XP
Ix1 2 2]«

It follows that

Alx—% , %) Ixl 1=, .
I 2 7 Rk
hence,
AT N 3 [ B L I k1
B T i e T R A e O

Thus, we can conclude that

(x—x ,x%)

Hm
(x,5*)eG(T+A) I x|
| x>+

=400,

Now, let oz>0 be such that for any (x, x*)e G(T+AJ) with
Ix]= o, we have

(x—T,x*)> ~
e O - Y b
N I
If |x|2 B:=] % [|x*| , then
(x—?c',xA> ﬁx||||x*|| ||x||[|x*|| u u 1.

EI Y 1=

It follows that for (x, x*)e G(T+AJ) with | x|>y:=max{,
B}, we have

G X0 g e BT )

1= I B ’

which yields
(x—% ,x*—x%¥)>0. aa3)
On the other hand, by the monotonicity of T+AJ, for
(x, x*)e G(T+AJ) with | x| <7, and (X , T e G(T+AJ),

we have

(x—x ,x*—x*20.

It follows that
AR e e S Pl Eanal
2-(relTDF -],
Combining Eq. (13) with Eq. (14), we obtain

i — L xk — ok
(x x*)el%f(T+U)<x xx * >

2min {0, ~(y+| T D] F* - x| }>-eo.
This implies that T+AJ is a (BH)-operator.

We next prove an extensive result of Brézis and
Haraux (1976) in a reflexive Banach space. Indeed,
Brézis and Haraux (1976, theorem 3) show that if T
and T, are monotone (BH)-operators from a Hilbert
space into itself such that 7+T, is maximal monotone,
then R(T1+T,)=R(T)+R(T>); that is,

CIR(T+T3)=cl(R(T))+R(T,)),
and
intR(Ty+Ty)=int(R(T)+R(T5)).

Theorem IIL2. If T}, T,:X—2%" are monotone (BH)-
operators such that 7,+7, is maximal monotone, then

ri(coR(T1)+coR(T,))CR(T+T,)cR(T)+R(T,).
Moreover, if ri(coR(T))+coR(T,))#8, then
riR(T1+Ty)=ri(R(T)+R(T,))=ri(coR(T)+coR(T,)).

Proof. Let T:=T+T,, and Y*:=R(T,)+R(T,). Then
R(T) R(T1+T2)CR(T1)+R(T2) Y*ccl(coY*). For
y* =y +y, , where 3 e R(T,), Vi=1, 2, and ¥ € D(T)=
D(T)ND(T,), since each T; is a (BH)-operator, we
have

—w< inf  (x—T 3 -y =

(x,3%)eG(T)
Thus, we have
~—eo<th+

< nf (=T, () = ()
(x,yf)eG(Tl')< Nty 1 2)

= inf  (x—-%,x*—y¥).

(x,x")e G

It follows that T is an Y*-operator. Notice that
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R(T1+ T2)CCOR( T1)+ COR(Tz)
=co(R(T)+R(T3))ccl(co(R(T1)+R(Ty))).

Now by Proposition II.5 with 7=7,+T, and Y*=
R(T1)+R(T;), we have

ri(coR(T1)+coR(T,))=ri(co(R(T1)+R(T,)))
=riR(T1+T,)cR(T1+T,)cR(T )+R(T))ccoR(Ty )+coR(T5)
=co(R(T)+R(T,))ccl(co(R(T)+R(T,))).
Applying Proposition II.4, together with nonemptiness
of ri(coR(T)+coR(T5)), we conclude that the above sets
have the same closed affine hull. Taking the interiors
with respect to this common closed affine hull yields
riR(T1+T5)=ri(R(T)+R(T3))
=ri(coR(T)+coR(T3)).

The following theorem generalizes Rockafellar
theorem 23.8 in Rockafellar (1970a) to a reflexive
Banach space.

Theorem IIL.3. Under the constraint qualification

Oeri(m'_,(coD( If)-C)),

the operator (df;+N¢,)X(df2+N¢,)X...X(df+N¢,) is maxi-
mal monotone. Moreover, one has

If+6c)(x)=f(x)+Nc(x).
Proof. We first show that
(Af+Nc)(x)=(f1+Nc,)(x)X(f2+N,) (x2)
X...X(df+Nc,)(x,)

is a maximal monotone operator. By Proposition I1.1,
it is sufficient to prove just that

R(f+Nc+D)=X*.

For any fixed x, € X*, we define S;, $,:X*—X by
Si6:=(Af +37) ),

and

S == (N 4 T) (g —x%).

It is clear from Proposition I1.2 that S; and S, are
maximal monotone single-valued operators. Thus,

D(S81)NintD(Sy)=x*#f.
By Proposition 1.3, we conclude that $1+5S, is also a
maximal monotone operator. Since by Lemma III.1
each S,_1 is a (BH)-operator, each S, is also a (BH)-
operator. It follows from Theorem III.2 that
ri(coR(S{)+coR(S;))CR(S1+S,).
Since
R(S1)=D(3f)=D(f)xD(df2)X...xD(fy),
and
R(S7)=—D(N¢)=—C=—(C;XCyX...XC,),
it follows that
Oeri(m(coD( If)-C;))
=ri (7.1 coD( df;)— m-1C;)
=ri(co(M-1D(df))-C)
=ri(coD(df)~-C)
=7i (cOR(S)) + coR(S,) ) CR (S, +5,).
Thus, 0e R(S;+S,). Let x*eX* be such that Oe
S1(x*)+8,(x*). It follows that there is some y*e S;(x*)
such that —y*e S,(x*). We then have
X =k 4 (=¥ e ( 8f+%])(y*)+(NC+%J)(y*)
=(Of +No+J ) (5%).

We conclude that df+N¢ is a maximal monotone op-
erator. Since, by Eq. (1),

G(If+NIG(If+8c)),

it follows that

G(If+N)=G(I(f+6¢));

hence,

(If+N)(x)=0(f+6c)(x).

Finally, we are ready to prove the main theorem,
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which shows that x is a solution to DVI(f, C) if, and
only if, x is an optimal solution of (P) under a kind
of constraint qualification.

Theorem II1.4. Under the constraint qualification
el

Oeri(nfy(coD( 3f)-C,)),

the two problems DVI(f,C) and (P) have the same
solution set.

Proof. By the previous remark, it is well-known that

every solution to DVI(f,C) is an optimal solution of (P).

Thus, it is sufficient to show that every optimal solution
of (P)is also a solution to DVI(f,C). Let x be an optimal
solution of (P). Then we have

0e J(f+8c)(x).
By Theorem III.3, we obtain

0e J(f+O¢c)(x)=af(x)+N(x).

It follows that x is also a solution to DVI(f, C). Thus,
we complete the proof.
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Decomposible Convex Programming
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