Joumnal of
Biomedical
Science

H.B. Rasmussen

Department of Life Sciences and
Chemistry, Roskilde University
Roskilde, Denmark

Key Words
Retroviruses
Exogenous
Endogenous
Interactions

Review

Received: June 25, 1996
Accepted: October 16, 1996

J Biomed Sci 1997;4:1-8

Interactions between Exogenous
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Abstract

Retroviruses are distinguished from other viruses by several features. Notably,
some retroviruses are present as normal elements in the genomes of virtually
all vertebrates (endogenous proviruses). Others are exogenous, i.e. horizon-
tally transmitted agents, many of which cause fatal diseases. The endogenous
retroviruses are genetically transmitted and to a large extent their significance
is uncertain. However, there is evidence suggesting that they contribute to the
development of diseases in several animal species. Most importantly, some
endogenous retroviruses are capable of interacting with exogenous counter-
parts through a variety of different mechanisms with serious consequences to
the host. Conversely, others are advantageous in that they protect against
exogenous retroviruses. In this review various types of interactions between
endogenous and exogenous retroviruses are discussed, including receptor
interference, recombination, phenotypic mixing, immunological interactions

and heterologous frans-activation.

Retroviruses are single-stranded RNA viruses with a
DNA intermediate form. During infections with retrovi-
ruses their genomes are incorporated into the chromo-
somes of the infected cells. If integration takes place in
germ line cells (oocytes) or early embryos, the retroviral
genes are ‘endogenized’, i.e. they have become a part of
the host genome [for more comprehensive information on
endogenous retroviruses, see for example 12, 77, 87].
Most likely, endogenous retroviruses in this way are the
footprints of ancient retroviral infections. Alternatively,
endogenous as well as exogenous retroviruses derive from
a common genomic ancestor [17, 19].

The genomes of retroviruses contain a regulatory re-
gion in both ends, i.e. the upstream and downstream long
terminal repeats (LTRs). In between the LTRs there are at
least three major genes, designated gag, pol, and env,

encoding for internal structural proteins, reverse trans-
criptase and envelope proteins, respectively [11]. Some
retroviruses, such as the human T cell leukemia viruses
(HTLVs), are more complex in their composition allow-
ing for the production of additional proteins [14].
Endogenous retroviruses are inherited in a classical
Mendelian fashion. They are present in virtually all verte-
brates and retroviral-like elements have even been de-
tected in lower animals such as Drosophila [20]. Although
most endogenous retroviruses probably have been normal
genomic constituents for millions of years, the acquisition
of new endogenous retroviral sequences is an ongoing
phenomenon as suggested by observations of de novo
integration in germ line cells of mice [52, 79]. Most endog-
enous retroviruses contain stop codons in the reading
frames or they are truncated, precluding their expression
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as viral particles. However, several animal species such as
chickens [12], mice [12] and baboons [81] harbor endoge-
nous retroviruses which can produce infectious particles.

To a large extent, the possible significance of endoge-
nous retroviruses in the development of diseases is ob-
scure but there is increasing evidence that they are capa-
ble of inducing diseases or modifying disease courses [43,
67, 77]. Most importantly, they can interact with exoge-
nous counterparts through a number of different mecha-
nisms. In the following, the nature of these interactions
and their consequences are discussed. The aim of this
review is to focus attention upon endogenous retroviruses
as factors playing decisive roles in the development and
outcome of infections with exogenous retroviruses and if
possible indicate new lines of research within the field of
human retroviral diseases.

Receptor Interference and Host Resistance
Factors

Receptor interference refers to the inability of a virus

to infect cells which already are infected by a virus with

the same specificity of the outer surface envelope glyco-
protein [86]. Of note, endogenous proviruses are able to
protect against infections with exogenous retroviruses
carrying related or identical envelope glycoproteins. Find-
ings that preincubation of cells with viral glycoproteins
impedes or blocks infection by a virus with a correspond-
ing glycoprotein suggest that competition for receptors is
involved in receptor interference [86]. However, this is
not the only mechanism of importance. Thus, an avian
retrovirus seems to prevent superinfection with related
viruses through binding of its glycoproteins to the corre-
sponding receptors in the endopiasmic reticulum [15].
This interferes with the normal translocation of the recep-
tors resulting in their absence on the surfaces of infected
cells.

Inherited resistance to retroviral infections, associated
with receptor-interfering endogenous retroviruses, has
been reported in mice [6-8, 21, 22] and cats [S8]. Also
chickens harbor endogenous retroviruses involved in re-
ceptor interference [65, 69, 75]. Most likely, the primary
function of these avian endogenous retroviruses is to pre-
vent reintegration of replication-competent endogenous
retroviruses into the host chromosomes [69, 75].

In mice endogenous retroviruses which confer protec-
tion against the ecotropic and the polytropic classes of
murine leukemia viruses (MuLVs), respectively, have
been detected. The ecotropic class of MuLVs is character-
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1zed by an inability to replicate in cells from other animal
species than mouse while the polytropic MuLVs, also
known as MCF MuLVs (mink cell focus-forming
MulLVs), are recombinant viruses with a broader host cell
range [42].

The Fv-4 gene, detected in populations of wild mice,
controls the susceptibility to infections with ecotropic
MuLVs [21, 22]. The dominant resistance allele at the Fv-
4 locus 1s a truncated endogenous retrovirus which en-
codes for a glycoprotein closely related to ecotropic
MuLV gp70 [35]. This glycoprotein seems to be the pro-
tective factor acting by receptor interference as suggested
by observations with mice transgenic for the Fv-4 env gene
[50].

Another gene in mice, namely Rmcf, has been associat-
ed with a restriction in the replication of the polytropic
MuLVs [6-8]. The Rmcf resistance allele is presumably
also an endogenous retrovirus encoding for a glycoprotein
which confers protection by competition for retroviral
receptors [6, 7]. Alternatively, it is a nonretroviral gene
regulating the transcription of a protecting endogenous
retrovirus [8].

The degree of resistance against a retroviral infection
conferred by receptor interference seems to be correlated
with the level of expression of the protecting endogenous
retroviral gene [41, 50]. Consequently, information about
the transcriptional regulation of these genes would be
valuable to have. Of importance, there is no upstream
LTR associated with the Fv-4 resistance allele, implying
that its transcription 1s determined by nonretroviral cis-
acting sequences [35]. This also seems to be the case with
an avian endogenous retrovirus acting by receptor inter-
ference [12].

Perhaps protection based upon receptor-interfering en-
dogenous env gene products represents an antiretroviral
defense mechanism utilized by a wide variety of different
vertebrate species. Previous observations have suggested
that the human genome contains a variety of sequences
related with the human immunodeficiency virus type 1
(HIV-1) rev and env genes [31]. However, the sequences
characterized thus far do not seem to be part of endoge-
nous proviruses; instead they most likely represent the
exons of hitherto unknown genes. The possibility that
these HIV-related endogenous sequences are involved in
receptor interference is unlikely since their relationship
with the region of the HIV genome, encoding the surface
glycoprotein, is limited.

Whether receptor interference can be utilized as a new
concept in the treatment of retroviral diseases is an inter-
esting question. So far, observations with mice offer ther-
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apeutic prospects in that grafting of bone marrow cells
bearing the Fv-4 resistance allele into susceptible individ-
uals can protect against the disease induced by Friend leu-
kemia virus {40, 41]. Moreover, evidence has been pro-
vided that susceptible cells are able to take up the Fy-4
antigen from serum resulting 1n a reduced attachment of
Friend virions to these cells [41]. Consequently, there is
no need for the Fv-4 resistance allele to be expressed in all
susceptible cells.

Recently, the possibility that other defense mechanisms
against retroviral infections also involve endogenous re-
troviral genes has become more likely with the cloning and
sequencing of the murine Fv-1 gene [5]. This gene confers
resistance to MuLV infections by a mechanism different

from receptor interference in that its alleles encode the

ability to block the replication cycle of certain subclasses
of MuL Vs at a stage after entry of the invading virus into
the target cell. Of interest, there is evidence to suggest that
Fv-11s derived from the gag gene of an endogenous retro-
virus. Hopefully, studies of the mechanism by which the
Fv-1 gene product acts will provide clues to the under-
standing of natural resistance to other retroviruses. So far,
there are observations suggesting a significant degree of
genetic variation in the susceptibility to infection with
HIV [88]. Whether an Fv-I-like resistance mechanism is
involved in this is an interesting possibility.

Recombination

Retroviruses are characterized by a high frequency of
recombination [51]. Accordingly, this mechanism of com-
bining genetic information is believed to play an impor-
tant role in the evolution of retroviruses although the
repair of defects probably is the most important function
of retroviral recombination [80]. Normally, virions of
retroviruses contain two identical genomes attached to
each other in the 5” end. Recombination is dependent
upon the copackaging of two different genomes into the
same virion. The exchange of genetic information be-
tween such two retroviral genomes takes place during
reverse transcription after uncoating of the retroviral
RNAs [for mechanisms of retroviral recombination, see
32, 78]. Recombinations with single as well as multiple
crossovers in different regions of the retroviral genomes
have been detected but not all crossovers are functionally
compatible. Probably, recombination is a dynamic pro-
cess resulting in the appearance of new variants with a
preferential replication of some recombinants over that of
others.

Interactions between Exogenous and
Endogenous Retroviruses

Recombination is important in the pathogenesis of
several retroviral diseases. A classical example concerns
the development of leukemia by the MCF viruses in cer-
tain mouse strains. These transforming viruses arise as a
result of recombinations between various endogenous
retroviruses, i.e. ecotropic and MCF-like MulLV se-
quences [42 and references therein]. In addition polytrop-
ic MuL Vs have been isolated from mice inoculated with
exogenous MuLVs [42]. In cats recombinants between
feline leukemia virus (FeLV) and endogenous FeLV-like
sequences seem to be the proximal pathogens in the devel-
opment of FelLV-associated diseases [64, 71, 72]. More-
over, recent findings that a considerable number of tu-
mors induced by mouse mammary tumor viruses
(MMTYVs) contain recombinants of the invading virus
and an endogenous MMTYV suggest a role of these recom-
binants in the development of mammary tumors [26].

Apparently, an invading retrovirus can acquire en-
hanced growth and survival capabilities through recombi-
nation with endogenous partners. Most importantly, re-
combinations involving the env gene may result in the
appearance of a progeny with a new host cell tropism. For
example, a recent study reported the detection of in vitro
recombinants of exogenous and endogenous FeLV se-
quences with tropism for brain capillary endothelial cells
and potential neuropathogenic properties [10]. This is of
interest given that neurological disease sporadically devel-
ops in FeLLV-infected cats [60].

Recombination between exogenous and endogenous
retroviruses could have significant immunological conse-
quences. Of note, studies in mice [66, 83] as well as cats
[71] have indicated that viral progenies lacking neutraliz-
ing epitopes emerge upon recombination between an
invading retrovirus and endogenous counterparts. Per-
haps this helps an infecting retrovirus to escape the
immune surveillance of the host and establish a persistent
infection.

Recently, recombinations have been detected between
endogenous retroviral sequences and the defective MuLV
associated with the murine acquired immunodeficiency
syndrome (MAIDS) [23]. These recombinations involved
the MAIDS virus gag gene which encodes for a compo-
nent with a superantigen activity [33], and their detection
raises the question of whether the generation of new
superantigen specificities by recombination is implicated
in the pathogenesis of MAIDS.

Another aspect is that endogenous retroviruses are
capable of repairing defects in exogenous retroviruses by
recombination. This can result in the rescue of a defective
retrovirus [57, 70]. However, the ease and rapidity of such
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a recombinational repair probably depends upon the de-
gree of relationship between the retroviral sequences in
question.

Retroviral recombination is also a phenomenon of rel-
evance in other contexts. Regarding gene therapy with
retroviral vectors, one of the major safety aspects con-
cerns the risk of formation of replication-competent vi-
ruses by recombinational events between the vector and
the helper virus [for review, see 13, 30]. However, also
endogenous retroviruses of the packaging cell line are of
importance as possible participants in recombinational
events [30]. Furthermore, recombinations between con-
taminating replication-competent viruses in the vector
preparation and endogenous retroviruses of the recipient
are a possibility [16]. Another safety aspect, although of
minor importance, concerns the possibility of recombina-
tion between endogenous retroviruses of the target cells
and the vector [13].

A lack in human organs for transplantations has fo-
cused interest upon the possibility of using xenografts
from primates and pigs. However, xenotransplantation
involves introduction of ‘foreign’ endogenous retrovi-
ruses into a new host. This entails a risk of recombination
between these retroviruses and the ‘native’ endogenous
retroviruses of the recipient [74]. Of note, several animal
species, including baboons and their close relatives, carry
endogenous retroviruses which have the potential of being
expressed as particles [81], 1.e. a prerequisite for recombi-
nations to take place.

A wide spectrum of endogenous retroviruses are tran-
scriptionally active. For example, several human endoge-
nous retroviruses are transcribed in peripheral blood
mononuclear cells [44, 68] as well as brain tissue [68].
Obviously, the expression of a variety of different endoge-
nous retroviral transcripts provides a rich and diverse
source for recombinational exchange of genetic informa-
tion with exogenous retroviruses.

Phenotypic Mixing

Phenotypic mixing refers to the formation of virions
containing proteins which are not encoded by the encapsi-
dated viral genomes [89]. In the extreme, viral genomes
are packaged into particles consisting of structural pro-
teins entirely encoded by another virus. By phenotypic
mixing helper viruses may supply a defective virus with
proteins necessary for replication and particle formation
[27]. This is also known as complementation. The initial
step of a retroviral infection involves interactions be-
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tween the envelope glycoproteins of the invading virus
and the corresponding cell surface receptors. Consequent-
ly, the formation of viral particles containing envelope
glycoproteins encoded by another virus may provide
these particles with a novel host cell tropism.

Phenotypic mixing between distantly related retrovi-
ruses is usually confined to envelope glycoproteins [51].
There are several observations of phenotypic mixing be-
tween endogenous and exogenous retroviruses. For exam-
ple, HIV is capable of utilizing surface glycoproteins from
endogenous MuLVs resulting in the appearance of pseu-
dotypes with a novel host cell range, including CD4~ cells
and various animal cells [9, 47, 55, 76]. There is also an
accelerated replication of HIV in CD4+ cells coinfected
with MuLVs, perhaps reflecting a more efficient adsorp-
tion of HIV pseudotypes to the target cells [9, 55, 76].
Obviously, the potential of human exogenous retroviruses
to form pseudotypes with envelope glycoproteins of en-
dogenous retroviruses raises questions with regard to the
value of animals as model systems for studies of human
retroviral infections. Whether human exogenous retrovi-
ruses also participate in phenotypic mixing with endoge-
nous counterparts from the human genome 1s not known.
By analogy with the above observations, this possibility
can certainly not be dismissed.

Since phenotypic mixing does not involve exchange of
genetic information, permanently modified viral proge-
nies are not produced. Nevertheless, phenotypic mixing
between exogenous and endogenous retroviruses might
have important consequences through the formation of
virions with an expanded host cell range, perhaps allow-
ing for the transmission to other species. Moreover, an
invading retrovirus, which has acquired envelope pro-
teins encoded by an endogenous retrovirus, may escape
attack by the host immune system. Finally, the rescue of a
replication-defective provirus by phenotypic mixing may
provide this provirus with an opportunity to recombine
with the helper virus.

Immunological Self-Tolerance, Epitope
Restriction and Antigenic Mimicry

Antibodies against various endogenous type C retrovi-
ruses are naturally occurring in various inbred mouse
strains [1, 49, 62]. Natural antibodies against retroviral
components are also common in higher primates [18].
The specificity of these antibodies are restricted to epi-
topes on the surface glycoprotein and the transmembrane
protein [18, 34] while there seems to be self-tolerance to
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other endogenous retroviral gene products. Since some of
the naturally occurring retroviral antibodies in mice and
primates have neutralizing capacity they could be acting
as a defense mechanism against exogenous retroviruses
[18, 34].

Reactivity against one or a few of the major antigens of
HTLYV [46] and HIV [37, 82], most frequently gag gene
products, is detectable in a relatively small fraction of sera
from healthy humans with no other evidence of having a
retroviral infection. Most likely, some of these seroinde-
terminate reactivities are due to autoantibodies directed
against endogenous retroviruses [46, 82]. This assump-
tion is supported by observations that a protein, encoded
by an HTLV-related human endogenous retrovirus, may
act as an autoantigen [4].

The genomes of retroviruses contain conserved
stretches. In particular, certain stretches within the pol/
gene are conserved [38, 61] but also a stretch in the trans-
membrane protein seems to be subjected to a limited
degree of variation between different retroviruses [61].
There is evidence that the occurrence of identical or relat-
ed epitopes between endogenous and exogenous retrovi-
ruses results in a restricted ability to raise an immune
response against the exogenous retrovirus in question
[59]. Observations with avian leukosis viruses indicate
that endogenous retroviruses interfere with the ability of
the immune system to eliminate invading retroviruses
[75, 85]. Briefly, the envelope glycoproteins of endoge-
nous avian leukosis viruses contain epitopes which are
also present in the exogenous avian leukosis/sarcoma
viruses. Chickens carrying these endogenous retroviruses
do not respond with the production of antibodies to the
common epitopes upon infection with the exogenous
retroviruses. This is opposed to chickens lacking the
endogenous env loci in question. Consequently, there is a
lower susceptibility to infections with the avian leukosis/
sarcoma viruses in the latter group of chickens.

A restriction in the number of available epitopes of an
invading retrovirus could also have implications for the
development of vaccines against that virus. Moreover, the
occurrence of shared or cross-reactive epitopes between
endogenous and exogenous retroviruses represents a po-
tential source of false-positive or indeterminate reactivi-
ties in the serodiagnosis of retroviral infections [46, 82].

A breakdown of self-tolerance through antigenic mimi-
cry may occur if an infectious agent is distinct from but
sufficiently related to host epitopes to induce a cross-
reacting immune response. A number of different infec-
tious agents possess stretches of amino acid homologies
with host cell components suggesting a potential for

Interactions between Exogenous and
Endogenous Retroviruses

induction of autoimmunity [63]. Whether exogenous re-
troviruses are capable of inducing autoimmunity as a
result of an antigenic relationship with endogenous coun-
terparts is not known. Recently, this possibility was exam-
ined by immunization of rats with MuLV [29]. Autoim-
mune diseases were not observed in these rats, but they
responded with the production of antibodies possessing a
reactivity to proteins encoded by their own endogenous
retroviruses. Interestingly, HIV-1 infections are accompa-
nied by the appearance of autoantibodies. These autoanti-
bodies are primarily reactive with regulatory molecules of
the immune system [73]. Future studies might reveal
whether autoimmune responses against endogenous re-
troviral antigens can also be detected during retroviral
infections.

Superantigens

Superantigens are substances characterized by an abili-
ty to stimulate and/or delete T cells with particular V(8
chains [2, 56]. They are subdivided according to their ori-
gin. The exogenous (microbial) superantigens include var-
ious bacterial substances but also several viruses such as
infectious MMTYV [2, 56], the defective MuLV strain
associated with MAIDS [33] and HIV [48] have been
linked with the production of factors possessing superan-
tigen activity. So far, endogenous superantigens have only
been detected in mice. The murine self superantigens are
encoded by an open reading frame in the 3 LTR of endog-
enous MMTV. The human genome does not seem to
encode homologues of the murine endogenous superan-
tigens [3] although human T cells respond to MMTV
superantigens [45]. Recently, isolation of a human endog-
enous retroviral sequence perhaps encoding for a superan-
tigen was reported [36], but confirmation of its biological
activity is needed.

Exogenous MMTVs are transmitted by the milk. After
having crossed the gut of the suckling mouse, they infect
susceptible target cells, presumably B cells in the Peyer
patches [28, 39]. Most likely, the next steps in the estab-
lishment of the infection involve expression of viral super-
antigen on the surface of the infected cells resulting in
stimulation and activation of T cells with the appropriate
VP chains. These stimulated T cells are believed to cause a
local expansion of infected B cells followed by spreading of
the infection to other lymphocyte subsets and finally to the
mammary glands [84]. A different scenario with superan-
tigen-stimulated T cell subsets serving as the proximal tar-
gets of MMTYV has also been proposed [25].
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Irrespective of the exact nature of the initial steps of
the infection, mouse strains in which T cell V(B subsets
have been depleted by self superantigens are resistant to
infections with MMTVs encoding superantigens of the
same specificities as those of the self superantigens [25,
28]. Whether such a mechanism protects against infec-
tions with other retroviruses than MMTYV is still uncer-
tain. Future findings that human retroviruses utilize su-
perantigens might serve to stimulate research into new
therapies based upon specific depletion of the proximal
target cells.

Heterologous Trans-Activation and Possible
Interactions on the Posttranscriptional Level

Heterologous trans-activation may occur in cells har-
boring two different viruses, i.e. the transcription of one
of the viruses is activated by transcriptional factors pro-
duced by the other one. Whether the transcriptional fac-
tors encoded by various exogenous retroviruses frans-acti-
vate endogenous retroviruses is not known. However,
exogenous retroviruses may indirectly cause activation of
endogenous retroviruses through activation of various
cellular genes. Notably, the HTLV tax protein trans-acti-
vates genes encoding cellular transcription factors [24].

Apparently, the human genome does not contain en-
dogenous homologues of tax [cited in 43]. On the other
hand, a recent study reported the detection of a double-
spliced human endogenous retroviral transcript, encoding
a protein related with rev of the lentiviruses and rex of
HTLV-1[53, 54]. Further studies are needed to reveal the
activities of this endogenous factor, including possible
modulating effects on the nuclear export and processing
of transcripts of human exogenous retroviruses.

Concluding Remarks and Perspectives

Endogenous and exogenous retroviruses may interact
through a variety of different mechanisms. There is evi-
dence that endogenous retroviruses affect the susceptibili-
ty to retroviral infections and the courses of the retroviral
diseases. That is, some endogenous retroviruses are capa-
ble of enhancing the pathogenicity of exogenous retrovi-
ruses while others confer protection against infections
with highly pathogenic exogenous counterparts. Most
strikingly, envelope glycoproteins of endogenous retrovi-
ruses can confer protection against retroviral infections,
but they have also been associated with a restriction in the
ability of the immune system to combat such infections.
Further, there are examples that individual variations in
the susceptibility to retroviral infections reflect genetic
variation at certain endogenous retroviral loci.

To a large extent, the issues of this review have been
based upon observations with animal retroviruses, in par-
ticular murine retroviruses. Still the question of corre-
sponding interactions between endogenous and exoge-
nous retroviruses taking place in man essentially remains
unexplored. A complicating aspect concerns the large
number of human endogenous retroviruses and their
diverse nature.
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