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ABSTRACT

The literature on acoustic waves in a fluid interacting with porous solids is reviewed in the present
paper. In addition, the author’s related works are divided into three catagories, poroelastic media, rigid
screens, and noise barriers, and then discussed. A summary of the author’s works in these three catagories

is given, and important results are presented.
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l. Introduction

The propagation of sound in a porous material has
received considerable attention over the years. The
earliest work was done by Zwikker and Kosten (1949),
but they neglected the effects of dilatation of the frame

~and the rotational wave. A general approach to sound
propagation in the porous media was developed by Biot
(1956a, 1956b), who employed the dilational and
rotational modes of propagation for both low and high
frequencies. The basic assumptions in Biot’s theory
are that the viscous dissipation of a fluid obeys Darcy’s
law, and that the solid frame obeys the law of linear
elasticity. Solutions to Biot’s equations indicate that
disturbances in a porous medium can be transmitted
by three different waves. The first two are longitudinal
waves, and the third is a transverse wave. The experi-
ments carried out by Hovem and Ingram (1979) and
other researches have confirmed that Biot’s theory is
a proper model for sound propagation in porous ma-
terials. '

There are many applications of Biot’s theory,
such as the effects of boundaries on wave propagation
in a liquid filled porous solid studied by Deresiewicz
(1960, 1961, 1962, 1964a, 1964b, 1965, 1974),
Deresiewicz and Rice (1962, 1964), Deresiewicz and
Wolf (1964), and Deresiewicz and Levy (1967), one
dimensional longitudinal waves studied by Geertsma
and Smit (1961), the attenuation of which in saturated
sediments was studied by Stoll and Bryan (1970) and
Stoll (1974, 1977), Rayleigh waves in a poroelastic
half-space investigated by Jones (1961) and later

corrected by Tajuddin (1984), Stoneley waves studied
by Markov and Yumatov (1987), and a boundary layer
correction approximation obtained by Mei and Foda
(1981). Recently, the present author and his colleagues
conducted a series of studies (Huang and Song, 1993a;
Chen et al., 1997; Lin et al., 1996; Ou Yang et al., 1998)
on water waves interacting with poroelastic media.

_ For the application of Biot’s theory to acoustics,
Huang and Chwang (1990b) analyzed the trapping and
absorption of undesirable underwater sound by a layer
‘of porous medium over a sphere in order to maximize
the energy dissipation within a continuous spectrum of
wave frequencies. The Biot theory was applied to the
porous layer, and the linearized sound-wave equation
was used for the homogeneous fluid outside the layer.

Besides acoustic waves acting on a finite object
in an unbounded field, the influence of the seafloor on.
the acoustic plane wave is an old problem. The related
references can be found in many earlier works, such
as those Brekhovskikh (1980), Roetman and Kochhar
(1976) etc. However, due to the complexity of the
porous material of the seafloor, these earlier studies
over-simplified the model for the porous material.
Recently, the problems of plane acoustic waves acting
on an infinite interface between water and a poroelastic
seafloor of both infinite and finite thickness were studied
by Huang (1992).

The more complicated problem of a periodic
acoustic point source in a shallow sea affected by a
free surface and a flat seafloor is not only interesting
in fundamental acoustics, but also practical in real life.
Since the slow attenuation of acoustic waves always
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causes trouble at the outer boundary for computation,
a simple application of the solution to this problem is
to provide a better outer boundary condition for nu-
merical computation. Kinsler er al. (1982) solved the
problem using the normal mode method for assumed
rigid and fluid seafloors. Brekhovskikh (1980) treated
the same problem by expanding the point source into
plane wave integration with known plane wave reflec-
tion coefficients of the interfaces. However, when the
seafloor is porous, the normal mode method fails because
of the energy dissipation within the porous medium.
On the other hand, because a satisfactory plane wave
reflection coefficient of the porous interface was not
found, the method Brekhovskikh applied was not
successful either. Chen and Huang (1992) analyzed
a periodic acoustic point source in a shallow sea af-
fected by a free surface and seafloor. Sea water was
treated as a slightly compressible homogeneous invis-
cid fluid, and the material of the seafloor was assumed
to be poroelastic.

Unlike the subject of layered media affected by
acoustic wav¢s, there have been few studies on sound
waves with a screen as part of the boundary. Earlier
investigations on the damping effect of a screen can
be found in Zwikker and Kosten (1949). Another study
of the screen effect on sound waves was conducted by
Leppington and Levine (1973). Huang and Chwang
(1990a) studied the boundary-value problems of linear
sound waves! for a sphere surrounded by a concentric
screen. Both the radiation caused by the surface vi-
bration of the sphere and the scattering of an incoming
plane wave by the sphere were investigated. The
boundary condition on the normal velocity of the fluid
passing through a screen, as proposed by Taylor (1956),
was applied.

The interaction of an acoustic wave and a screen
is very important in engineering practices in acoustics,
especially in noise control. Therefore, correct simu-
lation or description of the interaction between an
acoustic wave and a screen is very important and worth
studying. However, due to the complexity of the flow
passing through the screen and the complexity of the
screen itself, problems of this kind with two-phase flow
involved are usually too messy to handle. Fortunately,
for cases where noise in the air passes through a porous
medium, because the compressibility of air is usually
much greater than that of the solid skeleton of the
porous medium, these problems can be drastically
simplified. Furthermore, if the porous medium is thin,
then the problems become even simpler. Indeed, Huang
and Song (1993b) did propose a rigorous boundary
condition for solving problems of noise in the air passing
through a rigid screen. By using the proposed ap-
proach, the problem of an oscillating plane rigid screen

was also solved by Huang and Song (1993b).

The mitigation of nois¢ pollution is becoming
more and more important in view of environmental
protection. There have been many researches on traffic
noise measurement in Taiwan, e.g., Hsu (1994, 1995)
etc., and they did contribute much to engineering
practice. However, theoretical analyses of traffic noise
in Taiwan have been rare. Huang and Kung (1992a)
simulated the noise barrier problem using a still, single
freguency, and three dimensional sound source located
within two parallel porous medium layers with rigid
back walls. The solution of the reflection sound field
was represented by an asymptotic solution which was
derived using the method of steepest descent. The
infinite reflections in Chen and Huang (1992) and the
theory of poroelasticity was adopted to analyze the
problem of the interaction between transportation noise
and a noise barrier. However, since the density of the
air is rather small compared to the density of the porous
medium, the skeleton of the porous medium was as-
sumed to be rigid. On the other hand, after replacing
the porous medium layer with a rigid screen, the method
of steepest descent was applied to study a noise barrier
simulated by a rigid screen with a back wall (Huang
and Kung, 1992b).

' Application of the boundary integral element
method to exterior problems of acoustics has become
very popular because of its superiority in handling the
far field condition of unbounded problems. Further-
more, it can reduce one computational dimension and
take care of the complicated diffraction effect. For
example, Meyer et al. (1978) solved the problem of
sound scattering due to bodies of arbitrary shape using
the boundary integral element method; Seybert et al.
(1985) applied the concept of isoparametric element
to boundary integration and attacked the similar prob-
lem of Meyer et al. (1978); Huang (1991) also studied
acoustic diffraction of double connected bodies using
the boundary integration method. However, the above
investigations usually failed to handle problems with
arbitrary boundary acoustic impedance. For instance,
although Huang (1991) tried to solve problems with
hard and soft boundaries separately, problems with
imperfectly soft boundaries were left unsolved.

The boundaries in Huang and Kung (1992a, 1992b)
were much simplified, such that the important diffrac-
tion effect was not included. Furthermore, in simu-
lating a heavy traffic area, a two-dimensional sound
source is more reasonable than the three-dimensional
one applied by Huang and Kung (1992a, 1992b). Hsiao
and Huang (1994) studied the diffracted sound field of
noise barriers using a two-dimensional boundary in-
tegral element method. By dividing the computation
into two catagories based on the specific acoustic
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impedance of the boundary, problems with arbitrary
boundary acoustic impedance can be handled easily.

In the following discussion of the interaction
between porous solids and acoustic waves in a fluid,
the author’s works will be reviewed and divided into
three catagories. They are, in sequence, poroelastic
media, rigid screens, and noise barriers.

Il. Poroelastic Media

Huang and Chwang (1990b) considered the trap-
ping and absorption of small-amplitude sound waves
by a layer of porous medium over a sphere (Fig. 1).
The Biot theory of poroelasticity was applied to the
porous layer, and the linearized sound-wave equa-
tion was used for the homogeneous fluid outside the
layer.

The Biot theory of poroelasticity states that

Veg'=pulh e pn B 0L 0D )
Ves = pult 08B L 0D o)
with _
AR R\ RIC STER A S e
o'=1"-(1-n)P'L, s C))
I'=2Ge"+MV-d)L, (5)
ep=(d,+d; )2, (6)
S'=-nP'IL, (7
p11=(1—ny)pstpa, 8)
P12=—Pa; 9)
P22=n,Pr+Pas 10)
b=pin2/k,, (11)

where o is the solid stress tensor, £" is the effective
stress tensor of the solid skeleton, ; is the normal
stress tensor of the fluid, and 4* and D* are solid and
fluid displacement vectors, respectively. P¥* is the
perturbed pressure of the fluid inside the porous medium,
p; is the solid density, p, is the mass coupling effect
(which is neglected in the present study), n, is the
porosity, u is the fluid viscosity, k, is the specific
permeability, G and A are Lame constants of elasticity,

Fig. 1. Schematic diagram of a sphere covered by a porous layer.

K is the bulk modulus of compressibility of the fluid,
and L is the identity matrix. ~
‘With these equations and the boundary conditions
on the sphere, on the porous medium-fluid interface
and at the far field, a boundary-value-problem of Huang
and Chwang (1990b) was thus formulated. By trans-
forming oscillatory Biot’s momentum equations into
Helmholtz equations, i.e., (after getting rid of the

oscillatory parameter e™*)
d=V¢1+V 9+ VxH, (12)
D=0,V ¢1+ 0,V ¢+ a3 VXH, 13)
and
V2g+k% =0, j=1, 2, (14)
V2H+k3H=0, (15)

where ki, k;, and k3 are wave numbers and «;, ¢, and
a5 are fluid/solid related parameters, the method of
separation of variables was applied to solve the prob-
lem.

The relative acoustic powers for single-mode
vibrations, EX,, and for plane-wave scattering, E3,, are
defined as

ER

Ef = 2R (16)
0
ES
Elo=5» a7
0
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Fig. 2. Relative acoustic power Eﬁ) versus the layer thickness-to-
wavelength ratio e/A for (a) a moderately pentrable layer,
(b) a highly penetrable layer.
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Fig. 3. Relative acoustic power Efo versus the layer thickness-to-
wavelength ratio e/A for (a) a moderately pentrable layer,
(b) a highly penetrable layer.

where ER and E7 are nondimensional acoustic powers
of the present problem while EX and EJ are dimension-
less acoustic powers for a bare sphere. Figures 2 and
3 are numerical examples of relative acoustic powers
versus the layer thickness-to-wavelength ratio e/A for
a moderately penetrable layer and a highly penetrable
layer, respectively. From the numerical examples
presented in Figs. 2 and 3, it is found that a highly
penetrable material (i.e., high pore size, permeability,
and porosity) has a better trapping and absorption effect
than does a moderately penetrable material. A thick
layer is generally preferable to a thin one. Because
a stiff material has high elastic constants, its absorption
effect is poorer than that of a soft material. However,
for the scattering problem, the elastic response of a stiff
material makes it a better choice for reducing the relative
acoustic power, especially when e/A is small. This
result indicates that absorption may not be as important
as trapping when the porous layer is thin. In summary,
the sample results show that a sphere covered with a
layer of poroelastic medium may not be a good device
for reducing the sound radiation, but it is very good
for reducing scattered sound.

The problems of plane acoustic waves acting on
an interface between water and a poroelastic seafloor
of both infinite (Fig. 4) and finite (Fig. 5) thicknesses

N
6,

y‘_j —= S

Fig. 4. Schematic diagram of plane acoustic wave acting on an
infinitely thick poroelastic layer.
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Fig. 5. Schematic diagram of a plane acoustic wave acting on a finite
thickness poroelastic layer.
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Fig. 6. Reflected acoustic intensities with respect to incident angles
for a half-space seafloor.
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Fig. 7. Reflected acoustic intensities with respect to incident angles
for w=10 Hz and a finite thickness seafloor layer.

were studied by Huang (1992). Three frequencies of
sound waves, 10 Hz, 10° Hz and 10° Hz, representing
low, moderate, and high frequencies, respectively, a
typical seafloor material, and incident angles from 0°
to 90° were used in the analysis. A decoupling pro-
cedure of Biot’s equations of poroelasitity for oscil-
latory motion, which divides the perturbation in the
poroelastic medium into two longitudinal waves and
one transvers wave, was applied. The reflected acous-
tic intensities for a porous seafloor of both infinite and
finite thickness (Figs. 6-8) and the pressure-influence
layers inside an infinite thickness porous seafloor were
presented by Huang (1992). It was found that when
the incident angle was larger than a certain value, it
was possible to obtain the exact internal reflection for
the first longitudinal wave.

The result of Huang (1992), especially the reflec-
tion coefficient by, e.g., the one for an infinite porous
seafloor

b0={—l+[(Il)(H2)—(12)(H1)]2cos90%}L, (18)

where
P,
L=—0_ 19
20C? (19)
K
N=—2—, 20
p0C2no ( )
Hj=2cos? 6;+ 2 +n 20, sin26;, j=1, 2, (21)
j=1-(1-onq, j=1, 2, 3, (22)
M=(I1)(H2)J1)~(I2)(H1)(J2)
+(I3)(sin 20,H2~sin 26,H1)
ko sin 64
ko sin6; 23
k3 cos26, 23)
Jj=cos GJ% +cos BN, j=1, 2, 249
J

with notations used by Huang (1992), can be used in
many other investigations.

Indeed, by applying Eq. (18), Chen and Huang
(1992) analyzed a periodic acoustic point source in a
shallow sea affected by a free surface and seéﬂoor (Fig.

t
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Fig. 8. Reflected acoustic intensities with respect to incident angles
for w=10° Hz and a finite thickness seafloor layer.
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Fig. 9. Schematic diagram of an acoustic point source affected by
a free surface and a falt seafloor.
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Fig. 10. Schematic diagram of the images of a point source in a layer
of fluid.

9). Sea water was treated as a slightly compressible
homogeneous inviscid fluid, and the material of the
seafloor was assumed to be poroelastic. The solution
to this problem was represented as an integration of
plane wave expansion of the point source multipling
the plane reflection coefficients of the boundaries. In
this study, an asymptotic solution for this integration
obtained by the method of steepest descent was adapted.
Furthermore, the plane wave reflection coefficient of
the seafloor found by Huang (1992) and an idealized
plane reflection coefficient of the free surface were
applied to the method of successive images (Fig. 10).
Pressure amplitude distributions for different seafloor
materials were presented as shown in Fig. 11. It was
found that different assumptions of seafloor materials
gave very different solutions of acoustic waves in layered
sea water.

lIl. Rigid Screens

In the study of Huang and Chwang (1990a), a
confocal rigid porous screen was held at a distance from
a sphere (Fig. 12). Acoustic waves produced by the
surface vibration of the spherical surface in an arbitrary
pattern and the scattering of an incoming plane wave
by the screened sphere were analyzed. The acoustic
power far away from the screened sphere was compared
to that associated with a sphere without a screen.

Figure 13 shows the relative radiation acoustic
power Fi versus the gap-to-wavelength ratio d/A at
three fixed values porous Reynolds numbers,

_ Pok®

Re =+ton°

(25)
Re=0.1, 1, and 10, for a single mode vibration. It is
clear that Re controls only the amplitude. As r,/A
approaches infinity, FX becomes a periodic function
of d/A, independent of the vibrating mode and with a
period of 1/2. For fixed values of ry/A, Fff) becomes
a periodic function of d/A as d/A becomes very large.

(a) rigid seaﬂporl i
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Fig. 11. Vertical pressure amplitude distributions, @=10° Hz, r=5h,
(a) rigid seafloor, (b) fluid seafloor, (c) poroelastic seafloor.

J=2

Fig. 12. Schematic diagram of a sphere covered by a concentric
porous screen at a fixed distance.
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Fig. 13. Relative radition acoustic power Fff, versus the gap-to-wavelength ratio d/A for the pulsational mode (n=0) at fixed values of the
Reynolds number Re with (a) r,/A=0, (b) ry/A=1/4, (c) ry/A=1/2, and (d) ry/A—>eo.

We note that for fixed values of r,/A, Fﬁ, attains its
maximum values at certain values of d/A regardless of
the value of Re.

Figure 14 shows the relative scattering acoustic
power Ffo versus d/A and Re, respectively, for the
limiting case of kgr,—>ee and d<<r,. We note that in
this limiting case, there is an optimum value of Re,
Re=1, at which the relative acoustic power is a mini-
mum, and that the absolute minimum value of Ff, is
1/2, which occurs at d/A=1/4+m/2 (m=0, 1, 2, ....).

The above analytical results for single-mode
vibrations indicate that a screen is a good device for
trapping and absorbing sound-wave radition. For a
given frequency of sound waves, we can determine the
best gap distance between the screen and the vibrating
surface in order to minimize the relative acoustic power
at infinity. On the other hand, for scattering of an
incident plane wave by a screened sphere, the acoustic
power with a screen may be higher than that without
a screen. This is due to the extra reflection from the
screen, which only exists with a screen.

Huang and Song (1993b) gave a rigorous deriva-
tion of the interaction of acoustic waves and a rigid
screen based on a modification of Biot’s theory of
poroelasticity instead of physical intuition. A very easy
and useful boundary condition for solving problems of
noise in air passing through a moving'rigid screen was,
therefore, established. The boundary condition be-

11
10 Re=0.
09; 0.1
FS a8
10 47 0.25
a6
as
04 —_— lj kor,,-voi , A<,
00 02 04 Q6 Q8 10 12 14 16 1.8 20
dn

Fig. 14. Relative scattering acoustic power Figo versus the gap-to-
wavelength ratio d/A for ry/A—eo, and d<<ry.

tween the two sides of the rigid screen is

—iRe Py—DP-
Re &
l—ln—o

neVp,=n+Vp_=
+(1+ ﬁ)pokocledo en,
"o (26)

where Re is the porous Reynolds number and M is the
Mach number,

wd, @7

C 2

M=
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Fig. 15. The variation of the nondimensional acoustic intensity, 21,/
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Fig. 16. Schematic diagram of transportation noise and noise bar-
riers simulated by porous medium layers with rigid back
walls.

and the other notations are those defined by Huang and
Song (1993b).

An example of an oscillating plane rigid screen
is shown in Fig. 15. Figure 15 shows the variation of
the nondimensional acoustic intensity with respect to
porosity for different ratios of screen thickness to
wavelength. In Fig. 15, the solid lines are the results
with inertia while the dotted: lines are those without
inertia. Figure 15 also shows that the inertial effect
is significant and should be taken into account.

IV. Noise Barriers

Since the speed of a vehicle is much slower than
the speed of sound, the linear problem of transportation
noise acting on a noise barrier was simulated by Huang
and Kung (1992a) using a still, single-frequency, and

a three-dimensional sound source located within two
parallel porous medium layers with rigid back walls
(Fig. 16) and further simplified as a point source within
two infinitely high walls (Fig. 17). On the other hand,
a noise barrier simulated as porous screens with rigid
back walls was given by Huang and Kung (1992b)
(Figs. 18 and 19).

Huang and Kung (1992a, 1992b) expanded a three-
dimensional point source by means of Fourier integral
into a plane wave integration with respect to frequency:

. R r
e’koRo_lko 5

—ico P27
f expli(k .x +k,y Tk 2)] sin 6d0d¢ ,
0

R, =21,
z20,
220, @)
r
Z=h z=D z=0
* E > 2
le— —%Ed

Fig. 17. Simulated diagram of transportation noise and noise bar-
riers simulated by porous medium layers with rigid back
walls.

Fig. 18. Schematic diagram of transportation noise and noise bar-
riers simulated by screens with rigid back walls.
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Fig. 19. Simulated diagram of transportation noise and noise bar-
riers simulated by screens with rigid back walls.

where

R,=Vr?+ 7%, r’=x*+y’, 29)

and
ky=k,sin Ocos ¢, k,=k,sin8 sin ¢, k,=k,cos 6. (30)

It was found that the solution of the reflection sound
field of a noise barrier could be represented by an
integration of this plane wave expansion of a point
source with a proper reflection coefficient of the noise
barrier multiplied in the integrand. Since the integral
was still very complicated, the integrand was further
converted into a function of incident angles and inte-
grated with respect to incident angles. Finally, using
the method of steepest descent and infinite images, the
asymptotic solution of the reflected pressure was
obtained as

p-5 5 p, (31)
where
Py= 5, Vef00) - g, Vi)
+ Vy(8y)) cot 6,1}, (32)
Ry=\r+1j; (33)

6,; = arctan (z_;} , (34)
with Vy; as the reflection coefficient and
Ve = V(@)1 (35)
Ve = V(61" 36)
Ve =[V©O ™", 37)
Voo = V(61 2, (38)
zn=20h+z-z2,, 39)
2p=20h+z+2,, (40)
z3=2(0+Dh~z-2,, (41)
24=200+ Dh—-z+72,. (42)

The asymptotic solution is the basis of the analysis
presented in Huang and Kung (1992a, 1992b).

Based on the results of noise barrier simulations
which they performed, Huang and Kung (1992a, 1992b)
drew the following conclusions: (1) The width of the
road has little effect on the noise barrier; therefore, the
effect of the variation of the road width can be ne-
glected in the design of a noise barrier. (2) A porous
medium layered noise barrier is significantly affected
by the viscous damping factor o while a screened noise
barrier is significantly affected by the screen Reynolds
number Re. It was found that in all cases, &t =1 or Re=1
gave the least road noise; therefore, it has the best sound
trapping effect (for any given d). Also, the best gap-
to-wave length ratio d/A for the screen noise barrier
is 1/4. (3) Because the decrease of sound intensity is
very slow when r is large, increasing the height of the
noise barrier in order to improve its noise control effect
may not be economical.

A more reasonable diffracted sound field due
to highway noise barriers was studied by Hsiao and
Huang (1994) using the two-dimensional boundary
integral element method. Six nodal points per wave-
length and Gaussian quadruture integration with a
second order Lagrange’s interpolation function for
each three-nodal-point element were suggested for
the computation. By dividing the boundary acoustic
impedance into two catagories, this work was able
to handle problems with arbitrary acoustic impedance
z.

The performance of noise barriers was judged
based on the noise-blocking effect in the neighbouring
areas of noise barriers. The variation of the material,
the height h, and the shapes of the noise barriers were
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discussed. It was concluded that only the shapes of
noise barriers plays a key role in reducing noise in the
neighbouring area while the material and the height of
the barriers are not important. Figures 20 and 21 show
contours of the diffracted sound fields of existing and
suggested noise barriers, respectively. The shape effect
of the noise barrier is demonstrated clearly by com-
paring these two figures.

V. Conclusions

Poroelastic media and rigid screens interacting
with acoustic waves in a fluid are important subjects
in marine geophysics, noise control etc. Not only the
aforementioned noise barriers, but many other engi-
neering applications can also be expected as a result
of investigation in this field.

The interaction of porous solids with water waves
is another interesting area worth studying. The design
of a breakwater for coastal engineering relies heavily
on this area’s investigation. However, solutions to
problems of seepage surface, fluid turbulence, etc. are
still far from developed. Also, the use of porous media
interacting with a fluid to simulate sediment transport
might be an interesting new direction for research.
Huang and Chiang (1995) reported some encouraging
findings in this regard.

In summary, the study of the interaction between
porous solids with a fluid still has a long way to go.
The author hopes that the present introductory article
will help stimulate many high quality works in this area
in the near future.
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