
I. Introduction

Although the details of flow physics are quite
complicated and not clearly understood even today,
the macroscopic approach for cavitating or free
streamline flows has been significantly improved and
successfully applied in engineering analyses in the
past few decades. Progress has been made in terms
of theoretical and computational advances.

Theoretically, the macroscopic features of either
partially cavitating or supercavitating flow have been
successfully modeled using the potential flow theory
(e.g., Wu (1969, 1972)). In this approach, there are
several typical features. For example, the detailed
flow structure is usually neglected, and phenomena
such as the two-phase and turbulent characteristic are
ignored. In addition, the cavitating region is ideally
treated as a uniform gas film without liquid in it,
and the flow outside the cavitating region and the
body is assumed to be inviscid, irrotational, and
incompressible.

In the context of potential flow, one needs to
specify either a cavitation number or a cavity length
to complete the theoretical formulation of the prob-

lem. This specification implies that either the cavita-
tion number or cavity length must be functionally
expressed in terms of the other. Generally speaking,
such a relation cannot be expressed explicitly in
terms of elementary functions. However, finding the
relation between these two physical quantities has
engineering significance in modern computational
cavitating flow mechanics. This point will be further
addressed later. In the following, we will first give a
brief overview of the literature on the search so far
for such a relation.

Following the linear supercavitating-flow theory
first introduced by Tulin (1953, 1955, 1964), Geurst
(1960) employed a conformal transformation tech-
nique to derive an implicit theoretical relation among
the angle of attack, cavitation number, and nondi-
mensional cavity length (i.e. the ratio of the cavity
length to the chord of the hydrofoil) for a supercavi-
tating flow. The relation contains coefficients in inte-
gral form which can be evaluated using a typical
numerical quadrature procedure. Nevertheless, the
cavity length can be readily obtained for a given
cavitation number, or vice versa, provided that the
incident angle of uniform flow is specified. Further-
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more, he also studied the special case of a flat-plate
hydrofoil and obtained a simple analytical expression
for these physical quantities. In addition, Acosta
(1955) provided the first partial cavitation solution
specifically for a flat plate hydrofoil. He also
expressed the cavitation number explicitly in terms
of the nondimensional cavity length and the angle of
attack. These seem to be the only analytical relations
available at the present. Of course, all these results
is applicable only to flow at a small angle of attack,
as the assumptions of the linear theory imply.

With progress in the development of computa-
tional methods, nonlinear analyses of cavitating flows
have been conducted using various numerical meth-
ods. Brennen (1969) employed a finite-difference
method to study axisymmetric flows. Later on, sever-
al potential-based or velocity-based boundary element
methods were developed and applied, including those
of Pellone and Rowe (1981), Uhlman (1989), Lee et
al. (1992), and Kinnas and Fine (1993). All these
developments enhance our understanding of cavitat-
ing flow and our ability of foil design involving
cavitating flow phenomena.

However, this progress has not benefited our
understanding of the relation between the cavitation
number and cavity length. On the contrary, the fact
is that there is even a dilemma in computations for
design purposes. From the computational point of
view, prescribing a cavity length is most natural
since, otherwise, any discretization is impossible, let
alone further computations. In fact, most of the
important contributions made to computational devel-
opment of cavitating flow lie in the category which
expresses the cavitation number as a function of
cavity length (e.g., Lee et al. (1992) and Uhlman
(1989)). Nevertheless, from the engineering point of
view, such a computational approach is not only
unnatural, but also quite indirect because the cavita-
tion number, rather than the cavity length, is usually
specified as a design criterion; therefore, its value,
instead of the cavity length, is often assigned.
Consequently, it would be convenient in a computa-
tional design-analysis process if the relation between
the nondimensional cavity length and cavitation num-
ber were available for a given angle of attack.

Little work has been devoted to understanding
the relation between the cavitation number and cavi-
ty length. This relation has seldom been investigated
directly. Instead, several methods that employ con-
cepts of inverse problem have been proposed in the
lieterature. The feature of this approach is that the
problem must be linearized. Davies (1970) first for-
mulated the linearized cavitating hydrofoil problem
in terms of singular integral equations with respect

to unknown vorticity and source distributions, and
inverted the resulting integral equations. Unfortunate-
ly, the final expressions for the vorticity and source
distributions were coupled to each other. Persson
(1978) focused on a supercavitating flat plate and
inverted the equations to obtained analytical expres-
sions for their distributions. Later, Kinnas (1992)
extended the analytical inversion to supercavitating
hydrofoils of arbitrary shape. He expressed the cavi-
tation number, the vorticity and source distributions
in terms of integrals of quantities which depended
only on the foil geometry and the cavity length.
Since this approach is linear, the inherent deviation
of the numerical solution from the exact one be-
comes non-negligible when the angle of attack is not
small and the cavity bubble is thick.

In the present study, we will restrict our focus
to supercavitating flow and attempt to find a general
relation between the nondimensional cavity length
and cavitation number for two-dimensional hydrofoils
through a regression analysis procedure. The analysis
procedure is comprised of several steps. First of all,
assuming the flow is inviscid and irrotational, we
compute the flow past a supercavitating hydrofoil for
various cavity lengths to find the corresponding cav-
itation numbers. We conduct the computation using
a nonlinear model; that is, the shape of the cavity is
a part of the solution, and the boundary conditions
on the cavity surface are specified on the exact sur-
face. As a result, the results we obtain are valid for
flows at any angle of attack. Then, we will proceed
to examine here the trend of the relation between the
cavity length and cavitation number and propose a
nonlinear exponential polynomial to fit the relation
via a least squares procedure. Finally, we will exam-
ine this fitting and propose an expression which may
be globally valid for all two-dimensional supercavi-
tating hydrofoils at any angle of attack.

In the following, we will first briefly introduce
the theoretical governing equations and boundary
conditions and the boundary element method which
we have employed to find the solution for a flow
past a two-dimensional supercavitating hydrofoil.
Then, based on careful observation of the trend of
the relation between the nondimensional cavity
length and the cavitation number, we will propose a
nonlinear model to fit the relationship. Finally, three
typical supercavitating hydrofoils will be examined.
The three hydrofoils include one with a flat-plat
cross section (without thickness and camber), one
with a NACA 16-004 cross section (without camber
but with thickness), and one with Kehr’s new sec-
tion (with thickness and camber) (Kehr, 1998). For
the sake of conciseness, only the results of the three
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hydrofoils will be presented in this report. However,
all the conclusions given in the present report rep-
resent those drawn from these three hydrofoils and
many other tests using supercavitating hydrofoils of
diffeent sections, including the NACA 16 series of
different thickness and supercavitating sections.

II. Governing Equation and Boun-
dary Conditions

Figure 1 schematically depicts a uniform flow
past a supercavitating hydrofoil. A closed cavity is
formed with a surface Sc. Within the scope of poten-
tial flow, the flow past a supercavitating hydrofoil
can be expressed in terms of the velocity potential,
Φ(x,y), which is governed by the Laplace equation

∇2Φ = 0. (1)

The velocity of the flow field can be obtained by
taking the gradient of Φ; that is, u = ∇Φ.

In addition to the governing equation, there
exist several boundary conditions for the supercavi-
tating flow. They are identified as follows.

(1) Undisturbed flow at far field. Far away from
the hydrofoil, a uniform distribution is as-
sumed:

∇Φ = U(icosα + jsinα), (2)

where α is the angle of attack of the uniform
flow with a magnitude of U.

(2) Kinematic condition. On the hydrofoil and
cavity surfaces, the flow is tangent to the sur-
face:

∇Φ · n = 0, (3)

where n is the outward unit normal to the
surfaces.

(3) Dynamic condition. The pressure inside the
cavity is constant. That is, on the cavity sur-

face, Sc,

p = pv, (4)

where pv is the vapor pressure. The pressure
on the cavity and foil surfaces is related to
the local tangential speed by the Bernoulli
equation, from which we can obtain the pres-
sure coefficient,

(5)

and the cavitation number

(6)

where P is the undisturbed pressure, ρ the
density of the fluid, ut the tangential velocity
on the boundary and uc the tangential velocity
on the cavity surface. Since the pressure
inside the cavity is constant, we may equiva-
lently designate the value of the tangential
velocity or the cavitation number as the
dynamic condition.

(4) Kutta condition. In the present supercavitating
flow, the condition should be applied at the
end of the cavity, rather than at the trailing
edge of the hydrofoil.

(5) Detachment condition. Generally speaking,
such a specification is beyond the scope of
potential flow theory. Here, we simply assume
in the first stage that the flow detaches exact-
ly at the leading and trailing edges and adjust
the positions of the detachment points if the
solution thus obtained shows non-physical
behaviors. This condition also requires that
the velocity distribution be continuous at the
detachment point of the trailing edge; that is,

(7)

where points A and B represents points on the
hydrofoil and cavity surfaces, respectively;
T.E.D. is the abbreviation for the trailing edge
detachment point.

(6) Termination condition of the cavity. A termi-
nation model must be applied at the end of
the cavity. Here, we employ for simplicity a
closed-cavity model. Mathematically, this con-
dition can be expressed as

Tc(xcep) = 0, (8)
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Fig. 1. Schematic diagram of the flow field.



where Tc(x) represents the thickness of the
cavity at the ordinate x and xcep the cavity
end point.

With the set of governing equation and bound-
ary conditions, we can find numerically the cavity
surface, the flow field, and the cavitation number
through iterations, provided that a cavity length is
specified. The numerical method we employ in the
present study is briefly described here. For detailed
discussion, see Chen and Weng (1999a).

The particular numerical method we use is a
low-order boundary element method. A dipole distri-
bution is introduced on the cavity and foil surfaces.
In addition, since the boundary of the cavity is
unknown, a source distribution must be introduced
on the cavity surface. The distribution of sources on
the cavity surface serves as a normal flux generator
so as to form the cavity surface. Because of its
thickness-forming function, the cavity surface may be
adjusted according to this distribution. The following
iterative procedure proposed by Lee et al. (1992) can
be employed to find the solution.

(1) Prescribe the length of the cavity surface and
an initial shape of the cavity surface.

(2) Determine the dipole and source strengths.
Use an LU decomposition procedure in the
linear algebraic solution scheme.

(3) Update the shape of the cavity surface based
on the source distribution obtained in the pre-
vious step.

Repeat steps (2) and (3) till reasonable convergence
is achieved.

III. A Nonlinear Model

As discussed in the previons section, the cavity
length can be expressed as a function of the cavita-
tion number, provided that the shape of the hydrofoil
and the inflow angle of attack are given. To secure a
proper curve fitting, we first observe the general
trend of the relation which relates the nondimensional
cavity length to the cavitation number. Generally
speaking, for a given hydrofoil and flow angle of
attack, the trend indicates that a longer cavity corre-
sponds to a smaller cavitation number in a nonlinear
manner, as in the typical case shown in Fig. 2.

To explicitly fit the implicit relation between
the cavity length and cavitation number, we propose
for a given angle of attack a function of the follow-
ing form:

σ = f (l,bl,b2,b3,b4,b5)

= blexp(b2l/c) + b3exp(b4l/c) + b5, (9)

where l is the cavity length and bi (i = 1, 2, ..., 5)
are some unknown coefficients. The reasons why we
propose such a functional relation are two-fold. First,
as mentioned above, the typical trend of these two
variables shown in Fig. 2 indicates that such a com-
position of exponential functions is proper. Second,
the analytical relation for a flat-plate hydrofoil can
be expressed locally in terms of a series of exponen-
tial functions. Therefore, it seems feasible to employ
the expression of finite terms, Eq. (9), to approxi-
mate the relation and to extend its applicability to
hydrofoils with an arbitrary shape of section.

In the following, we will examine the feasibili-
ty of this approach. This examination will consist of
two steps. In the first step, we will study the possi-
bility of approximating the relation using Eq. (9).
This will be examined in this section. In the second
step, we will attempt to simplify Eq. (9) to achieve
a global relation with fewer parameters in order to
make engineering application more convenient. This
will be discussed in the next section.

Now, we will proceed to investigate the possi-
bility of using Eq. (9) to represent the relation be-
tween the nondimensional cavity length and the cav-
itation number. Our remaining task is to find the
unknown coefficients which best fit the relation. This
can be accomplished by employing the Gauss-
Newton method. The procedure is briefly described
as follows. Given a set of initial guesses (b1

(0), b2
(0),

b3
(0), b4

(0), b5
(0)), assume that their deviations from

the optimum values (b1, b2, b3, b4, b5) are (∆l, ∆2,
∆3, ∆4, ∆5). Then, we have

bi = bi
(0) + ∆i,   i = 1, 2, ..., 5.
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tation number.



To find the values of ∆i iteratively, Eq. (9) is lin-
earized:

(10)

where

Then, we can employ the least-squares concept to
determine these five unknown constants. That is, we
required that

(11)

be a minimum, where N is the total number of data
points. This condition leads to the following simulta-
neous linear equation system:

(12)

where

Solving the system in Eq. (12), we can then obtain
the deviation ∆i, which enables us to iterate the pro-
cedure till proper convergence is achieved.

Some case studies were carried out to examine
the feasibility of the curve fitting using Eq. (9). First
of all, we studied the supereavitating flat-plate
hydrofoil. The results are shown in Fig. 3. For dif-
ferent angles of attack and cavity lengths, we did
find that there always existed a proper set of coeffi-
cients bi (i = 1, 2, ..., 5) which could be used to
achieve a remarkable fitting. Their values for each
case are shown in Table 1. In each curve fitting, we
have L2 < 10–4, where L2 is the average residue,
defined as

It is significant that properly selecting the values of

parameters in Eq. (9) enabled us to approximate the
exact relation quite well.

We then proceeded to a real hydrofoil with an
NACA16-004 section. The results are shown in Fig.
4 and Table 2. Again, for each of fitting, we have
L2 < 10–4. Obviously, the function fits the computed
data quite well.

Finally, we also conducted some tests for a
hydrofoil with a cambered cross section which was
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Fig. 3. Curve fitting of a flat-plate hydrofoil.

Table 1. Optimum Coefficients for a Flat-Plate Hydrofoil

α = 2° α = 4° α = 6°

b1 0.1472 0.3353 0.3531
b3 4.6747 13.0427 4.8961
b5 0.0317 0.0652 0.0835
b2 –0.68 –0.72 –0.52
b4 –3.68 –3.84 –2.64

Fig. 4. Curve fitting for a hydrofoil with an NACA16-004 section.



designed by Kehr (1998). Similar to the previous
two cases, the function in Eq. (9) gives a satisfacto-
ry result, as shown in Fig. 5 and Table 3. For each
fitting, we still have L2 < 10–4.

From the three tests described above, we can
draw some conclusions. First of all, for the three
different hydrofoils, we observe that Eq. (9) can be
used to describe as accurately as possible the local
relation of the cavitation number to the nondimen-
sional cavity length, provided that the values of the
parameters are prescribed properly. This observation
is valid for various angles of attack of the incoming
flow. In fact, the three test cases represent three typ-
ical categories of cross sections of hydrofoils. In
addition to these three typical tests, we also carried
out many other tests using different hydrofoils which
all fall within these three categories, and the same

conclusion was reached. Therefore, we may be able
to conclude that Eq. (9) can properly describe the
local relation between the cavity length and the cav-
itation number.

Secondly, according to the computed results
shown in Tables 1 to 3, it seems that the values of
the parameters for the best fitting strongly depend
on both the shape of the hydrofoil and the inflow
angle of attack. This is especially true for the coeffi-
cient parameters of each term, b1, b3 and b5. Unfor-
tunately, it seems that the rule governing the varia-
tion of each parameter has different trends for dif-
ferent flow conditions and hydrofoil shapes and can-
not be explicitly and clearly elucidated. Meanwhile,
it is also observed that the variations of the expo-
nent parameters b2 and b4 for different hydrofoil
cross sections and at different inflow angles of
attack are less significant, especially compared to
those of the coefficient parameters. This interesting
feature leads us to the second step, in which we
attempt to simplify Eq. (9) in order to achieve a
somewhat relaxed relation which, however, contains
fewer parameters.

IV. A Somewhat Relaxed Relation
with Fewer Parameters

As discussed in the previons section, the model
in Eq. (9) with appropriate coefficients can indeed
well fit the relation between the cavitation number
and the nondimensional cavity length for various
flow conditions and hydrofoil shapes. According to
the conclusions given in the last section, a question
that can naturally arise is whether a somewhat
relaxed relation with fewer parameters can be sought
for various two-dimensional supercavitating hydro-
foils. Of course, such a relation should still be accu-
rate enough to have engineering significance and be
applicable; however, it should also be relaxed
“enough” to accommodate individual characteristics
of various hydrofoils.

As revealed by the test cases studied in Section
III, the parameters in Eq. (9) vary quite significantly
from one flow condition or one particular hydrofoil
to another if we attempt to obtain the best fitting for
the relation of the cavity length to the cavitation
number. Therefore, to achieve a relaxed relation with
fewer parameters, we must somewhat relax the value
of L2, which represents in a general sense the accu-
racy of the curve fitting to the nonlinear relation. In
other words, rather than require that it be as small
as possible, we have to keep the average least-
squares residue error L2 at some tolerable value
without loss of engineering significance, say 10–3.
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Table 2. Optimum Cofficients for an Hydrofoil with an NACA
16-004 Section

α = 2° α = 4° α = 6°

b1 0.1328 0.2859 0.3785
b3 1.8420 77.1770 23.3730
b5 0.0393 0.0648 0.0863
b2 –0.62 –0.74 –0.66
b4 –3.56 –5.46 –3.86

Fig. 5. Curve fitting for a hydrofoil with a new section (Kehr,
1998).

Table 3. Optimum Cofficients for a Hydrofoil with a New Sec-
tion

α = 2° α = 4° α = 6°

b1 0.2603 0.4469 0.6500
b3 8.0396 15.8194 23.4738
b5 0.0600 0.0931 0.1277
b2 –0.68 –0.70 –0.72
b4 –3.74 –3.80 –3.82



Such a relaxation certainly leads to an interesting
fact that for a given value of L2, there exist many
sets of (b1, b2, b3, b4, b5) which meet the required
error tolerance condition. Generally speaking, a larg-
er L2 gives rise a broader allowable range for these
parameters.

Since there are many choices for (b1, b2, b3, b4,
b5) under a relaxed accuracy requirement, we may
be able to reduce the number of parameters. There-
fore, we will investigate whether there exists a prop-
er fixed set of exponent parameters (b2 and b4) for
various supercavitating hydrofoils to get a least-
squares fitting for which the deviation from the the-
oretical (but computed) relation in a general sense is
less than the prescribed value of L2. We choose to
fix the exponent parameters, rather than the coeffi-
cient parameters, because, as observed in the previ-
ous section, their variations are less significant for
different hydrofoils and incoming flow angles of
attack. Such an additional requirement reduces the
number of unknown coefficients.

The remaining task is to examine the best fit
of Eq. (9) to the computed data in a least-squares
sense, given the values of b2 and b4. In the follow-
ing, the computational results will be presented.

For a flat-plate hydrofoil with α = 2°, 4°, and
6°, Fig. 6 show the level curves of constant values
of L2 for the best fit at different values of b2 and
b4. It is obvious that, from the plots, there exists a
common region within which the value of Q for best
fit is less than 10–3.

Now we can proceed to examine hydrofoils
with an NACA16-004 section and a new section.
The results are shown in Figs. 7 and 8, respectively.
The same conclusion can be drawn.

Some conclusions can be drawn based on
observations of these plots. First of all, the level
curve trends seem to not be strongly dependent on
the incident angle of flow or shape of the hydrofoil
section. All the sets of level curves are similar to
one another though those regions within which the
average residue error is less than some given value
do differ. In fact, tests conducted using other hydro-
foils also showed a similar trend. Second, observing
the results for the present three supercavitating
hydrofoils, we find that there exists a common
region defined by (b2, b4) within which the average
residue errors are less than some level of tolerance.
In fact, it is obvious that for a larger level of toler-
ance, the common region becomes even broader.
This, in turn, implies that we may choose, in all
cases, common values of b2 and b4 such that there
always exists for different hydrofoils and incoming
flow conditions an optimum set of (b1, b3, b5) which

keeps the fitting within the prescribed level of toler-
ance. For example, we can choose b2 = –0.7 and b4 =
–3.0. Then, we have a somewhat relaxed but still
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(a)

(b)

(c)

Fig. 6. Level curves of L2 for a flat-plate hydrofoil at (a) α = 2°,
(b) α = 4° and (c) α = 6°.



Regression Relation for 2-D Hydrofoils

–127–

(a)

(b)

(c)

Fig. 7. Level curves of L2 for a hydrofoil with NACA16-004 sec-
tion at (a) α = 2°, (b) α = 4° and (c) α = 6°.

(a)

(b)

(c)

Fig. 8. Level curves of L2 for a hydrofoil with a new section at
(a) α = 2°, (b) α = 4° and (c) α = 6°.



quite accurate relation with only three parameters:

(13)

V. An Application

Finally, we will present an application of the
regression relation. Given a cavitation number, flow
conditions, and a hydrofoil, we conducted tests to
examine the feasibility of applying the regression
relation to analyze flow past a supercavitating hydro-
foil. Since there are three parameters in Eq. (13), we
need to compute three flow solutions which corre-
spond to three different cavity lengths. The cavita-
tion numbers corresponding to the three cavity length
can be found from the flow solution. Then, we can
obtain a good approximate relation for further deter-
mination of the exact flow solution at the prescribed
cavitation number. The details of the procedure can
be found in Chen and Weng (1999b).

The first test case was the simplest flat-plate
hydrofoil. The test conditions and results are shown
in Table 4. The three prescribed nondimensional
cavity lengths were 1.8, 3.0, and 3.2, respectively.
Through computations, the corresponding computed
cavitation numbers were found to be 0.1703, 0.1041,
and 0.0989. Using these data, we calculated the
coefficients of Eq. (13). Then, in two more itera-
tions, we obtained the solution for which the cavita-
tion number was accurate up to the fourth decimal
point. Even at the first iteration, the relative error of
the computed cavitation number compared to the pre-
scribed value was less than one percent, and the rel-
ative error of lift coefficient was even smaller.

In the second test case, we studied a hydrofoil
with NACA 16-004 section which had thickness but
no camber. The test conditions were set at α = 4°
and σ = 0.15. The various prescribed and computed
values are listed in Table 5. This test case was
somewhat special and complicated in that face cavi-
tation was observed. In fact, different cavitation
numbers (or, equivalently, different nondimensional

cavity lengths) led to different starting points on the
face side beyond which face cavitation appeared.
Nevertheless, the computed results indicated that
convergence could be achieved within a few itera-
tions.

Finally, we also conducted a study on a hydro-
foil with a new section designed by Kehr (1998).
This represents a hydrofoil having thickness and
camber. Table 6 tabulates the test conditions and
iterative results. In one iteration, the solution con-
verged within one percent of error.

According to the results of the series of tests
described above, it appears that the regression rela-
tion proposed in the present study is a convenient
tool for analyzing supercavitating flow where a cavi-
tation number is given. For any three arbitrary cavity
lengths which serve as initial guesses, we can find
within a few iterations the correct cavity length
which corresponds to the given cavitation number;
then, the supercavitating flow and the cavity can be
readily found.

VI. Concluding Remarks

In this study, we have discussed the regression
relation between the cavity length and the cavitation
number. We have found that the relation can be well
fitted by a exponential polynomial with proper coef-
ficients. Furthermore, within an acceptable range of
accuracy, a relaxed relationship exists with constant
exponents. This relation can be applied to semi-direct
analysis of supercavitating flow when a cavitation
number is given. Tests have been conducted, and we
have found that this approach seems to be quite reli-
able and robust in terms of the number of iterations

σ ≈

= − + − +

f l b b b
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Table 4. Iteration Data for a Flat-Plate Hydrofoil at α = 4° and
σ = 0.15

Flat Plate (α = 4°, σ = 0.15)

Initial Guess Iterations
No. 1 2 3 1 2
l/c 1.8 3.0 3.2 2.0039 2.0083
σ 0.1703 0.1041 0.0989 0.1506 0.1502

CL 0.2149 0.1542 0.1501 0.1953 0.1945

Table 5. Iteration Data for a Hydrofoil with an NACA16-004
Section at α = 4° and σ = 0.15

NACA16-004 (α = 4°, σ = 0.15)

Initial Guess Iterations
No. 1 2 3 1 2
l/c 1.4 2.0 3.0 1.7697 1.7570
σ 0.2033 0.1314 0.0962 0.1473 0.1486

CL 0.1483 0.1203 0.0999 0.1295 0.1305

Table 6. Iteration Data for a Hydrofoil with a New Section at α =
6° and σ = 0.3

New Section by Kehr (α = 6°, σ = 0.3)

Initial Guess Iterations
No. 1 2 3 1
l/c 1.6 2.2 2.8 1.9618
σ 0.3847 0.2662 0.2149 0.2994

CL 0.5207 0.4016 0.3554 0.4334



and its applicability to hydrofoils with arbitrary sec-
tions differing in shape.
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