Proc. Natl. Sci. Counc. ROC(A)
Vol. 22, No. 3, 1998. pp. 344-357

An Integrated Combination of JSD and Formal

Notations

JoNnATHAN LEE, JiANN-I PAN, NIEN-LIN XUE, AND WEI-TEH HUANG

Department of Computer Science and Information Engineering
National Central University
Chungli, Taiwan, R.O.C.

(Received February 5, 1997; Accepted September 17, 1997)

ABSTRACT

In this paper, we propose the use of Z as the formal notation to express Jackson System Development
(JSD) specifications (called JSDZ), where JSD serves as a mechanism to aid analysis of problem domains.
A function process in JSD specifications is manifested by an operation schema. A model process is treated
as an active entity that requires an operation on its data store to add a new instance to the collection of
existing instances. The model process is, thus, translated into a state schema, and its related operations
are converted into the operation schemas with instances set that can be modified by the operations. A
structured diagram is transformed into a state transition diagram and then converted into its Z specifications.
Cardinality relationships between processes are translated into Z notations based upon the notion of rough
merge. These transformation rules are illustrated using the problem domain of the Car-Rental System.
The bringing together of diagrammatical and text elements of JSD specifications in Z notations offers
two major benefits. First, JSD specifications can be seen both as a structuring mechanism that helps in
deriving Z specifications and as a preliminary step that assists in ascertaining the clients requirements.
Second, Z specifications make it easier to identify omissions or errors.

Key Words: formal specifications, informal methods, Jackson System Development (JSD), methods

integration, Z

l. Introduction

Recently, there has been growing interest in
combining different methods in formal methods re-
search, especially in terms of the marriage of an in-
formal method with a formal one (Wing, 1990). An
informal method is developed to help users and analysts
to informally define systems and provides a systematic
procedure for analyzing systems. On the other hand,
a formal method is a precise specification language
which uses mathematical notations to specify a system.

It has been widely recognized that informal
methods have advantages for elicitation of require-
ments, ease of understanding, communication, and
support for the software development process through
structuring mechanisms. Meanwhile, formal methods
provide conciseness, clarity and precision, and are more
suitable for detailed analysis and verification. There-
fore, as advocated by Meyer (1985), informal require-
ments specifications and formal ones are complemen-
tary, not competing. Gehani (1986) has further sug-
gested that system specifications, ideally, should in-
clude both formal and informal specifications, and that
a method for combining both specifications is needed.

As a result, a number of researchers have reported
progress towards the successful integration of formal
and informal methods, such as by combining structured
analysis (SA) with formal specifications (e.g., France,
1992; Fraser et al., 1991; Liu, 1993; Polack et al., 1991;
Randell, 1991; Semmens and Allen, 1990), by integrat-
ing object-oriented analysis (OOA) and formal speci-
fications (e.g., Giovanni and Iachini, 1990; Hammond,
1994; Lee et al., 1997), by transforming Jackson System
Development (JSD) to formal specifications (e.g.,
Sridhar and Hoare, 1989; Smith et al., 1991), and by
utilizing task-based specification methodology to de-
rive specifications expressed in conceptual graphs (Lee
et al., 1996).

We propose the use of JSD (Cameron, 1986) as
a mechanism to aid analysis of problem domains. As
pointed out in Renold (1988) and Sridhar and Hoare
(1989), ISD offers several benefits that are useful for
constructing informal requirements specifications: First,
JSD is applicable to a wide range of problems (e.g.,
data processing systems, real time systems etc. (Renold,
1988)). Second, JSD begins with a model of real world
entities (i.e., a kernel), and functions are considered
in the network phase in an incremental fashion. This

~ 344 —

JSD and Formal Notations

helps considerably in keeping the kernel intact, which
in turn reduces the time needed for testing and main-
tenance (Renold, 1988).

The Z specification language has been widely
used and successfully applied to industrial usage
(Craigen et al., 1995). For example, IBM has used Z
successfully in specifying parts of its Customer Infor-
mation Control System (CICS) transaction processing
system; Z has been used to clarify an IEEE floating
point standard; and Z is recommended by the UK
Ministry of Defense for certain project classes. The
benefits of using Z can be summarized as follows
(Semmens and Allen, 1990): (1) It provides a speci-
fication which is precise and unambiguous. (2) It
allows the possibility of mathematical reasoning about
the specification. (3) It shows evidence of a clear
understanding of the requirements.

The focus of this paper is on the use of Z (Spivey,
1992) as a formal notation to express JSD requirements
specifications. A function process in JSD specifica-
tions is manifested by an operation schema. A model
process is treated as an active entity that requires an
operation on its data store to add a new instance to the
collection of existing instances. The model process is,
thus, translated into a state schema, and its related
operations are converted into the operation schemas
with instances set that can be modified by the opera-
tions. A structured diagram is transformed into a state
transition diagram (STD) and then converted into its
Z specifications. Cardinality relationships between
processes are translated into Z notations based upon
the notion of rough merge. These transformation rules
are illustrated using the problem domain of the Car-
Rental System (Storer, 1987).

In the following, we will first give an overview
of JSD in the next section. The proposed approach,
which guides mapping from JSD specifications to Z
notations, is fully discussed in Section III. Related
work is introduced in Section IV. Finally, we sum-
marize the benefits of our approach and outline our
future research plans in Section V.

Il. JSD Overview

JSD is a methodology for software development
first proposed by M. Jackson (Cameron, 1986). Vari-
ations of JSD have been proposed, and we will base
our discussion on the features discussed in Sridhar and
Hoare (1989). JISD specifications are mainly composed
of a distributed network of sequential processes. Each
process can have its own local data. Communication
between processes is achieved by reading and writing
messages (data stream) and by read-only access to
another process’s data (state vector). A JSD specifi-

Entity attribute type Action attribute type
Car reg_no CAR_ID Purchase reg_no CAR_ID
bought date DATE bought_date DATE
price N price N
last_renter ~ RENTER_ID rent reg_no CAR_ID
rent_date DATE renter RENTER_ID
in-company BOOLEAN return reg_no CAR_ID -
on_rent BOOLEAN return_date DATE
rent_price N sell renter RENTER_ID
time_on_rent N reg_no CAR_ID
sold_date DATE
Renter id RENTER _ID start renter RENTER_ID
name TEXT name TEXT
address ADDRESS address ADDRESS
lastaction_date DATE invoice renter RENTER _ID
name TEXT
address ADDRESS
reg_no CAR_ID
invoice DATE
rent_period N
amount N

Fig. 1. Entity-action list.

cation is initiated from a particular set of model pro-
cesses (or entities). New processes are added to the
specification by connecting them to the model. There
are three main phases in JSD methodology:

(1)Modeling phase: Model processes (or entities)
and their actions are selected and defined.

(2) Network phase: The relationships between model
processes and function processes are established
and are represented by the system specification
diagram (SSD).

(3) Implementation phase: The processes and their
data are fitted to the available processor and
storage devices.

In the following sections, we will only concen-
trate on the modeling and network phases as well as
some notations and their meaning as they are used in
these two phases. The “Car-Rental System” is used
as an example to illustrate both the JSD methodology
and the proposed approach to transforming JSD speci-
fications to Z. The problem description of the “Car-
Rental System” is summarized below (Storer, 1987).

The “Car-Rental System” concerns renting cars
to renters. Cars are rented and returned by customers,
and customers are invoiced for each transaction. The
system produces customer invoices, responds to inquir-
ies about whether a particular car is rented or not, and
produces a weekly report of car rental details.

1. Modeling Phase

The first step in the modeling phase is to find
entities and actions related to each entity. An entity-
action list is used to specify the entities, related actions
and their attributes needed in the system. The entity-
action list for the Car-Rental System is shown in Fig.

—345 -

J. Lee et al.

In JSD specifications, a model process is com-
posed of a set of ordering actions and is denoted by
a structured diagram. A structured diagram has a tree
structure, in which the leaves are actions, and all other
components describe either sequential, iterative or
selective relationships between actions or between group
of actions. Iterations are denoted by “*” in the top right
corner of the constituent box, and selections are de-
noted by “o”. Figure 2(a) shows that A is a sequence
component, which means that A contains one B action,
followed by one C action, followed by one D action.
Figure 2(b) shows that A is a selection component,
which means that A consists of either exactly one B
action or exactly one C action or exactly one D action.
Figure 2(c) shows that A is an iteration component,
which means that A contains zero or more B actions.

Having built a model process as a framework, we
need to define data items and basic operations to describe
in detail the meaning of the model process. The actions
define what happens, and the data define what is to be
remembered about what has happened. The model
processes can then be transformed into the equivalent

*

B C D B°|| c°|| p° B

(b) Selection (c) Iteration

(a) Sequence

Fig. 2. Structured diagram.

Invoice *

L. bought_date := purchase.bought_date?
2. price := purchase.price?

3. last_renter := rent.renter?

4. last_renter := UNDEFINED

5. rent_date := rent.rent_date/

6. rent_date := UNDEFINED

7. in_company := true

8. in_compary := false
9. on_rent := true
10. n_rent := false
11. time_on_rent := 0
12. time_cn_rent := return_date-rent_date
13. name := start.name
address := start.address

Fig. 3. Structured diagram for the car-rental system.

Renter —»@

ha>
@—» Engiry @

hsv: hire state vector, r: renter_id, inv: invoice
hdet: hire detail, eow: end of week

Report eow

Fig. 4. SSD for car-rental system.

structure text. Figure 3 shows the result of the basic
operations that are added into the car and renter entities
in the Car-Rental System.

2. Network Phase

The result of the modeling phase is a set of dis-
connected processes. In the network phase, input and
output processes are added and connected to the model
‘processes (e.g., Car and Renter in Fig. 4) to build a
network of potentially concurrent processes. The net-
work is described in an SSD. In this phase, three
different types of function processes can be included
into the network: input function processes, information
function processes, and interactive function processes.

Input function processes collect data from the real
world, check them for errors, and pass them on to the
model process if they are correct or reject them by
producing an error message. All the input processes
together constitute the input subsystem. In particular,
an input process has one of the following tasks: (1) to
handle message and context error, (2) to replicate action
messages for common actions, or (3) to serve as the
dialog processes of on-line parts.

Information function processes extract informa-
tion from the model in order to compute the required
system outputs. The system’s outputs must be defin-
able in terms of the model, namely, as actions, action
attributes and entity attributes. If this is not possible,
the model must be elaborated by defining new actions
and entity attributes. Enquiry and Report in Fig. 4
are information function processes.

Interactive function processes generate system
actions. System actions can be considered as external
actions that are created by the system itself. In most
cases, the interactive function process needs informa-
tion from the model processes to generate the system
actions. Interactive function processes are like infor-

— 346 -

JSD and Formal Notations

P process type
P1 N State vector connection
Y 2
P1 O P2 Data stream connection
A B Many to one
pt Ol p2 | Manytomany

Fig. 5. SSD notations.

mation function processes except that they produce
inputs for the model processes instead of system out-
puts. There are two communication mechanisms be-
tween processes in JSD.

(1) State Vector: a state vector (SV) connection
constitutes a read-only access from a process to
the local data of another process.

(2)Data Stream: a data stream (DS) is a first-in-
first-out data queue with infinite capacity.

The cardinality relationship between processes
can be either one-to-one, one-to-many or many-to-
many (Fig. 5) to capture the notion of the multiplicity
of a process (i.e. multiple instances). By completing
all function processes and communicating them with
modeling processes using SV and DS, an SSD is es-
tablished.

In the next section, the proposed approach will
be fully discussed and illustrated step-by-step using the
Car-Rental System.

lll. Expressing JSD Specifications in
Z Notations

The focus of this section will be on the use of Z
as a formal notation to express JSD requirements
specifications. A function process in JSD specifica-
tions is manifested by an operation schema. A model
process is treated as an active entity that requires an
operation on its data store to add a new instance to the
collection of existing instances. The model process is,
thus, translated into a state schema, and its related
operations are converted into the operation schemas
with instances set that can be modified by the opera-
tions. A structured diagram is transformed into a state
transition diagram and then converted into its Z speci-

fications. Cardinality relationships between processes
are translated into Z notations based upon the notion
of rough merge. However, the transformation from JSD
to Z focuses not only on the conversion of each JSD
artifact to its corresponding Z specifications, but also
on the transformation of the relationships between these
artifacts. An overview of the proposed approach de-
picting the mapping from JSD specifications to Z no-
tations is shown in Fig. 6.

1. Modeling Phase

(1) Define given sets for all types of attributes based
on the entity-action list. Consider the Car-Rental
example; the types needed in the system are
described as follows:

[DATE, TEXT, RENTER_ID, BOOLEAN, CAR_ID,
ADDRESS].

(2) Define a state schema for each entity, where its
signature is depicted using the attributes in the
entity-action list. Using the same example, we
define Car and Renter state schemas for the
entities car and renter:

— Car
reg_no:CAR_ID
bought_date:DATE
price:N
last_renter:RENTER_ID
rent_dat:DATE
in_company:BOOLEAN
on_rent:BOOLEAN
rent_price:N

time_on_rent:N

Modeling Phase i

!

1

1

[Entity-Action list
: / Structure Diagram
I

: Create New
| entity
! Network Phase
Entity (Model) Process #
Functional Process
Data Stream
Merge
State Vector

Fig. 6. An overview of the mapping from JSD to Z.

—347 -

J. Lee et al.

Fig. 7. State transition diagram for the structured diagram of the car

entity.

Renter
id:RENTER_ID
name:TEXT
address:ADDRESS
lastaction_date:DATE

schemas, respectively:

t
C_STATE ::=initial |purchased | rentl returnedl
sold

R_STATE ::=initial | started | invoiced

— Car
reg_no:CAR_ID
bought_date:DATE
price:N
last_renter:RENTER_ID
rente_date:DATE
in_company:BOOLEAN
on_rent:BOOLEAN
rent_price:N
time_on_rent:N
car_currentstate:C_STATE

car_currentstate=initial

(3) Create a data store state schema to represent an

instances set for each entity. In each data store,
an identity is required to uniquely identify each
instance. In the same example, there are two data
store state schemas (Car_SET and Renter_SET):

— Car_SET
cars:F Car
idcar:CAR_ID > Car

Vc:Car » ¢ € cars A c.reg_no=idcar™(c)

ran idcar=cars

—— Renter_SET
renters.F Renter
idrenter:RENTER_ID >* Renter

Vr:Renter « ¢ € renters A r.id=idrenter(r)

ran idrenter=renters

(4) Add an attribute, currentstate, to indicate the

possible states the entity can go through for each
entity state schema. The type of currentstate can
be composed of an initial state and other states
that result from performing each action on the
entity. The possible states for car (denoted as
C_STATE) can be: initial, purchased, rent, re-
turned, and sold. The initial state means the state
of the car before any action is performed, and
the purchased state means that the car has been
purchased but not yet rented. The schemas and
type definitions below are the result after adding
the currentstates for the Car and Renter state

~348 —

— Renter
id:RENTER_ID

name:TEXT
address:ADDRESS
lastaction_date:DATE
renter_currentstate:R_STATE

renter_currentstate=initial

(5) Convert each structured diagram into a STD

by arranging each state (represented by an
oval) defined in step 4, based upon the time
order in the structured diagram, and by con-
necting the states through actions that are
viewed as events (represented by directed arcs)
to change the states in a STD. Jackson has
pointed out that the time-ordering structure in
JSD can also be specified using regular expres-
sions. Recently, Bass and Ratcliff (1994)
have further elaborated on this claim and have
provided automatic support for the implemen-
tation of JSD process specifications. We have
adopted a similar view in describing the time-
ordering structure. Referring to the same ex-
ample, the structured diagram of the car entity
in Fig. 3 can be converted into the STD given
below.

(6) Define an operation schema for each action, and

define its signature according to the entity-ac-
tion list. If an action changes its associated data
store, attach the Delta notation to its associated
data store to indicate the change. Otherwise, use
the 2 notation. If an action is shared by more
than one entity, include all their related data

JSD and Formal Notations

stores in the declaration part. The operation
schema for the purchase and rent actions of car
entity are described below:

F_ purchase
A Car_SET

reg_no:CAR_ID
bought_date?:DATE
pricel:N

car:Car

—— rent
A Car_SET
reg_no?:CAR_ID
rent_date?:DATE
renter:RENTER_ID

(7 Include the state changes using state vari-
ables in the predicate part of each operation
schema based on the STD obtained in step 5.
For example, car.car_currentstate= pur-
chased|returned shows the state before the
operation rent, where there are two mutual
exclusive states, purchased and returned,
car.car_currentstate’ =rent indicates the state
after the operation:

— rent
A Car_SET
reg_no?.CAR_ID
rent_date?:DATE
renter:RENTER_ID

car_currentstate=initial

reg_nole Car_SET.idcar
Car.car_currentstate=purchased | returned

car.car_currentstate’=rent

(8) Treat all the entities in the modeling phase as
active entities. An active entity is defined as an
entity which has instances created as a part of
the normal system operations, thus requiring an
operation on its data store to create a new in-
stance to be added to the collection of existing
instances. For example, the purchase action is
treated as an operation that can create new
instances to be added into the existing instances
set, Car_SET. That is, Car_SET.cars’=
Car_SET.cars L {car}. We then include basic
operations in the predicate part of the operation
schema (e.g. bought_date):

— purphase
A Car_SET
reg_no?:CAR_ID
bought_date?:DATE
pricel:N

car:Car

reg_no? ¢ dom Car_SET.idcar
car.car_currentstate=initial
car.reg_no’=reg_no?
car.bought_date’=bought_date?
car.price’=price?
car.in_company’=true

car.on_rent’ =false
car.time_on_rent’ =0

car car_currentstate’=purphased
Car_SET.cars’=Car_SET.cars U {car}
Car_SET.idcar’=Car_SET.idcar ® {reg_no? > car}

2. Network Phase
A. Function Process

Function processes in an SSD are transformed
into operation schemas. Generally, both input and
information function processes will not change the
related state space while interactive function pro-
cesses will. Therefore, we usually attach the = no-
tation to the related data store for input and infor-
mation function processes, and attach A for the inter-
active function process. Referring to the same
example, two operation schemas are described below
for the function processes in the SSD. Report is a
function process that creates a renting transaction list
for that week. The Enquiry function process receives
a customer’s query and answers with the rental status
of a car:

RENTSTAUS::= rent| available

— Enquiry
2 Car_SET
reg_no?:CAR_ID
status!:RENTSTATUS

reg_no? € dom Car_SET.idcar

3 car:Car o (

car.reg_no=reg_no?

(getsv(car.on_rent)=true) = status'=rent
(getsv(car.on_rent)=false) A
(getsv(ca.in_company)=true) = status'=available

B. Data Stream

A data stream can be considered as a first-in-first-
out data buffer with infinite capacity and two opera-

~349 —

J. Lee et al.

tions: read and write (Renold, 1988). Each data
stream can be expressed in Z through the following
steps: (1) Define a schema for each data stream
entry. (2) Denote a data stream as a sequence of such
entries. (3) Define the write operation schema for the
data stream. (4) Define the read operation schema for
the data stream. If a data stream merges with others,
we use a merge reading process instead of a read
operation. In our example, the data stream hder can
be expressed as follows. Because hdet merges with
eow, we will use other the reading process instead of
read_hdet:

— hdet
renter:RENTER_ID
name:TEXT
address:ADDRESS
reg_no:CAR_ID
invoice_date:DATE
rent_period:N

amount:N

hdet_DS:seq hdet

— write_hdet
A hdet_DS
entry?:hder

entryl.renter=invoice.renter?
entry?.name=invoice.name!
entry?.address=invoice.address!
entry?l.reg_no=invoice.reg_no?
entry?.invoice_date=invoice.invoice_date?
entry?.rent_period=invoice.rent_period?
entry?.amount=invoice.amount!
hdet_DS’=<a>" hdet_DS

— read_hdet_ok
A hdet_DS
entry!: seq hdet

rl:Response

hdet_DS # <>
entry!=hdet_DS
hdet_DS’ =<>

ri=success

— read_hdet_suspend
= hdet_DS
rl:Response

hdet_DS=<>

ri=suspend

read_hdet=read_hdet_ok v read_hdet_suspend

C. State Vector

For all the state vectors in an SSD, we predefine
a getsv generic operation schema (defined below). Note
that gersv will not change any of the state variables;
therefore, any process (either model or function) that
performs the operation needs to attach the = notation
to the related data stores. In our example, the Enquiry
function process should include ECar_SET in its sig-
nature and use getsv.to get on_rent and in_company
in the predicate part:

— [X, Y]
getv:X - Y

getsv(x)::{y|x e X,ye Y}

— Enquiry
= Car_Set

reg_no?: CAR_ID
status!:RENTSTATUS

reg_no? € dom Car_SET.idcar

3 car:Car o (

car.reg_no=reg_no?

(getsv(car.no_rent)=true) = status!=rent
(getsv(car.no_rent)=false) A (getsv(ca.in_company)=true)
= statusl=available

D. Merge

In a data stream connection, the initiative for
communication comes from the writing process. The
reading process must consume the complete stream of
data records (Renold, 1988). If a process reads data
streams from different processes, the developer must
specify how the data streams are merged. The merge
strategy defines the sequence in which the receiving
process will read the data records.

There are two types of merges: fixed and rough
merges. In a fixed merge, the reading sequence is
defined by the reading process alone. In a rough merge,
the strategy is indeterminate.

For rough merge, we use a set as an internal buffer
in the reading process to take in the data from each
data stream. If all the data streams are empty, the
reading process is suspended; otherwise, the set col-
lects the data from all the data streams and clears each
data stream. The output sequence of the data in the
set is not determined until implementation.

For fixed merges, we use a sequence as an internal
buffer instead of a set to collect data. The output
sequence.of the data in the buffer sequence is deter-
mined by the reading process. In general, if one of
the data streams is empty, the reading process is sus-
pended. In particular, whether the reading process is

-350-

JSD and Formal Notations

to be suspended or not depends on the problem domain.
In general, if one of the data streams is empty, the
reading process is suspended.

Note that due to the fact that data collected from
data streams may be of different types, it is necessary
that the internal buffer (i.e., a set) be able to assume
different types as well (that is, the notion of polymor-
phism).

Referring to our example, Report is treated as a
fixed merge, and its Z counterpart is described below:

Buffer::=hdet | DATE

— fix_read_ok
A hdet_DS
A eow_DS
buffer:seq Buffer
entryl:seq Buffer

rl:Response

eow_DS # <>

buffer=<>

(eow_DS # <>)=>(buffer=buffer ~ eow_DS)A(eow_DS’=
<>)

(hdet_DS#<>)=(buffer=buffer ~ hdet_DS)A
(hdet_DS’= <>)

entry!=tail buffer

ri=success

— fix_read_suspend
Z hder_DS
= eow_DS

rl:Response

eow_DS=<>
rl=suspend

Reporté\fix_read_ok vV fix_read_suspend
E. Cardinality

The notion of cardinality in JSD, is different from
that of the structured analysis and object-oriented
approaches. Cardinality in the structured analysis and
object-oriented approaches refers to the number of
instances that an entity or an object can participate in.
In JSD, cardinality specifies the communication be-
tween instances of a process. In Fig. 4, the data streams
from the type A process are roughly merged to form
a single input DS in the case of a many-to-one situation
or a multiple input DS for the many-to-many case into
process B. ‘

In our example, the cardinality relation between
Renter and Report is many-to-one and is described as
many writing processes which write data into hdet_DS
and read data by means of one reading process:

— write_hdet_i
A hdet_DS
entry?:hdet

entry?.renter=invoice.renter?
entry?.name=invoice.name!
entry?.address=invoice.address!
entry?l.reg_no=invoice.invoice_date?
entry?l.invoice_date=invoice.reg_no'
entry?l.rent_period=invoice.rent_period?
entry?.amount=mnvoice.amount!
hdet_DS’=<a>~ hdet_DS

A .
write_hdet=write_hdet_1 v...v write_hdet_ii €N

— read_hdet_ok
A hdet_DS
entry!: seq hdet
rl:Response

hdet_DS # <>
entryl=hdet_DS
hdet_DS’=<>

rl=success

— read_hdet_suspend
" E hdet_DS
ri=Response

hdet_DS=<>

rl=suspend

Read_hdet2read_hdet_ok v readf_read_suspend

IV. Related Work

A number of researchers have reported progress
towards the successful integration of formal and infor-
mal methods. Semmens et al. (1992) have conducted
a comparative study of related work. However, their
study only concentrated on approaches combining
structured analysis and formal specification techniques.
To provide a more comprehensive view of the state-
of-the-art in this line of work, we have classified
integration methods based upon the different informal
analysis approaches used.

(1)From structured analysis to formal specifica-
tions: for example, Polack (Mander and Polack,
1995; Polack, 1992; Polack er al., 1991)
and Semmens’s (Semmens and Allen, 1990)
integrated SA and Z; Randell (1991) translated
a data flow diagram into Z ; Frances com-
bined SA and algebraic specifications; Fraser
et al. (1991) integrated structured analysis with
Vienna Development Method (VDM); Liu (1993)

-351 -

J. Lee et al.

combined an extended data flow diagram and
VDM; Moulding and Smith (1995) combined
Controlled Requirement Expression (CORE) with
VDM and CSP.

(2)From object-oriented analysis to formal speci-
fications: typical examples are Giovanni’s inclu-
sion of Z in Hierarchical Object-Oriented Design
(HOOD) (Giovanni and Iachini, 1990); Hammond
(1994) integrated Shaler Mellor’s approach into
Z; and Lee et al. (1997) combined Bailin’s Object-

Oriented requirement Specification (OOS) with

Z.

(3)From Jackson System Development to formal
specifications; Sridhar and Hoare (1989) trans-
formed JSD into Communicating Sequential
Processes (CSP).

An important idea for developing a JSDZ ap-
proach is that most of the related works outlined above
focused mainly on the integration of structured analysis
or object-oriented analysis and formal methods. JSDZ
provides an alternative option, in particular for those
who apply JSD methodology to development of soft-
ware requirements.

1. SA to Formal Specifications

In Semmens’ work (Semmens and Allen, 1990),
there were in general, two phases involved in the analy-
sis. First, a data model of the system was developed,
expressed first as an entity relationship diagram (ERD)
and then as a Z state schema which was systematically
derived from the ERD. In the second phase, the process
model was built. A semiformal model was expressed
using a data flow diagram (DFD); then, the semantics
of each of the processes was specified using Z operation
schemas. Entity was represented in an entity type
schema and an entity instance set schema. Attributes
of an entity could be referred to in an entity dictionary.
A relationship could be represented as a relationship
schema. Partial function, partial injection, or relation
could be used to specify the cardinality and connec-
tivity relationships between the two entities. These
schemas built the state space of the system in Z. Data
flows between processes could be shown as input and
output variables in an operation schema.

Polack and her colleagues took a different view,
seeing the systems analysis as an important but par-
tially independent precursor to the formal definition
(Mander and Polack, 1995; Polack, 1992; Polack et al.,
1991). In their approach, the Z specifications must not
be a straight translation of the informal analysis if it
is to find requirements or errors overlooked by the
analysts. It must be guided by the systems analysis
rather than be exclusively derived from it. The basic

components of the Z definition, state and process
specifications, are considered separately. In the state
specifications of Z, which are derived from ERD,
constraints on data or conditions on relationships are
included in the formal state model, and data attributes
may be modeled in the entity definitions. In the process
specifications, function definitions are derived from
DFD. '

Randell (1991) explained how to translate a data
flow diagram into Z. The Z specification is generated
by carrying out a sequence of steps: taking external
entities, data stores and processes in turn to produce
parts of the Z specification. Since ERD is not con-
sidered in the data modeling, the state specifications
are directly translated from data stores. The operation
schemas are translated from a process. Input and output
variables indicate the data flow between the external
entity and the process. Predicate information about the
process does not appear in a DFD and must be obtained
elsewhere.

France (1992) provided a semantically extended
DFD as a control-extended DFD (C-DFD) associated
with an algebraic specification technique. A C-DFD’s
data domain is defined by specifiers using a data
description language. State specifications and label
specifications are defined so as to describe the data
flow, and DataStore state specifications are used to
describe the data stores. Operators used in accessing
these data stores were also discussed. Data transform
specification is used to specify the behavior of a data
transform. Algebraic state transition systems corre-
sponding to the state transition diagram can be used
to specify the behavior of an external entity and the
system behavioral.

Fraser et al. (1991) integrated VDM and struc-
tured analysis. Two approaches were described in
their paper: (1) structured analysis as a cognitive
guide in developing VDM specifications, and (2)
automated generation of VDM specifications from SA
models using a rule-based approach. The main differ-
ence in these two approaches is that the former is
manual while the latter is automated. Information
from an entity dictionary is used to build the informa-
tion domain. Operators rd and wr indicate the data
flow between processes. Pre-condition and post-
condition are used to specify the functionality of the
process.

Moulding and Smith (1995) focused on the use
of the VDM with CORE and explained the role of
CORE in CSP. That is, a VDM specification was used
to define the processing semantics of the actions, and
a CSP specification was used to identify the real-time
collective behavior of these actions. In their approach,
the data flows between viewpoints which are identified

-352-

JSD and Formal Notations

in a CORE model form of the global state of the VDM
specification, and the VDM data types for these state
variables are derived from the data-structuring infor-
mation within the CORE model. The target system and
all other viewpoints are expressed as Vienna Devel-
opment Method-Specification Language (VDM-SL)
modules, in which the actions of the viewpoints are
modeled as VDM operations. Internal data flows within
a viewpoint are considered as the local state of the
viewpoint module, and the triggering conditions for an
action are expressed in the precondition of the corre-
sponding operation. The control and sequencing be-
havior of operations is specified in single viewpoint
modeling (SVM) and combined viewpoint modeling
(CVM) stages of CORE. Each CORE action, channel
and pool are represented by a CSP process. Processes
are combined using the CSP parallel composition
operator (|[) to specify the overall behavior of the SVM.
A CVM is a process composed of channels, pools and
actions. Similarly, the compositional features of CSP
are used to describe a CVM.

2. OOA/D to Formal Specifications

Giovanni and Iachini (1990) combined HOOD
and Z, where HOOD was used as a structuring mecha-

nism to guide the construction of Z specifications. In~

their paper, WHAT, With WHAT, and HOW specifi-
cations were used to build the formal specification. A
WHAT specification could consist of more than one
schema and be used to describe an object. These
schemas could be partitioned into state schemas and
operation schemas. A state schema was used to specify
an object’s data model. However, information for
specifying an object was insufficient. Each method
of an object was described in a separate operation
schema.

Hammond (1994) integrated Shaler-Mellor’s OOA
and Z. In their approach, there are three phases: (1)
information modeling, (2) state transition modeling,
and (3) process modeling. ERD is used to express the
information model in OOA. Objects and relationships
are specified in an entity type schema, entity instance
set schema, and relationship schema. In state transition
modeling, a schema event is used to specify the gen-
eration or receipt of any event, and a state transition
schema is used to specify state transitions. The predi-
cates in a state transition schema should describe the
pre-condition of an input event and the initial state, as
well as the post—condition‘of the components’ values
of the after state and output events. An active object
is defined as an object that requires an operation on
its data store to add a new instance to the collection
of existing instances. In the process modeling phase,

process accessors and event generators are identified
be means of Z transition specifications.

Bourdeau and Cheng (1995) presented formal
semantics for OMT object model notations. Object
models and instance diagrams were formalized as
algebraic specifications and algebras, respectively. In
their approach, instance diagrams can be used to pro-
vided semantics for object models, and algebraic speci-
fications have algebras as their semantics. Finally, the
set of algebras can be treated as the semantics of an
object model. There are two ways to determine alge-
bras: (1) compute the algebraic specifications of the
object model and look at a set of algebras that satisfies
this specification, and (2) determine the instance dia-
grams consistent with the object model and compute
their corresponding algebras. If the design is consis-
tent, then either method for determining the algebras
will yield the same results. The Larch Shared Language
(LSL) is used as the algebraic specification language.
A trait in LSL is used to represent an abstract data
type in an object model, and Z-algebra is generated by
means of this trait. Traits can be used to depict classes
and associations. The related classes within an asso-
ciation are included in an association trait. The
multiplicity constraints can be described in terms of
four relational properties: functional, injective, surjec-
tive and total.

Lee et al. (1997) proposed an integration of Bailin’s
object-oriented specification and Z, called OOSZ. In
00SZ, OO0S is used as a structuring mechanism to
guide the derivation of Z specifications. An entity
process can be considered in two dimensions: (1) as
an active entity that requires an operation on its data
store to add a new instance to the collection of existing
instances, and (2) as an abstract operation which can
be decomposed into operations related to the entity
process. Therefore, an entity process is manifested
through a state schema, an instance creation operation
schema and an abstract operation schema; meanwhile,
a function process is converted into an operation schema
in Z specifications.

3. JSD to Formal Notations

Sridhar and Hoare showed how to express JSD
in CSP through several examples (Sridhar and Hoare,
1989). In their approach, only the SD is considered
in the transformation process. An entity modeled
in the SD is described by its life history and can be
defined by two formulas in CSP: the first one depicts
the creation of an entity, and the second one describes
the remainder of the history. Adding new actions later
into the second formula is permitted. An iterative
mechanism between CSP and JSD is provided. That

~353-

J. Lee et al.

is, a new entity process can be defined in CSP and then
feedback to modify the SD. Sridhar and Hoare only
used several examples to show how JSD could be
expressed in CSP. That is, no heuristics were provided
to guide the transformation. In our work, the corre-
sponding transformation rules between JSD and Z are
given based on the steps introduced in JSD.
Compared with our work, JSDZ provides more
systematic transformation heuristics. That is, the
corresponding transformation rules between JSD and

Z are given based on the steps introduced in JSD and

Z.

Compared with all these approaches, JSDZ
offers two important advantages: (1) artifacts (entity-
action lists, structured diagrams and system speci-
fication diagrams) generated from the informal
method (JSD) are tightly coupled, and (2) the no-
tion of an active entity/object is manifested through
a state schema, an instance creation operation
schema and its operation schemas in the Z specifica-
tions. Table 1 summarizes the comparison of JSDZ
and related work.

V. Conclusion

In this paper, we have proposed an integration of
an informal method (JSD) with a formal notation (Z).
A function process in JSD specifications is manifested
by an operation schema. A model process is treated
as an active entity that requires an operation on its data
store to add a new instance to the collection of existing
instances. The model process is, thus, translated into
a state schema, and its related operations are converted
into the operation schemas with instances set, which
can be modified by means of the operations. A struc-
tured diagram is transformed into an STD and then
converted into its Z specifications. Cardinality rela-
tionships between processes are translated into Z
notations based upon the notion of rough merge. These
steps have been illustrated using the problem domain
of the Car-Rental System.

The bringing together of diagrammatical and text
elements of JSD specifications in Z notations offers two
major benefits: (1) JSD specifications can be seen both
as a structuring mechanism that aids the derivation of
Z specifications and as a preliminary step that assists
in ascertaining the clients requirements; (2) Z speci-
fications make it easier to identify omissions or
errors.

Various researchers have also remarked on the
complementary nature of informal and formal methods
and the benefits to be gained from combining the two.
These benefits form the main motivation behind our
work. In addition, we believe it is important to look

at the relationships between different models (those
generated from either informal methods or formal
methods) in order to develop more powerful and com-
prehensive methods to support system analysis and
design. This belief is also shared by many researchers
such as France (1992), Fraser et al. (1991), Polack
(1992), Semmens et al. (1992) and others. JSDZ has
been developed based on this belief.

Our future research plans consist of several tasks:
(1) to incorporate a knowledge base to assist the task
of analysis, (2) to investigate the criteria for evaluating
formal specifications derived from different informal
methods, and (3) to utilize CASE tools (e.g., MicroStep
(Yeh, 1990)) to transform Z specifications into proto-

types.
Acknowledgment

This project was supported by the National Science Council,
R.O.C., under grant NSC 85-2213-E-008-005.

Appendix
A Summary of Z Notations

In this brief summary, we will only introduce those notations
of .Z used in this paper. Z is based on typed set theory and first-
order logic. Z provides a construct, called a schema, to describe
a specification’s state space and operations. A schema groups
variable declarations into a list of predicates that constrain the
possible values of variables. In Z, the X schema is defined in the
form:

rX
declarations (signature)

predicates

Global functions and constants or axiomatic definitions are defined
in the form:

| declarations (signature)

| predicates

Generic definitions are defined in the form:

[:[Xl’ X3, «oes Xl
declarations (signature)

predicates

The declaration gives the function or constant type while the predi-
cate gives its value.

Declarations

xP X x is declared as a set of X’s

xF X x is declared as a finite set of X’s

[X1, X3, ..oy Xu] Introduction of free types called X;, X, ..., X,
AS Change of state schema §

=) No change of state schema §

—354—

eStructured Analysis

JSD and Formal Notations

Table 1. Integrating Formal and Informal Methods: A Comparison

Polack Semmens Randell France Fraser Moulding
(Z)) @ (Algebra) (VDM) (VDM&CSP)
ERD Entity state schema state schema
- type - type
- instance set - mstance set No No No No
Relationship state schema state schema
- relation - relation
Process operation operation operation data transform pre-/post- VDM module
DFD schema schema schema specification condition
-decision
Data Flow input/output input/output input/output state, label rd/wr global state &
variables variables variables specification operation local state
Data Store entity entity entity data store state data store data store
specification
CFD Behavior No No No ASTS, STD No SVM & CVM
- transition expressed in
spec. CSP
- state spec.
- label spec.
- transition
relation
transition
axioms
¢ Object-Oriented Analysis
Giovanni Hammond Cheng Lee
(HOOD to Z) (OO0A to Z) (OMT to Larch) (OO0S to Z)
Object WHAT spec. state schema trait active entity process
- state schema - type schema - state schema
- operation schema - instance set schema - abstract operation
- creation operation schema
schema - instance creation
(for active entity) schema
Use- with “WHAT” data store by the “includes” data store
relationship specification word which
declared in a trait
State No event schema No No
Transition state transition schema
Sets fx) is defined
xeX x is a member of X ran f The range of f: The set of values taken by f(x)
xg X x is not a member of X as x varies over the domain of f
ScT S is a subset of T f®{x-y} A function that agrees with f except that x is
SuT The union of § and T mapped to y
ST The intersection of S and T
S\T The difference between § and T Logic
1%} Empty set: It contains no member s=t Equality between terms
{x} Singleton: It contains only x s#t Inequality between terms
PAQ P and @: It is true if both P and Q are true
Functions PvQ P or Q: It is true if P or Q is true
fX»Y fis declared as a partial injection from X to Y P=Q P implies Q: It is true if either Q is true or P
[X+PY fis declared as a partial function from X to ¥ is false
dom f The domain of f: The set of values x of which Vx:TeP Universal quantification: “for all x of type T, P

-355-

J. Lee

holds”

Ax:TsP Existential quantification: “there exists an x of
type T such that P holds”

Sequence

seq X The set of finite and infinite sequences whose
elements are drawn from X

<> The empty sequence

<Al oeey Ap> =={lm~ay, .., n-a,}

A Concatenation

head X The first element of a non-empty sequence

tail X All but the head of a non-empty sequence

last X The final element of a non-empty sequence

Jront X All but the last element of a non-empty sequence

Schema Operators

SAT The schema formed from schemas S and T by
merging their declarations and conjuncting their
predicates

Svr The schema formed from schemas S and T by
merging their declarations and disjuncting their
predicates

References

Bass, A. and B. Ratcliff (1994) Automated dismemberment of jsd
process specifications. Information and Software Technology,
36(8), 515-523.

Bourdeau, R. H. and B. H. C. Cheng (1995) A formal semantics
for object model diagrams. IEEE Transactions on Software
Engineering, SE-21(10), 799-821.

Cameron, J. R. (1986) An overview of jsd. IEEE Transactions on
Software Engineering, SE-12(2), 222-240.

Craigen, D., S. Gerhart, and T. Ralston (1995) Formal methods
reality check: industrial usage. IEEE Transactions on Software
Engineering, SE-21(2), 90-98.

France, R. B. (1992) Semantically extended data flow diagrams:
a formal specification tool. IEEE Transactions on Software
Engineering, SE-18(4), 329-346.

Fraser, M. D., K. Kumar, and V. K. Vaishnavi (1991) Informal and
formal requirements specification languages: bridging the gap.
IEEE Transactions on Software Engineering, SE-17(5), 454-
466.

Gehani, N. (1986) Specifications: formal and informal-a case study.
In: Software Specification Technigues, pp. 173-185. N. Gehani
and A.D. McGettrick Eds. Addison-Wesley, Reading, MA, U.S.A.

Giovanni, R. D. and P. L. Iachini (1990) Hood and z for the
development of complex software systems. In: VDM and Z-
Formal Methods in Software Development, pp. 262-289. D.
Bjorner et al. Springer-Verlag, Berlin, Germany.

Hammond, A. R. (1994) Producing z specifications from object-

et al.

oriented analysis. 8th Z User Meeting, Cambridge, U.K.

Lee, J., L. F. Lai, and W. T. Huang (1996) Task-based specifications
through conceptual graphs. IEEE Expert, 11(4), 60-70.

Lee, J., J. L. Pan, and W. T. Huang (1997) Oosz: an integration of
Bailin’s objected-oriented analysis and formal specifications.
Journal of Information Science and Engineering, 13(4), 517-542.

Liu, S. (1993) A formal requirements specification method based
on data flow analysis. Journal of Systems and Software, 21, 141-
149.

Mander, K. C. and F. A. Polack (1995) Rigorous specifications using
structured systems analysis and z. Information and Software
Technology, 37(5-6), 285-291.

Meyer, B. (1985) On formalism in specifications. IEEE Software,
2(1), 6-26.

Moulding, M. and L. Smith (1995) Combining formal specification
and core: an experimental investigation. Soffware Engineering
Journal, 10(2), 31-42.

Polack, F. A. (1992) Integrating formal notations and system analy-
sis: using entity relationship diagrams. Software Engineering
Journal, 7(5), 363-371.

Polack, F. A., M. Whiston, and P. Hitchcock (1991) Structured
analysis-a draft method for writing z specifications. 6th Annual
Z User Meeting, York, U.K.

Randell, G. (1991) Data flow diagrams in z. 5th Annual Z User
Meeting, Oxford, U.K.

Renold, A. (1988) Jackson system development for real time sys-
tems. In: JSP and JSD: the Jackson Approach to Software De-
velopment, pp. 235-268. J. Gameron Ed. IEEE Computer Society
Press, Washington, D.C., U.S.A.

Semmens, L. T. and P. Allen (1990) Using yourdon and z: an

- approach to formal specification. 5th Annual Z User Meeting,
Oxford, U.K.

Semmens, L. T., R. B. France, and T. W. Docker (1992) Integrating
structured analysis and formal specification techniques. Com-
puter Journal, 35(6), 600-610.

Smith, P., W. L. Yeung, and G. Topping (1991) A formalisation
of jackson system development. 3rd International Conference on
Software Engineering for Real Time Systems, Cirencester, U.K.

Spivey, J. M. (1992) The Z-Notation: A Reference Manual, 2nd Ed.
Prentice-Hall, Englewood Cliffs, NJ, U.S.A.

Sridhar, K. T. and C. A. R. Hoare (1989) JSD expressed in csp.
In: JSP and JSD: the Jackson Approach to Software Develop-
ment, pp. 334-363. J]. Cameron Ed. IEEE Computer Society
Press, Washington, D.C., U.S.A.

Storer, R. (1987) Practical Program Development Using JSP.
Blackwell Scientific, Oxford, U.K.

Wing, J. M. (1987) A specifier’s introduction to formal methods.
IEEE Computer, 23(9), 8-21.

Yeh, R. T. (1990) Microstep: a business definition language system.
In: Modern Software Engineering: Foundation and Current Per-
spective, pp. 502-536. P.A. Ng and R.T. Yeh Eds., Van Nostrand
Reihold, New York, NY, U.S.A.

-356 —

JSD and Formal Notations

A BRARARAERITERIERGES U5

ZEaf lE— B ARG

AP PN & o 4

wm =

AP - BB THAZEFERESRREERRZFBR T L2 T RAR (B2 RISDZ) - HHISD
BRI AT BB 4 A PRSI A M o TEISDZOr Bk R R RSB R T R TIREE T (function process) &
HERHEL (operation schema) RFER o B— AKX BT (model process) EERE—EEEE# (active entity) 3R
Bffc MEFHEWFTE—MER (operation) - BMEEREHEELFHMRE (instance) MIMAHBHKMELET -
I o FRAMHE — AR B BT R A — W AR B HEZR > T BB A E iR B R E RAE SR - 30 B E— B RS B R AR
SRR R B AR o 45N I D T B S dk IR B AR [PR AR B I ZA AR o FRTF 2 MR (cardinality) BAMRAYR
AT ERBEEH (roughmerge) R/RBZAFREE - MM —MEHAERSG RSBV ELES - GHESHERRR
HBRGEHEZESAMSE > FHRB TEHER SR ESAEERIN IR FERREWEESD o 855 - ISDEE
BEHEELRZESAHENGBBH ERMERERA RN A EREEAREF SR ERIEN T RS o

- 357~

