Proc. Natl. Sci. Counc. ROC(A)
Vol. 22, No. 3, 1998. pp. 362-371

Conversion, Iteration Bound and X-Window
Implementation for Multi-Rate Data Flow Graphs

DanieL Yud CHAO

Department of Management Information Systems
National Cheng Chi University
Taipei, Taiwan, R.O.C.

(Received May 15, 1997; Accepted November 10, 1997)

ABSTRACT

Techniques for finding iteration bounds (IB; i.e., minimum iteration period) of single rate data flow
graphs (SRDFG; i.e., sampling input data at a single rate) have been well documented in the literature.
Lee et al. pointed out that SRDFG is too restricted and proposed heuristics for scheduling multi-rate DFGs
(MRDFG; i.e., sampling input data at multiple rates). Parhi suggested converting an MRDFG into an
equivalent SRDFG to find the IB and presented an explicit procedure to convert an MRDFG into its
equivalent SRDFG. He reduced the time required for computing the iteration bound of the equivalent
SRDFG by eliminating node and edge redundancies. Based on this result, we show that the lower bound
of the iteration bound can be achieved for certain special cases. In addition, the algorithm for SRDFG
can be applied to identify critical loops (CL), scheduling ranges, initial scheduling to avoid transients
and static scheduling under steady state. There is no need for heuristics.

Key Words: concurrent processing, Data Flow Graph (DFG), General Petri Net (GPN), Weighted T-Graph
(WTG), P-semiflow, T-semiflow, liveness, boundedness, single-rate DFG, multi-rate DFG,
iteration bound, loop bound, loop-combination, system performance, critical loop and

scheduling

l. Introduction

Real time applications such as image processing
constantly execute a set of tasks. With the cost of Very
Large Scale Integrated Circuits (VLSI) going down,
multiprocessing is increasingly used to enhance execu-
tion speed by executing tasks concurrently. In a mul-
tiprocessor environment, the data flow graph (DFG)
(Ackerman, 1982) is frequently used to model program
specifications and to express the available concurrency.
DFG is a directed graph where directed arcs model the
precedence constraints between nodes. Each node ac-
cepts input data from its predecessors, executes some
tasks for some deterministic period of time and outputs
data to the next node. Given a DFG, we need to
optimize the scheduling of processors assigned to nodes
to achieve the shortest iteration period (IP) which results
in a maximum throughput. Traditionally, one can
construct the acyclic precedence graph (APG) from a
DFG such that the root nodes of the APG carry enough
initial data to start execution. We find the critical path
of this APG by finding the longest path which deter-
mines the IP. The execution of nodes propagates to-
wards the leaves of the APG.

By distributing initial data to different arcs, a

different APG results, which may turn out to be a better
scheduling with a shorter IP. This data redistribution
process is referred to as retiming in the literature
(Parhi, 1989). The aforementioned scheduling ex-
ploits the concurrency within one IP constrained by
the intra-iteration precedency. One may improve
speedup by further exploiting the.concurrency among
the multiple iterations constrained by the inter-iteration
precedency.

To view inter-iteration precedency more clearly,
one may unfold the DFG a number of times as sug-
gested by Parhi (1989). An APG can then be used to
construct an Admissible Scheduling (AS) with a shorter
IP. One cannot improve the speedup factor or shorten
the iteration period further by continuously supplying
more processors. Such a shortest iteration period is
termed the iteration bound. Chao and Sha (1992) have
performed research to find the optimal combination of
retiming and loop unfolding such that the resulting IP
equals the iteration bound (IB).

Another technique is based on the observation that
an single rate DFG (SRDFGQG) is equivalent to a marked
graph which is a Petri net (PN), where each place has
single input- and single output-transitions, and all arcs
have unit weights. Ramamoorthy and Ho (1980) showed

-362 -

Multi-Rate Data Flow Graphs

that the IB is achievable. Therefore, there is no need
for retiming and unfolding—a result unknown to digital
signal processing (DSP) professionals. PN theory has
been well developed, and its applications to DSP must
be explored. The IB is referred to as the minimum cycle
time for the corresponding PN (Ramamoorthy and Ho,
1980). Chao and Wang (1992, 1993a, 1993b, 1994)
have developed techniques to find the IB, critical loops
(CL), next-critical loops, subcritical loops, scheduling
ranges, initial scheduling to avoid initial transients and
steady state scheduling. This technique is fully static
(no dynamic scheduling is necessary) and rate-optimal
(maximum throughput), that is, IP=IB. No retiming
nor unfolding is required.

The IB for an SRDFG can be found (Parhi, 1989)
by finding the maximum of the loop bounds (LBs) of
all the loops in a DFG. The LB of loop L; is defined

k
as T—k, where T and D* stand for the sum of the

D
execution times and the number of register elements

or delays along L. Loops with the largest LBs are called
critical loops. Each register element holds one piece
of data.

This cannot be applied directly to multiple rate
DFG (MRDFG) according to Chao and Wang (1993a)
(Fig. 1) which is similar to an SRDFG except that an
arc may carry multiple weights at its two ends. The
weight at its source (destination) end indicates that
when the source node (destination) executes, it injects
(needs) the same number of data samples as the weight
onto (from) the arc. For instance, the arc from node
A to B in Fig. 1 carries weights 1 and 2, respectively,
implying that when node A executes, it injects one data
sample onto the arc, that and in order for node B to
execute, the arc must have at least two data samples,
and that-after node B executes, it consumes two data
samples from the arc. Thus, the execution of a node
may require more than one input data from each input
arc and produce more than one output data to be sent
to each output arc.

As indicated by Lee et al. (1987), the SRDFG
model is too restricted since it constrains the number
of samples produced or consumed: on an arc to unity.
They also proposed heuristics for static scheduling of
synchronous data flows (SDF), which is a large grain
model similar to MRDFG. However, they did not discuss
how to find IB and CL or their application for sched-
uling. The model of MRDFG is useful for describing
some communications and signal processing algorithms
involving interpolation and decimation operations (Lee
et al., 1987; Parhi, 1989). Unlike SRDFG, designers
of MRDFG are constantly confronted with the problem
of avoiding deadlocks and loss of data due to insuf-
ficient buffer space. The PN theory can resolve this

1
140 D
1

2D
(@)

(b)

Fig. 1. (a) An example of a multiple-rate DFG. (b) The equivalent
single-rate DFG. (c) The acylic precedence graph.

problem. Similar to SRDFG, we show in Section II
that an MRDFG is equivalent to a Weighted T-Graph
(WTG) (Teruel et al., 1992), properties of which have
been studied by Lien (1976) and Teruel et al. (1992).
A WTG is a special class of General PN (GPN, where
arcs carry multiple weights) and a natural generaliza-
tion of a marked graph with arcs carrying multiple
weights. The WTG is useful for modeling bulk arrivals
and services (Lee et al., 1987; Parhi, 1989; Teruel et
al., 1992) and automatic manufacturing systems (Chao
and Wang, 1994; Chao er al., 1994). We will not
discuss the logical properties of WTGs in this paper;
rather, we will concentrate on the performance of
MRDFG, rarely discussed in the literature. To the best
of the authors’ knowledge, this work is the first show-

-363 -

D.Y. Chao

ing the above equivalence and suggesting the applica-
tion of WTG theory to MRDFG. Most performance
results of PNs (Magott, 1985; Morioka and Yamada,
1991; Parhi, 1989; Ramamoorthy and Ho, 1980) are
for ordinary PN, rather than for GPN. Murata (1989)
gave the lower bound of cycle times of general PNs
similar to that provided by Campos et al. (1991)
and Hillion (1988), which, however, dealt with
unique consistent firing vectors but with random tran-
sition times. We will show that this lower bound is
achievable when an MRDFG can be converted into an
SRDFG. '

The example in Fig. 2 illustrates the difficulty of
deriving the IB for an MRDFG. In order for loop L,
to execute once, loop L, has to execute twice. The IB
is

T' +T? for TZSTI, and
I= 2 2ol M
2T for T°2T" .

Thus, one can see that IB can be a linear combination
of LBs of more than one loop. In this case, none of
the loops are a CL, and we say that there is a loop-
combination. This complicates the procedure for cal-
culating the IB. By putting one more token in place
Py of loop Ly, the two tokens flow together. Now, when
loop L; executes once, loop L, also is executed once

_in the sense that the two tokens return once together
to place p,. The iteration bound is

Fig. 2. An example of a multiple-arc Petri net whose cycle time is
a linear sum of loop bounds.

/- T' for T! ZTZ, and @)
T? for T'<T?.

Clearly, the CL does not involve loop-combinations.
Also, I is shortened. Thus, loop-combination is mark-
ing related. It is also structure related: in Fig. 2, if
all the edges carry a weight of one, there will be no
loop-combination.

Parhi (1989) suggested converting MRDFG into
the equivalent SRDFG to find the exact IB without
presenting an explicit procedure. He did not, however,
point out when such a conversion cannot be performed.
This paper improves Parhi’s result as follows: we (1)
propose an algorithm to convert an MRDFG into its
equivalent SRDFG; (2) identify the feasibility condi-
tion for the above conversion; and (3) under the above
feasibility condition, develop a formula and the asso-
ciated algorithm for calculating the IB, thus avoiding
conversion, which takes more time and memory.

When an MRDFG behaves like an SRDFG, we
can extend the technique for SRDFG to MRDFG. The
IB for MRDFG with no loop-combination is similar to -

that for SRDFG except that the sum of tokens must be
k

‘weighted; i.e., I=max{Lk; k=1, 2, ..., q}, where the
’ D

e
equivalent D, Dlg = ﬁ Z, and the weighted token
M, h=1

’ a,PpRy.y
input and output arcs, respectively, of place py, Ry,
is the (h+1)-th component of the minimal positive T-
semiflow defined in Section II, and ¢ is the total number
of loops. Thus, the lower bound mentioned earlier by
Murata (1989), Campos et al. (1991) and Hillion (1988)
is achievable.

One special case of SRDFG equivalence would
be that all Z, are integral values (Section IV). The
algorithm for SRDFG can be reused with slight modi-
fication to identify IB, critical loops, scheduling ranges,
initial scheduling to avoid transients and a static sched-
uling under steady state for MRDFGs. As a result, the
scope of the difficult problem of MRDFG performance
and scheduling now reduces to that with non-SRDFG-
equivalence.

We assume that the reader is familiar with various
terminology of PN and DFG. Please refer to the paper
by Murata (1989) for PN and Ackerman (1982) for
DFG, respectively. This paper is organized as follows.
Section II shows that an MRDFG can be converted to
a WTG. The algorithm for converting an MRDFG into
an SRDFG is presented in Section III. Section IV
derives the explicit formula of the minimum cycle time
for WTG or MRDFG. Section V presents the technique

aipy) and a,(py) are the number of

~364 —

Multi-Rate Data Flow Graphs

for the determination of IB and CL. An example is
shown in Section VI, followed by the X-Window
implementation in Section VII for finding IB, CL,
subcritical loops, and scheduling. Finally, conclusions
are drawn in Section VIII.

Il. Multi-Rate DFG

For the MRDFG in Fig. 1(a), the arc from A to
B indicates that node A produces output to be con-
sumed by node B. The numbers 1 and 2 at the head
and tail of this arrow, respectively, show that one
execution of node A produces one output sample, and
that one execution of node B consumes two input
samples from node A. It can be seen that nodes A and
B are invoked twice-and once, respectively, in one
iteration of the DFG. The MRDFG models the follow-
ing program (Parhi, 1989):

Initial Conditions: aa(0), bb(0), ba(-1), and ba(0)
for each {n=1 to }{

for each {i=l to 2}{

aa(2n+i-2)=f,,laa(2n+i-3), ba(2n+i—4)]
ab(2n+1-2)=f plaa(2n+i-3), ba(2n+i-4)]}.
ba(2n-1)=fp,[ab(2n—1), ab(2n), bb(n-1)]
ba(2n)=fy,[ab(2n-1), ab(2n), bb(n-1)]
bb(n)=fyplab(2n—-1), ab(2n), bb(n-1)1},

where xy(n) indicates the data output from node x to
node y at the n-th iteration, and Siyll stands for the
function to calculate xy(n). In the n-th iteration of the
MRDFG, the first invocation of node A computes aa(2n—
1) and ab(2n—-1), and the second invocation of node
A computes aa(2n) and ab(2n). At the n-th iteration,
node B computes bb(n), ba(2n-1) and ba(2n).

The equivalent SRDFG in Fig. 1(b) shows that
nodes A; and A; execute the odd and even invocations
of A, respectively. Figure 1(c) illustrates the corre-
sponding APG. It takes (2r,+r,) units of time to execute
one iteration of this MRDFG using a two-processor
system, where r, and r, represent the computation times
of nodes A and B, respectively.

The above initial condition is indicated by a “D”
on the arc from node A to itself (aa(0)), a “D” on the
arc from node B to itself (b6(0)), and a “2D” on the
arc from node B to node A (two initial data ba(-1) and
ba(0)). It seems that we can use “D” to represent a
data. The initial distribution of “D” on the DFG is
called the initial marking M. M(p) denotes the number
of “D”s on arc p. \

Based on these initial data, only node A can
execute. Node A executes, by consuming aa(0) and
ba(-1), to produce data aa(1) on arc AA and data ab(1)
on arc AB. Note that both aa(l) and ab(l) are new

data (rather than the initial data); they are produced
in the first iteration. Thus, one can also consider “D"
as both an initial data and a delay element (such as a
register) such that the execution of a node using this
initial data produces new data belonging to the next
iteration. Node B still cannot execute because it re-
quires two data on arc AB while node A can execute
the second time by consuming aa(1) and ba(0) to produce
ab(2). Now node B can execute since arc AB has two
data, ab(1) and ab(2) (indicated by “2D” on arc AB),
arc BB has data bb(0). and it produces new data ba(l)
and ba(2) on arc BA. At this moment, the data dis-
tribution of the DFG returns to its initial state (marking)
except that these data carry new iteration numbers,
which in turn initiate new iterations. Thus, by the
execution rule described in Parhi (1989), a node can
execute as soon as each of its input arcs has enough
data (equal to the number at the arrow end of the arc),
and after it executes, it produces data equal to the
number near the start end of each of its output arcs.
These node execution semantics are similar to that of
transition firing in a GPN (Lien, 1976), where a tran-
sition can fire if and only if all its input places hold
enough tokens (equal to the weight of the correspond-
ing input arcs to the transition).

Thus, one can consider nodes as transitions, arcs
as places, “xD” on an arc as x tokens in the corre-
sponding place, and node executions as transition fir-
ings. Thus, the number of “Ds” on all the arcs cor-
responding to the initial data can be viewed as the initial
marking of the equivalent PN. Thus, any MRDFG is
equivalent to a PN with multiple weights, i.e., a GPN.
Note each the place of the equivalent PN has only one
input and one output transition since each arc has only
two ends. This kind of GPN is called a Marked Graph
(MQ@G) if all the arc weights of the PN are one. Oth-
erwise, it is called a Weighted T-Graph (WTG) accord-
ing to Teruel et al. (1992); the corresponding system
is called the Weighted T-System. Further, we assume
that the DFG and its corresponding PN are strongly
connected; that is, there exists a directed path from any
node to any other node. In the remainder of this paper,
we use WTG and MRDFG interchangeably since they
are equivalent. The following two definitions are useful
in regard to weighted sum of tokens.

Definition (T-semiflow): X is called a T-semiflow if
X is nonnegative and A”’X=0, where A7 is the trans-

pose of the incidence matrix A.

Definition (P-semiflow): Y is called a P-semiflow if
Y is nonnegative and AY=0.

Let X be a firing vector; then M=My+A"X. If X

-365~

D.Y. Chao

is a T-semiflow, then M=M,; i.e., it returns to My and
is consistent. Let R be the minimal positive T-semiflow
such that starting with the initial marking, R, is the
minimum number of firings of #; required to return to
M,, V¢, in the PN. For a P-semiflow Y, Y"M=
Y'"My+Y'A"X=Y"M,. Thus, Y'M stays constant inde-
pendent of reachable M and is conservative.

Ill. Conversion of MRDFG to SRDFG

In this section, we will present an algorithm to
convert an MRDFG to an SRDFG and identify the feasi-
bility condition for such conversion. The explicit
formula for the IB will be presented in the next section.
In the example of Fig. 1, each node n; is duplicated
Ry times, and each arc from n, to n; is duplicated a;R,,
times with its delays evenly distributed among the
duplicated arcs, where a,(a,) denotes the multiplicity
at the starting (ending) side of an arc. Thus, we propose
the following:

1. Conversion Algorithm

(1)Find the minimal positive T-semiflow R.

(2) Duplicate each node n; in the MRDFG R, times,
denoting as ny,, u=l, 2, ..., R;.

(3) Duplicate each arc (from ny, to n; with p delays)
in the MRDFG a,R;, times. Each such arc
connects from a ny, to a n, in the following
fashion:

(i) There are totally a, (a,) arcs from (to) each

nh (nj),
(ii) a,=1 and a,=1 for each above arc, and

(iii)each above arc carries a delay of P _ P
aR, a,R,

In the sequel, the SRDFG obtained using the above
algorithm is defined as the equivalent SRDFG. Note
that the number of delays on a duplicated arc may not
be an integer in the above procedure; thus, the normal
procedure for finding the IB for an SRDFG may not
be applicable. Figure 3 shows such an example, but
if we retime it first; the resulting SRDFG has integer

delays. We will consider the special case where P
a

is an integer. o7

The above equivalent SRDFG has, in general,
many more nodes and edges than does the MRDFG,
but many edges and nodes are redundant in determining
the IB. Eliminating these redundancies reduces much
the time for computing the IB. Using the results in
Ito and Parhi (1994), each set of the above duplicated
edges (nodes) can be degenerated (i.e., reduced) to a
single edge (node) since they have identical delays.
The resulting SRDFG has the same set of nodes and
edges as does the original MRDFG with the number

(2) A MRDFG

D2 D/2

D/, /2

(b) Equivalent SRDFG of (a)

(d) Equivalent SRDFG of (c)

Fig. 3. An example of fractional delays.

of the delay elements replaced by % Thus, the
a

MRDFG behaves like the correspondi;g]SRDFG, and
we difine such behavior equivalence as SPDFG-equiva-
lent. It implies no loop-combination, but the converse
is not true. The PN in Fig. 2 is a negative example
unless we add one token to P2.

2. Determination of R

The above conversion algorithm requires knowl-
edge of R, which will also be useful for finding the
IB for MRDFG. We pick a transition #; randomly and
assign x;=1. For any other transition #;, we pick an
arbitrary directed path ¢t,—p\~tr—po—...~tr1—pr_1—te;
then, because A’X=0, we have

kl:Il ai(Pj)

j=la,p) 3

X=X

Since some x; may not be an integer, we multiply all
x; by the least integer to make all new x; integers. The
resulting X vector is R. Applying this procedure to
the PN in Fig. 2 and picking x,=1, we have x;=1/2
and x3=1/2. Multiplying all x’s by 2, we have R'=
[2 1 1], where the superscript “T” indicates the trans-
pose.

— 366 -

Multi-Rate Data Flow Graphs

When every P_ s an integer, we can.simplify

the IB calculation olf t}iw equivalent SRDFG as shown
in the following section. Such an SRDFG is defined
as a reducible SRDFG, and the corresponding MRDFG
is said to have SRDFG-equivalence.

IV. Performance of MRDFG under
SRDFG-Equivalence

Intuitively, when there is no loop-combination, an
MRDFG behaves like an SRDFG because the number
of delays of any loop is sufficient to fire the nodes in
the loop in succession and to return all the delays to
their initial arcs in one iteration. Thus, the techniques
for calculating the IB and CL of SRDFG can be ex-
tended to MRDFG. To formally prove this, the concept
of loop-combination is formally defined as follows:

Definition (Loop-Combination): A WTG is said to
have loop-combination if there exists a transition ¢; in
a loop L such that the firing sequence 0=040,0.0,03,
where o, and oy are arbitrary firing sequences, and &,
and o, contain ¢;’s only,

|oy|+|oal=F 7, (4)

and oy is a firing sequence containing all the transitions

in another loop L, where F,L is defined as the R; of ¢,

in L when L is isolated from the rest of the WTG.
O

Recall that transitions in a WTG execute periodi-
cally. The corresponding period is defined as the
system period. R;is the number of firings of ¢, in one
system period. Similarly, if we consider each L in
isolation (i.e., deleting all nodes and arcs not in the
loop), Ff.“ is the number of firings of #; in one period.
Such a period is specific to the loop and is defined as
the loop period.

Equation (4) implies that no loop can complete
one loop period without other loops completing their
loop periods—a phenomena of loop-combination. It is
rather hard to prove that the IB of an MRDFG can be
calculated in a similar way to that for SRDFG from
the above definition. Hence, a more constrained situ-
ation where every Z, is an integer in the MRDFG is
considered in the sequel. In such a case, every node
n, in the MRDFG, when enabled, can be fired an integral
R; times, and there will be no loop-combination. A
more formal proof is provided in the sequel using the
concept of Degenerating Action (DA).

Degenerating Action on the arc from nj to nj with

¥ delay elements in an equivalent SRDFG consists of
the following subactions:
(1)Delete all n} (u#l) and n; (v#1).
(2)Move all incoming arcs to nf (u#1) to end at
1
n;.
(3)Move all outgoing arcs to n) (v#1) to start from
nl,
Lemma 1: The DA does not alter the IB of an equiva-
lent SRDFG with every being an integer.

a;iky

Proof: Consider any loop L? containing n} (u#1) and
n; (v#l): ng—ng—ny..—ny-n/—..—ny The DA results
in loop L": ng—ng-ny—...—nj-n/—...—ng. Since all n{
(nj‘-’) have the same execution times, T°=7°. Also, all
arcs ny —n; carry the same number of delay elements
(by the assumption), D*=D?. Thus, the two loops have
the same LBs. For any other loop in the equivalent
SRDFG not containing any n} and n}, its LB is not
affected by the DA.

Since IB is the maximum of all LBs, the DA does
not alter the IB of the equivalent SRDFG. |

Based on the above lemma, we have the following
theorem:

Theorem 1: If V arc A, Z, is an integer, then the IB
of a strongly connected live and bounded MRDFG is
given by

T
I=max{E; k=1, 2, ..., q}. 4)

€

where ¢ is the number of loops.

Proof: While a proof similar to the one in Ramamoorthy
and Ho (1980) can be given, a simpler proof is sketched
as follows. Repeatedly applying DA to the equivalent
SRDFG leads to an SRDFG with sets of nodes and arcs
identical to those of the original MRDFG and with Z,
delay elements on each arc A;. Such an SRDFG has
the same set of loops and the corresponding T”s as does
the MRDFG. The D for each loop, however, must be
replaced by the corresponding D,. Thus, the IB of
MRDFG equals that in Eq. (4). O

Note that the above formula for I is almost iden-

tical to that for SRDFG except for the subscript “e”;
!
therefore, LI is the LB for L;, Thus, we can apply the

e
techniques for SRDFG to MRDFG without conversion
by treating the MRDFG as an SRDFG with all arc
multiplicities set to unity. For the example in Fig. 2,

-367 -

D.Y. Chao

Z'=1 and Z§=1/2. If we put one more token to p,, then
Z,=1 and the loop bounds for L; and L, are 20 and 15,
respectively. Hence, L; is the critical loop.

1. Comparison with the Lower Bound by Lin-
ear Programming

Note the above I is achievable as it is in the
equivalent SRDFG. The above I was identified by
Campos et al. (1991) and Murata (1989) as the lower

bound of the minimum cycle time. Campos et al.

converted the lower bound problem into a linear pro-
gramming problem (LPP) (see also Morioka and Yamada
(1991)), which, however, takes more time complexity
than does the matrix approach of Chao and Wang (1992,
1993b) and Chao et al. (1993¢). In addition, Campos
et al. (1991) did not discuss how to extend the LPP
to find critical loops, subcritical loops, scheduling
ranges, steady state scheduling, and initial scheduling
to avoid transients. Our matrix-based approach (Chao,
1995), nevertheless, can do all these tasks.

Lemma 2: For every p; (1<k<K) of a loop L;, t1—p -
tr—pr—..~tx_1—px-1—tx—Pk—1, there exists a constant ¢

such that Ykzcvzk, where Y} is the k-th component (for
pr) of the P—serlrcliflow Y vector, and Y;=0 if p; is not
in L;.

ca;py) €a,py-1) =ch+1 1__
a0 IR; 1 a,pr DR, R, Rk+1
RT;O Hence, by the definition of P-semiflow, Yk(—)
(I<k<K) is one component of a P-semiflow. D

Proof: (A Y)k=

'
Thus, D= ﬁZk_fEMkYk and —T—l=i
D. TM,
_Y"a)'Gr

. Thus, the maximum LB corresponds to
Y M0
Y4 GR
max{———"——

! Y'M,
matrix with each entry, a;=a,(p;) equals the weight
between p; and its output transition ¢;, and G is a
diagonal matrix with the i-th diagonal entry being the
execution time for #;. Thus, the lower bound by Campos
et al. and Murata equals I in Theorem 1. The
achievability of this lower bound, however, was not
discussed in Campos et al. (1991), Morioka and Yamada
(1991), and Murata (1989). Under loop-combination,
the IB is a linear combination of LB of some loops;
hence the lower bound, which is the maximum of all
LB, may not be achievable. Further, Campos et al. did
not present the complexity of their LP technique. The

; 1=1, 2, ..., g}, where A™ is a |P|X|T|

complexity of LPP is O(n°), according to Tardos (1986).
This is still not as good as the O(n’logn) in this work
(see next section).

Note that because Y is a P- semlflow Z M,Y,;
hence, the sum of the weighted delays D is 4 Tonstant
for any M reachable from M, (Murata, 1989) Thus,
even though Theorem 1 assumes that every loop con-
tains only one marked place, it also holds for any M,
from which existing a firing sequence ¢ to reach an M
where every loop contains only one marked place.

Another contribution of this work is identification
of the equivalence between MRDFG and SRDFG. Thus,
most techniques for SRDFG are also applicable to
MRDFG. The difficulty of MRDFG performance
determination is now reduced to that of determining
fractional values of D thus reducing the scope of the
problem.

V. Determination of Iteration Bound
and Critical Loop

We follow the matrix-based approach (Chao and
Wang, 1992, 1993b; Chao, 1994¢) for SRDFG to find
the IB and CL for MRDFG with no loop-combination.
First, we build the initial matrix @ with entry value
q$=RZ;~r;, where R is a guess value for the minimum
cycle time, and place p, is in between transitions #; and
t;. Based on the initial matrix, a series of intermediate
matrices 9™, m=2, 3, ..., can be found according to
Floyd algorithm, taking time O(n*), where n is the total
number of transitions (Floyd, 1962). Precisely,

qg")— {rlnzin lg7 =" @& P +q{r="]. This is similar

to matrix mu1t1p11cat10n of Q™ by itself if we view
the operations “min” and “+” as “Z£” and “x” (multi-
plication), respectively. Let “*” indicate this kind
of matrix multiplication; then, we have Q™=
QU V*Q D There exists a limiting value of m such
that the above operation fails to produce g;; smaller than
qu The m-th intermediate matrix, with entries qg”),
represents the shortest distances between any two tran-
sitions, among all paths. These paths are composed
of the intermediate transitions, which do not pass through
more than m transitions. In particular, ¢¥) indicates the
shortest distance among all the loops through transition
t;. There are three cases associated with the diagonal
entries as follows:

Theorem 2 (Ramamoorthy and Ho (1980)): In the final
matrix Q¥, if the diagonal entries are (1) all positive,
R>1, (2) some negative, R<I, and (3) one or more zeros
and the rest positive, then R=I.

Thus, we can make a guess at I, apply Theorem

- 368 —

Multi-Rate Data Flow Graphs

2 to determine which case applies and adjust the guess
accordingly; e.g., if case (1) holds, we decrease the
guess. We can choose zero as the lower bound of the
guess since the iteration bound is always positive and
the sum of the execution times of all the transitions
as the upper bound. Using binary search, we can obtain
I within tolerable errors. Nodes on critical loops and
I can be identified. The total time complexity is
O(n’logn) since there are O(logn) binary searches.

VI. Example

A parallel program is specified by the data flow
graph in Fig. 4(a), and its execution requires an 11-
node computer system. Each node is capable of bulk
consumption and generation of data. For example, each
execution of node n; requires that three data samples
be available and produces another three. Initially,
there are 18, 12, and 12 data samples on arcs (n3, ny),
(n7, ng), and (n1y, ng), respectively. All the other arcs

File Edit Graph Analysis Reduction Synthesis Query sniMation C Menu Brush

A

r11=5

/
= =
I extension and the use of these three buttons.

(@)

— erl Canvas |
P4 -4 I
P3 n2 ni '
P2 N3 |i2 ,niB L 15 nl4 n13 |nl6 |G
PL n? Is In11 [50) n3 |6 |7
T 3 1 7 g T 3
+

)

Fig. 4. (a) IB, critical loops, subcritical loops, scheduling of a parallel
program. (b) The level diagram for the DFG in Fig. 4(a).

Fig. 5. The WTG model of the DFG in Fig. 4.

have none. We assume that each execution of ns
produces useful information for users.

The corresponding WTG can be obtained by
mapping each node in the data flow graph into a tran-
sition and each arc into a place, one input arc and one
output arc. For example, n; is mapped into ¢, for l<i<l11
in Fig. 4(a). Arc (n3, ny) is mapped into a place py,
a single input arc (#3, py), and arc (p;, #;) with mul-
tiplicity 3. 14 arcs in Fig. 4(a) lead to 14 places in
Fig. 5. The initial markings of the places are deter-
mined by the initial data samples in the data flow
graph. Thus, py, p4, and p3 initially have 18, 12, and
12 tokens, and others have none. Delay times of
transitions are execution times at nodes as shown in
Fig. 4(a).

Based on Eq. (3), we solve R'=[6, 6,18, 6, 2, 3,12,
6, 3, 6, 12]. With the given initial marking, the system
cycle time is 88 units. Since R;=2, the system node
ns delivers twice the amount of useful information, or
on average, for every 88 units of time, it does so once
every 44 time units. To improve the speed, we can
add more data samples for place py. Suppose that the
number of tokens is doubled, i.e.. 24. Then, the weighted
token numbers for loops L, and L; are doubled, and
the system cycle time becomes 45 units, which repre-
sents a significant improvement in efficiency compared
with the original 88 units.

VIl. X-Window Implementation

This section presents the software structure (Fig.
6, also shown in Chao and Wang (1993b)) of the X-
Window implementation of the above algorithms. We
reused the current software for SFDRG and included
a new procedure invt_petri() for the calculation of R
to find weighted delays. It can draw and simulate
multi rate DFGs. Please refer to Chao and Wang

—369 -

D.Y. Chao

File Edit Greph Analysis Red: Query M C Menu Brush

node.txt

.

|
[

Pet

display

Fig. 6. Software structure used to calculate performance.

(1993b) for the X-Window implementation of
SRDFG.

Unlike the tool which we presented in Chao and
Wang (1993b), there is no need to construct the equiva-
lent PN model of the DFG. The user can construct the
SRDFG or MRDFG using the “DRAW?” button to draw
nodes and arcs, or by using the “FILE” button to input
a DFG file. After the DFG is drawn or displayed on
the screen, the graphical interconnections among nodes
are automatically converted into an internal PN with
a place for each node, a transition for each arc, and
their input and output relationship.

Figure 6 shows the software structure used to
calculate the cycle time. By clicking the “Cycletime”
button of the “Query” menu, the procedure “cycletime”
writes the characteristics of the input net into three
files: connect.txt, node.txt, and delay.txt. File node.txt
contains the execution time for each node. File
connect.txt contains the information about connections
among nodes. File delay.txt stores the weighted mark-
ing (token) information of places. It contains a two-
dimensional matrix, and the number in the i-th row and
j-th column indicates the weighted number of tokens
on the arc between nodes i and j.

The program “bound” first reads in all the data
mentioned above and calculates and writes the perfor-
mance results to file “perf.dat”. The main program
“Pet” then reads this file and displays its contents in
the bottom widget (window) called text_w (Fig. 4(a)).
Unlike the program in Chao and Wang (1993b), it also
displays the ranges of each side on its two sides and
thickens all the edges on all critical loops.

Thus, it can be seen in Fig. 4(a) that there are two
critical loops: (n4nonsnening) and (ngngngngnong). They
have zero slackness while n;, n3 and n, #;; have
slackness of 48 and 43, respectively. The level diagram
is shown in Fig. 4(b). Due to the large size of the
processor assignment chart, we do not show it here,

but it is easy to analyze the total number of processors
required. On all critical loops, the node with largest
R=12, is n;. Hence, we need at least 12 processors.
Thanks to the large slackness of nodes not on critical
loops, we can schedule each of the R; executions at
different time epochs within each system period in
order to reduce the number of processors required.
Note that only node n; holds R;=18 greater than 12,
so we need to stagger its start execution times within
one X system period. "From the level diagram, we can
shift the start execution times from 0 to 15 for the last
6 executions of 18. The first 12 executions keep the
start execution times at 0. Since n; is the node next
to n3 in the same loop, the last two executions of 6 must
be staggered to 20 from 0. As a result, the total number
of processors required is 12. It is easy to see that the
utilization of some processors is low. Thus, for MRDFG,
the benefits of high utilization of processors and rate-
optimal may not be achieved at the same time. One
may sacrifice the goal of an optimal rate (i.e., the
iteration period is greater than the IB) to reduce the
number of processors required.

Vill. Conclusion

As indicated by Lee and Messerschmitt (1987),
SRDFG is restricted, and they presented heuristics to
schedule the MRDFG. Parhi solved the problem of IB
determination of MRDFGs by converting them into
SRDFGs. This approach, however, suffers from sev-
eral drawbacks. First, it works only under no loop-
combination. Second, it increases the memory require-
ment by duplicating nodes and arcs, which further
prolongs the time needed for the IB calculation of the
equivalent SRDFG. Third, its use is suggested only
without the procedure for conversion. We remove all
these drawbacks by proposing an algorithm for con-
version, by identifying the condition for no loop-com-
bination, and by developing an explicit formula for IB
similar to that of SRDFG. Intuitively, when there is
no loop-combination, an MRDFG behaves like an
SRDFG because the number of delays of any loop is
sufficient to fire the nodes in the loop in succession
and to return all the delays to their initial arcs in one
iteration. Thus, the CAD tool that we have imple-
mented to calculate the IB, CL, scheduling ranges,
initial schedules to avoid transients of SRDFG and
steady state schedules of SRDFG can be reused and
extended to MRDFG. Further, an improvement on the
work of Lee and Messerschmitt (1987) is that no heu-
ristics are needed. The scope of the MRDFG perfor-
mance problem is now reduced to the problem of
determining the performance of the MRDFG with frac-
tional values of Df.

-370 -

Multi-Rate Data Flow Graphs

References

Ackerman, W. B. (1982) Data flow languages. IEEE Computer,
15(2), 15-25.

Campos, J., G. Chiola, J. M. Colom, and M. Silva (1991) Ergodicity
and throughput bounds of Petr1 nets with unique consistent firing
vectors. [EEE Trans. on Software Engineering, 17(2), 117-125.

Chao, D. Y. (1995) Application of final matrix to data flow graph
scheduling using multiprocessors. MIS Review. 5, 65-80.

Chao, L. F. and E. H. Sha (1992) Retiming and unfolding data-flow
graphs. Proc. of the 1992 International Conf. on Parallel Pro-
cessing, volume 11, pp. 33-40.

Chao. D.Y. and D. T. Wang (1992) Theory, parallelization and
scheduling of critical loop, subcritical loops, and next-critical
loops. Proc. Int’l Comp Symp , pp. 285-292. Taichung, Taiwan,
R.O.C.

Chao, D. Y. and D. T. Wang (1993a) Minimum marking for no loop-
combination of general Petr1 nets. Proc. MASCOTS 93, pp. 265-
270. San Diego, CA; U.S.A.

Chao, D. Y. and D T. Wang (1993b) Iteration bounds of single-
rate data flow graphs for concurrent processing. IEEE Trans.
on Circuits and Systems, 40(CAS-1), 629-634.

Chao, D. Y. and D. T. Wang (1994) A synthesis technique of general
Petri nets. J. Systems Integration, 4(1), 67-102.

Chao,D. Y..M C Zhou, and D. T. Wang (1993) Multiple-weighted
marked graphs. Proceeding IFAC 1993 World Congress, pp.
259-264, Sydney, Australia.

Chao, D. Y., M. C. Zhou, and D. T. Wang (1994) Extending knitting
technique to Petri net synthesis of automated manufacturing
systems. Computer Journal. 37(1),1-10. British Computer So-
ciety, Oxford University Press. London, U.K.

Floyd, R. W. (1962) Algorithm 97: shortest path. Comm. ACM,

5(6), 344-345.

Hillion, H. P. (1988) Timed Petri nets and application to multi-stage
production systems. Proc. of the 9th European Workshop on
Applications and Theory of Petri Nets, pp. 164-182. Venice,
Italy.

Ito, K. and K. K. Parhi (1994) Determining the iteration bounds
of single-rate and multirate data-flow graphs. Proc. of the 1994
IEEE-Asia Pacific Conf. on Circuits and Systems, pp. 163-168.
Taipei, Taiwan, R.O.C.

Lee, E. A. and D. G. Messerschmitt (1987) Static scheduling of
synchronous data flow programs for digital signal processing.
IEEE Trans. Comput., 36(1), 24-35

Lien, Y. L. (1976) Termination properties of generalized Petri nets.
SIAM Journal of Computers, 5(2), 251-265.

Magott, J. (1985) Performance evaluation of systems of cyclic
sequential processes with mutual exclusion using Petr1 nets.
Information Processing Letters, 21, 229-232.

Morioka, S. and T. Yamada (1991) Performance evaluation of
marked graphs by linear programming. Int’l J. Systems Sci ,
22,1541-1552.

Murata, T. (1989) Petri Nets: properties, analysis and applications.
IEEE Proc., 77(4). 541-580.

Parhi, K. K. (1989) Algorithm transformation techniques for con-
current processors. IEEE Proc., 1879-1895.

Ramamoorthy, C. V. and G. S. Ho (1980) Performance evaluation
of asynchronous concurrent systems using Petri nets. [EEE
Trans. Software Engng., 6(5), 440-449.

Tardos, E (1986) A strongly polynomial algorithm to solve com-
binatorial linear programs. Operations Research, 34, 250-256

Teruel, E., P. Chrzastowski-Watchel, J. M. Colom, and M. Silva
(1992) On Weighted T-systems. Application and Theory of Petri
Nets, Lecture Notes in Computer Science, pp. 348-367. Springer-
Verlag, Berlin, Germany.

Z R E R AR] 2 g AR X E AR

1

Tk THLREH R) 2 EHIRETN R T ATER SO o R B R ER R AR R R - iR H AL
B EE TS REMTER) 2R o AR T EHRERREE) HiRRE S TREECREREER) U
FREMN - BRE - EERGEF - BT RIER - MR ERS RN RETMAE T SREE THbREY
TRE L, ZEMRATR A RE o HR AR WA HARIR A O RE B R AR A TR o BhSh > —RE LR
FOR AR BT UG T BRI R) o FEARAEE o R0 HERR 2R il B R A e L IR AR S AR B b R AR Y HE

2 T 25 T R Al o

-371 -

