
I. Introduction

In the past decade, multiprocessors have been used
to create a major new class of parallel and widely applica-
ble machines. To achieve high speedup on such systems,
it is plausible to decomposed tasks into several subtasks,
which can be executed on different processors in parallel.
Parallelizing compilers analyze sequential programs (Ba-
nerjee et al., 1993; Polychronopoulos, 1988; Zima and
Chapman, 1990; Yang et al., 1994; Hsiao et al., 1994;
Wolfe, 1996) to detect hidden parallelism and use this
information for automatic restructuring of sequential pro-
grams into parallel subtasks on multiprocessors using
scheduling algorithms (Tzen and Ni, 1993).

However, parallelizing compilers have not been well
developed. Therefore, it has become an important issue to
develop parallelizing compiling techniques that can ex-
ploit the potential power of multiprocessors. In particular,
loops are a rich source of parallelism and can be used to
achieve considerable improvement in efficiency on multi-
processors (Polychronopoulos, 1988). Therefore, we have
investigated the possibility of solving the problem of data

dependence testing on loops.
In brief, the data dependence testing problem is that

of determining whether two references to the same array
within a nest of loops may reference the same element of
that array (Li et al., 1990; Goff et al., 1991; Maydan et al.,
1991; Kong et al., 1991; Shen et al., 1990; Pugh, 1992).
Traditionally, this problem has been formulated as integer
programming, and the best integer programming algo-
rithms are O(nO(n)), where n is the number of loop indices
(Schrijver, 1986). Obviously, these algorithms are too
expensive to use. For this reason, a faster, but not neces-
sarily exact, algorithm might be more desirable in some
situations.

In this paper, we propose a knowledge-based ap-
proach to data dependence testing. First, a library of test-
ing algorithms is constructed. The principle behind con-
struction is that each algorithm has a different flavor of
input cases. Next, a knowledge base has to be established
(Shen et al., 1990), where the knowledge concerns how to
choose an appropriate algorithm according to the features
of the input.

Conceptually, knowledge-based systems are too ex-

Proc. Natl. Sci. Counc. ROC(A)
Vol. 24, No. 5, 2000. pp. 362-372

–362–

The K Test: an Exact and Efficient Knowledge-based Data

Dependence Testing Method for Parallelizing Compilers

CHAO-TUNG YANG*, SHIAN-SHYONG TSENG**, AND WEN-CHUNG SHIH***

*Ground System Section
National Space Program Office

Hsinchu, Taiwan, R.O.C.
**Department of Computer and Information Science

National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

***Microelectronics and Information System Research Center
National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

(Received June 7, 1999; Accepted February 3, 2000)

ABSTRACT

Many different classes of multiprocessors have been designed and implemented in industry and academia.
Therefore, it has become an important issue to develop parallelizing compiling techniques that can exploit the
potential power of multiprocessors. In this paper, we concentrate on the fundamental phase, data dependence anal-
ysis, in parallelizing compilers. We propose a new approach that integrates existing tests and makes good use of
their advantages. This approach chooses an appropriate test using knowledge-based techniques, and then applies
the resulting test to detect data dependences on loops. A rule-based system, called the K test, is developed using
repertory grid analysis to construct the knowledge base. Simulation results show that the K test gives exact solu-
tions in most of practical and contrived cases; furthermore, for system maintenance and extendibility, our approach
is obviously superior to others. Therefore, we are trying to extend the knowledge-based approach to the whole
field of parallelizing compiling.

Key Words: parallelizing compilers, data dependence testing, loop parallelization, knowledge-based, repertory
grid analysis

pensive to use in data dependence testing. We present evi-
dence that suggests this argument is wrong. First, re-
searchers have found that once very simple subscripts are
filtered out and tested inexpensively, only a few subscripts
remain (< 3%) (Goff et al., 1991; Maydan et al., 1991).
These subscripts can be easily taken care of using more
complex and expensive tests without affecting the overall
performance. As a result, current research in this area is
no longer concentrating on efficiency, but on precision.
Second, we have developed a rule-based system, called
the K test, to implement our new approach (Shih et al.,
1994). Experimental results reveal that the K test does not
take too much time in comparison with the whole compil-
ing process.

Furthermore, as for system maintenance and ex-
tendibility, our approach is obviously superior to others.
If a new testing algorithm or testing technique is pro-
posed, then we can integrate it into the K test easily by
adding a knowledge base and rules. However, the power
of the K test for detecting the parallelism on loops can be
improved. Therefore, we are trying to extend the knowl-
edge-based approach to the whole field of parallelizing
compiling.

This paper is organized as follows. First, we intro-
duce the historical background on this topic. In Section II,
the data dependence testing problem is defined, and pre-
liminary knowledge is presented. Next, our new approach
is proposed in Section III, and experimental results are
examined in Section IV. Section V gives some discussion
on the K test. Finally, Section VI draws a conclusion and
indicates future work.

II. Background

This section introduces the concepts of data depen-
dence testing and knowledge-based systems used in this
paper. A brief overview of data dependence analysis and
testing is given in Section II.1. Then, we describe the
knowledge-based system by applying repertory grid anal-
ysis to construct rules in Section II.2. Finally, we review
the existing data dependence testing algorithms in Section
II.3.

1. Data Dependence Analysis

Data dependence1 is said to exist between two state-
ments S1 and S2 if there is an execution path from S1 to S2,
if both statements access the same memory location and if
at least one of the two statements writes to the memory
location (Pugh, 1992). There are three types of data de-
pendence: True (flow) dependence occurs when S1 writes
to a memory location that S2 later reads. Anti-dependence

occurs when S1 reads a memory location that S2 later
writes to. Output dependence occurs when S1 writes to a
memory location that S2 later writes to.

The nested loop is based on the assumption that the
increment step is normalized to one. Suppose that we
want to test whether or not there exists dependence from
statement S1 to S2 in the nested loop model as shown in
Fig. 1. Data dependence testing is the method used to
determine whether dependences exist between two sub-
script references to the same array in a nested loop. Let A
= (α1, α2, α3, …, αv) and B = (β1, β2, β3, …, βv) be the
integer vectors of n integer indices within the ranges of
the upper and lower bounds of the n loops in the loop
model. There is a dependence from S1 to S2 if and only if
there exist A and B, such that A is lexicographically less
than or equal to B such that f(A) = g(B), where f and g are
functions from Zn to Z. Otherwise, the two array reference
patterns are independent.

In this case, we say that the system of equations is
integer solvable with the loop-bounds constraints. Other-
wise, the two array reference patterns are said to be inde-
pendent. For example, consider the program segment
shown in Fig. 2. By means of data dependence analysis,
we find that the statement S2 exhibits true dependence on
the statement S1, and that the statement S2 exhibits anti-
dependence on S3.

The data dependence testing problem is equivalent
to integer programming if all f and g are linear functions.
Because the integer programming algorithm is NP-Com-
plete, we do not think it is possible to develop a practical
test that can related to be applied to every conceivable
case. Based on preliminary observation, we think that

The K Test

–363–

DO I1 = L1, U1

DO I2 = L2, U2

…
DO In = Ln, Un

S1: A(f1(I1, I2, …, In), …, fm(I1, I2, …, In)) = …
S2: … = A(g1(I1, I2, …, In), …, gm(I1, I2, …, In))

ENDDO In

…
ENDDO I2

ENDDO I1

Fig. 1. A model of a nested loop.

1Data dependence is normally defined with respect to the set of variables which are used and modified by a statement, denoted by the In/Out sets.

DO I = 2, N – 2
S1: A[I] = B[I]
S2: C[I] = A[I – 1]
S3: D[I] = C[I + 2]

ENDDO

Fig. 2. A program segment.

concepts knowledge-based systems should be useful in
parallelizing compiling because the compiling process is
not deterministic and because much domain knowledge
may be needed to generate efficient machine codes.

2. Knowledge-based Systems

Knowledge-based systems are systems that depend
on a vast base of knowledge to perform difficult tasks
(Turban, 1992). A simplified knowledge-based system is
shown in Fig. 3. The knowledge is saved in a knowledge
base separate from the inference component. This makes
it convenient to append new knowledge or update existing
knowledge without recompiling the inferring programs.

The inference engine is the interpreter of the knowl-
edge stored in the knowledge base. It examines the con-
tents of the knowledge base and the data accumulated
about the current problem, and derives additional data and
conclusions. The inference engine attempts to find conne-
ctions between facts and conclusions. The rule-based ap-
proach is one of the methods most commonly used in
knowledge-based systems. This type of system uses
knowledge encoded in the form of production rules, i.e.,
If ... Then ... rules.

The primary difficulty in building a knowledge base
is acquiring the required knowledge. A number of meth-
ods have been developed to ease knowledge acquisition;
among them, the primary technique is called repertory
grid analysis (RGA) (Hwang and Tseng, 1990). An ex-
ample of applying RGA is shown in Table 1, where ‘X’
means that the attribute has no relationship with the object
(i.e., the attribute is a ‘don’t care’ condition). According
to the table, five rules can be generated. For example, the
first column includes [Al, Obj1] = {9, 10, 12}, [A2, Obj1]
= Yes and [A3, Obj1] = X; hence, the resulting rule
RULE1: If Al ∈ {9, 10, 12} and A2 = Yes Then GOAL =
Obj1 is generated. RGA is easy to use, but it suffers from
the problem of missing embedded meanings (Hwang and
Tseng, 1990). For example, when a doctor says the symp-
toms of a cold are headache, coughing and sneezing, he
means that people who catch colds may exhibit these
symptoms. However, in RGA, a person is not considered
to have a cold unless all of the symptoms are present. To
overcome this limitation, an attribute ordering table
(AOT) is employed to elicit embedded meanings by
recording the importance of each attribute to each object
(Hwang and Tseng, 1990).

The value of each AOT[attribute, object] entry may
be labeled ‘X’, ‘D’ or an integer number. ‘X’ means that
the attribute has no relationship to the object. ‘D’ means
that the attribute dominates the object; i.e., if the attribute
is not equal to the entry value, it is impossible to infer the
object. Entries that are not labeled ‘X’ or ‘D’ have inte-
gers that represent the relative degree of importance of the
object relative to other attributes. A larger integer number
implies that the attribute is more important to the object.
We use repertory grid analysis and an attribute ordering
table to construct our knowledge base.

3. A Review of Existing Data Dependence Tests

The data dependence tests can be classified into two
classes: single-dimensional tests and multi-dimensional
tests.

A. Single-dimensional Tests

(1) GCD Test (Zima and Chapman, 1990): The GCD
test is based on a theorem of number theory which
says that Eq. (1) has an integer solution if and only
if gcd(a1, a2, ..., an) is a divisor of a0:

a1I1 + a2I2 + … + anIn = a0. (1)

The GCD test is an integer test that ignores loop
bounds.

(2) Banerjee Test (Zima and Chapman, 1990): The Ba-
nerjee test first derives a Diophantine equation, but
the test treats the equation as a real-valued equa-
tion. Based on the intermediate value theorem, the
equation is solvable if and only if the minimum of
the left-hand side is not greater than zero and the
maximum not smaller than zero.

(3) I Test (Kong et al., 1991): The I test is a combina-
tion of the GCD and Banerjee tests. It checks for
the existence of integer solutions and considers lim-
its.

B. Multi-dimensional Tests

(1) Extended-GCD Test: The GCD test was extended
by Knuth to find a general integer solution to a set
of linear equations. Banerjee described a matrix

C.T. Yang et al.

–364–

Fig. 3. Components of a simplified knowledge-based system.

Table 1. An Example of Applying RGA

Obj1 Obj2 Obj3 Obj4 Obj5

A1 {9, 10, 12} 20 13 17 3
A2 YES NO YES YES NO
A3 X X 4 2 6

form of the algorithm.
(2) Lambda Test (Li et al., 1990): The Lambda test is

used for an efficient and accurate data dependence
analysis. It extends the numerical methods to al-
low testing of all dimensions to be tested simulta-
neously.

(3) Power Test (Wolfe and Tseng, 1992): The Power
test combines the Extended-GCD test, constraint
tightening and the Fourier-Motzkin method to e-
liminate variables in a system of inequalities. How-
ever, it may be too expensive for use as a general
purpose test in a compiler.

(4) Omega Test (Pugh, 1992): The Omega test deter-
mines whether there is an integer solution to an ar-
bitrary set of linear equalities. Convention holds
that integer programming techniques are far too
expensive for use in dependence analysis, except as
a method of last resort in situations that cannot be
decided by simpler, special-case tests. Pugh sug-
gested that the above argument is wrong. Con-
sequently, their research implies that for linear
cases, utilizing integer programming techniques to
analyze data dependences is exact and not expen-
sive.

C. Classification Approach

Reviewing previous work, we find that two papers
are similar to this paper in some respects. In both studies,
the authors collected a small set of test algorithms and
tried to use them to solve the problem both efficiently and
exactly in practical situations. However, our work is es-
sentially different from theirs.

(1) Practical Test (Goff et al., 1991): The Practical test
is based on classifying pairs of subscripted variable
references. The major difference between the Prac-
tical test and other tests stems from the fact that the
Practical test is essentially designed for practical
input cases, and that its strategy is fixed. However,
our approach is not limited to certain of input
cases.

(2) MHL Test (Maydan et al., 1991): These authors
showed that in practice, data dependence can be
computed exactly and efficiently. The major dif-
ference between the MHL test and our approach is
that the MHL test is a cascaded method; that is, the
Extended-GCD test is tried first. If it fails, a next
test is applied, and so on. However, our approach
uses only one test after a conclusion is drawn.

III. A New Approach to Data Depend-
ence Testing

As mentioned above, every existing test has its own

advantages. In fact, if we always apply an appropriate test
to a given case, the case can be correctly solved, and the
execution time will not be too long. Based on this con-
cept, we propose a knowledge-based approach to data
dependence testing in this section. Section III.1 describes
the organization of knowledge-based approach. Then, we
introduce the K test, a rule-based system, in Section III.2.
The algorithm of the K test and two examples are given in
Section III.3. Finally, Section III.4, we describe the model
of our Fortran parallelizing compiler, where the K test is
used to detect the parallelism in.

1. Organization of the Knowledge-based Approach

A knowledge-based system is composed of two
parts: the development environment and the runtime envi-
ronment (Turban, 1992). The former is used to build the
knowledge base, while the latter is used to solve the prob-
lem. In our paper, the development environment is not dis-
cussed. The runtime environment contains three compo-
nents as shown in Fig. 4, which are briefly described as
follows.

(1) Knowledge Base: This component contains knowl-
edge required to solve the problem of determining
an appropriate test to be applied. The knowledge
can be organized in many different schemes and
can be encoded into many different forms. There-
fore, there exist many ways to build the knowledge
base.

(2) Inference Component: This component is essential-
ly a computer program that provides a method for
reasoning about information in the knowledge base
along with the input, and for forming conclusions.

(3) Testing Algorithm Library: The library collects sev-
eral representative tests either proposed by others
or designed by us. The question of how the tests
are chosen is determined in the development envi-
ronment, so here we assume that it has been built.

The dependence testing process can be described as
follows. First, the input, a set of equations, is fed into the
inference component. Then, the inference component rea-
sons about knowledge and draws a conclusion, a test.
Finally, the resulting test is applied, and the answer is gen-

The K Test

–365–

Fig. 4. Components of our approach.

erated. It should be noted that the knowledge base and the
testing algorithm library shown in Fig. 4 are flexible; that
is, they are not fixed. You can modify these two compo-
nents so long as the efficiency and precision of the system
are retained.

2. The Anatomy of the K Test

An implementation, called the K test, is proposed to
demonstrate the effectiveness of the new approach. The K
test is a rule-based system. The primary reason we choose
a rule-based system is that this type of system is easy to
understand; in addition, rule-based inference tools are
widely available, which simplifies the implementation
task.

The organization of the K test is shown in Fig. 5,
which is similar to that in Fig. 4 except that the three com-
ponents are replaced by actual software. We describe
them briefly in the following.

(1) Knowledge Base: In our implementation, the know-
ledge base is constructed as a rule base; i.e., the
knowledge is expressed in the form of production
rules. These rules can be coded by hand or gener-
ated by a translator. In our system, the latter meth-
od is used. A translator, GRD2CLP, translates the
repertory grid and attribute ordering table into
CLIPS production rules. This approach has great
flexibility as we can add new scheduling algo-
rithms to the repertory grid and attribute ordering
table, and then use GRD2CLP to convert the tables
into CLIPS rules.

(2) Inference Component: This component is essential-
ly a computer program that provides a method for
reasoning about information in the knowledge base
along with the input and for forming conclusions.
An expert system shell, CLIPS, developed by
NCSA with full source codes available, is used for
the purpose of inference in our knowledge-based
system shell. CLIPS, a forward-reasoning rule-
based tool, is very efficient and does not increase
the execution time cost of our system significantly.
The basic elements of CLIPS are:
(i) Fact list – Facts are made up of fields that can

be words, strings, or numbers. The first field
of a fact is normally used to indicate the type
of information stored in the fact. The follow-
ing are examples of facts:

(single-field),

(two fields),

(speed 100 kmph).

There are commands for initiating, adding, re-
moving and displaying facts.

(ii) Rule base – A rule is divided into an LHS and
an RHS. The LHS of a rule can be thought of
as the If portion, and the RHS can be thought
of as the Then portion of the rule. Commands
are available for displaying the rule list and the
text of individual rules.

(iii) Inference engine – Rules that have patterns
which are satisfied using facts produce an acti-
vation, which is placed in the agenda. CLIPS
attempts to match the patterns of rules against
facts in the fact list. If all the patterns of a rule
match some facts, the rule is activated and put
in the agenda, the set of activated rules.

We will illustrate the inference in CLIPS with an
example.

Example 1.
Fact: (sunny)
Rule: 1. If (rainy) Then (stay home)
Rule: 2. If (sunny) Then (go shopping).
Inference: Rule 2 is matched because of the fact; thus, a
result is obtained, and we go shopping.

(3) Testing Algorithm Library: We include four tests in
the library. They are the GCD test, Banerjee test, I
test and Power test. They are all existing tests.
One of the four tests is chosen based on experi-
ence; therefore, it may not be the best choice.
However, simulation results show that this ap-
proach is satisfactory to some extent.

The repertory grid of the K test is shown in Table 2,
which contains four attributes and four objects that are

C.T. Yang et al.

–366–

Fig. 5. Components of the K test.

Table 2. The Repertory Grid of the K Test

GCD Banerjee I Power

Unity_Coef 1 5 1 1
Bound_Known 1 5 1 5

Multi_Dim 1 1 1 5
Few_Var 5 5 1 1

four existing data dependence tests. The four attributes
are described below:

(1) Unity_Coef: whether the coefficients of variables are 1, 0, –1, or
not. If they are, we set this value to be 5, otherwise 1.

(2) Bound_Known: whether the loop bounds are known or not. If the
loop bound is known, we set this value to be 5, otherwise 1.

(3) Multi_Dim: whether the array references are multi-dimensional or
not. We set this value to be the number of dimensions of the array
reference.

(4) Few_Ver: whether the number of variables in the equation is small
or not. We set this value to be the number of variables in the loop.

Four rules can be generated from the repertory grid,
one rule per column, as follows:

(1) (defrule rule_01
(Unity_Coef 1)
(Bound_Known 1)
(Multi_Dim known 1)
(Few_Var known 5)
))
=>
(assert (goal GCD)))

(2) (defrule rule_02
(Unity_Coef 5)
(Bound_Known 5)
(Multi_Dim known 1)
(Few_Var known 5)
))
=>
(assert (goal Banerjee)))

(3) (defrule rule_03
(Unity_Coef 1)
(Bound_Known 1)
(Multi_Dim known 1)
(Few_Var known 1)
))
=>
(assert (goal I)))

(4) (defrule rule_04
(Unity_Coef 1)
(Bound_Known 5)
(Multi_Dim known 5)
(Few_Var known 1)
))
=>
(assert (goal Power)))

In order to elicit the embedded meanings from Table
2, we construct the AOT. The AOT of the K test is shown
in Table 3. The process is described below in dialog form.

Q: If Bound_Known is not equal to 5, is it possible for the Banerjee
test to be applied?

A: No.

The answer means that Bound_Known dominates
the Banerjee test; hence, AOT[Bound_Known, Banerjee]
= ‘D’.

Q: If Unity_Coef is not equal to 5, is it possible for the Banerjee test
to be applied?

A: Yes.
Q: If Multi_Dim is not equal to 1, is it possible for the Banerjee test to

be applied?
A: Yes.
Q: If Few_Var is not equal to 5, is it possible for the Banerjee test to

be applied?
A: Yes.

The last three answers indicate that Unity_Coef,
Multi_Dim and Few_Var do not dominate the Banerjee
test, respectively, and that further questions have to be
asked.

Q: Please rank the three attributes, Unity_Coef, Multi_Dim and
Few_Var, in their order of importance with respect to the Banerjee
test.

A: Unity_Coef is more important than Multi_Dim, and Multi_Dim is
as important as Few_Var.

The answer indicates that Unity_Coef is more im-
portant than Multi_Dim, and that Multi _ Dim is as impor-
tant as Few_Var. Therefore, AOT[Unity_Coef, Banerjee]
is set to 2, AOT[Multi_Dim, Banerjee] is set to 1, and
AOT[Few_Var, Banerjee] is set to 1. With AOT, 52 addi-

The K Test

–367–

Table 3. The AOT of the K Test

GCD Banerjee I Power

Unity_Coef 1 2 1 1
Bound_Known 2 D 1 2

Multi_Dim 1 1 2 2
Few_Var 1 1 2 2

Algorithm: K test
Input:

(a1
0, a

1
1, …, a1

n, M
1
1, N

1
1, …, M1

n, N
1
n,

…
am

0, a
m
1, …, am

n, M
m
1, N

m
1, …, Mm

n, N
m
n,

Unity_Coef, Bound_Known, Multi_Dim, Few_Var)
Output:

True: the input is integer solvable.
or False: the input is not integer solvable.
or Maybe: the input may be integer solvable.

Phase 1: calling CLIPS to draw a conclusion, that is, the most suitable
dependence test.
Phase 2: calling the corresponding testing algorithm to check for data
dependence.

Fig. 6. The K Test algorithm.

DO I = M, N
S1: A[I + 1] = …
S2: … = A[I]

ENDDO

Fig. 7. The program segment of Example 1.

tional embedded rules can be generated; 15 rules from col-
umn one, 7 from column two, 15 from column three and
15 from the last column.

3. The Algorithm of the K Test

We will now summarize our discussion of the K test
in an algorithm shown in Fig. 6. The algorithm consists of
two phases. We will illustrate the K test with two exam-
ples.

Example 2. The program segment is shown in Fig. 7. For
data dependences to exist between S1 and S2 due to the
two references to A, the subscript of A referenced in S1

should be equal to that in S2. Hence, we can derive the
following equations:

il + 1 = i2

il – i2 = –1

After the implicit equation is generated from the loop, and
the attributes are set as follows:

Unity_Coef = 5: The coefficients are 1’s or –1’s.
Bound_Known = 1: The loop bounds are unknown values.
Multi_Dim = 1: The array reference is one-dimensional.
Few_Var = 5: The number of variables is two, thus Few.

During Phase 1, the CLIPS use those attributes and deter-
mine that the GCD test is the most suitable test. After
Phase 2, the GCD test is invoked, and the result shows
that the array references are data dependent. Therefore,
they could not be parallelized.

Example 3. The program segment is shown in Fig. 8. For
data dependences to exist between S1 and S2 due to the
two references to A, the subscript of A referenced in S1

should be equal to that in S2. Hence, we can derive the
following equations:

il + 100 = i2,

il – i2 = –100

After the implicit equation is generated from the loop, the
attributes are set as follows:

Unity_Coef = 5: The coefficients are 1’s or –1’s.
Bound_Known = 5: The loop bounds are known values.
Multi_Dim = 1: The array reference is one-dimensional.
Few_Var = 5: The number of variables is two, thus Few.

During Phase 1, the CLIPS use these attributes and deter-
mine that the Banerjee test is the most suitable test. After
Phase 2, the Banerjee test is invoked, and the result shows
that the array references are data dependent. Therefore,
they can be parallelized.

4. The Model of Our Parallelizing Compiler Using
the K Test

A model of a Fortran parallelizing compiler intended
to produce parallel object codes rather than being just a
source-to-source translator (Hsiao et al., 1994) is shown in
Fig. 9. We describe this model below:

(1) Firstly, the parallelism detector treats the data de-
pendence relations using the K test and then re-
structures a sequential Fortran source program into
a parallel form; i.e., if a loop can be parallelized,
then the parallelism detector converts it into DO-
ALL loop. In the previous version of our compiler,
we use, Parafrase-2 (p2fpp) to treat the data depen-
dence relations (Polychronopoulos, 1988).

(2) Secondly, because there is no Fortran compiler on
OSF/1 and because multithreading only supports C
programming, a Fortran-to-C (f2c) (Feldman et
al., 1992) converter is used to convert the Fortran
program, output by the K test, into its C equiva-
lent. However, the output of the K test contains an
extension (i.e., a DOALL statement) that is not in
the standard Fortran 77 and, hence, is not rec-
onized by f2c. Therefore, an additional module
f2c_p (f2c preprocessor) is added to tackle this
problem.

(3) Thirdly, the component, single-to-multiple threads
translator (s2m) (Hsiao et al., 1994) takes the ob-
tained parallel form as input, where the parallel for
loops are translated into subtasks by replacing them

C.T. Yang et al.

–368–

DO I = 1, 100
S1: A[I + 100] = …
S2: … = A[I]

ENDDO

Fig. 8. The program segment of Example 2. Fig. 9. A Fortran parallelizing compiler on OSF/1.

with multithreaded codes. The resulting multi-
threaded program is then compiled and linked with
OSF/1’s P Thread runtime library using the native
C compiler, e.g., the GNU C compiler.

(4) Finally, the generated parallel object codes can be
scheduled and executed in parallel on the multipro-
cessors under OSF/1 to achieve high performance.

Based on this model, we are implementing a Fortran
parallelizing compiler to help programmers take advantage
of multithreaded parallelism on OSF/1 multithreading OS.

IV. Experimental Results

In this section, we present experimental results
which demonstrate that the K test is not expensive in
terms of actual execution time, and that it gives correct
answers in most cases. Section IV.1 describes the system
environments in which the K test can be run. In Section
IV.2, we use the practical data and contrived data to test
the precision of the K test. Finally, we examine the execu-
tion time of the K test in Section IV.3.

1. System Environments

The experiment was performed on an HP Apollo
9000 Model 755 workstation with a 99-MHz PA-RISC
processor. We had coded the GCD test, the Banerjee test,
the I test, the Power test and the K test in the C program-
ming language. Experiments conducted in previous works
usually involved methods implemented in a prototype par-
allelizing compiler, such as Parafrase-2 (Polychronopoulos,
1988), Tiny (Pugh, 1992) etc. However, we could not af-
ford such a large project. Consequently, we decided to
construct a primary program that could read the input
equations from a file, then call CLIPS, and finally invoke
the tests. Hence, we examined all the input codes, select-
ed the representative array subscripts, and encoded them
into an input file using parallelism detector. For example,
the simultaneous equations

x – y = 1

–y + z = –1

where 1 ≤ x, y, z ≤ 10 were encoded into the form shown
in Fig. 10. The first line contains two numbers: the first
number represents the number of equations, and the sec-
ond refers to the number of variables. Hence, (2 3) means
that there are 2 equations and 3 variables. Line 2 – line 5
represent the first equation, and line 6 – line 9 the second
equation. The three numbers in line 2 refer to the coeffi-
cient, the lower bound and the upper bound, respectively.

2. Precision

Shen et al. (1990) found that many array references
are not amenable to currently available data dependence
tests. After examining LINPACK (Dongarra et al., 1979),
EISPACK, and other numerical programs, we found that
most of the array references in scientific code are very
simple. However, examples appearing in related papers
have been elaborately contrived to demonstrate the power
of those methods. To find a compromise between off the
two extremes, we divided the data into two classes. The
first class, referred to as practical data, was selected from
LINPACK and EISPACK; the second class, called con-
trived data, was collected from previous papers (Goff et
al., 1991; Maydan et al., 1991; Pugh, 1992; Wolfe and
Tseng, 1992).

A. Practical Data

We have performed experiments using two numeri-
cal packages, EISPACK and LINPACK. EISPACK is a
collection of subroutines for computing the eigenvalues of
matrices. LINPACK is a collection of Fortran subroutines
that analyze and solve various systems of simultaneous
linear algebraic equations. Because of their systemization
and representatively, the packages have been widely a-
dopted as benchmark programs (Goff et al., 1991; Li et
al., 1990).

EISPACK has 75 subroutines, which contain about
70000 pairs of array references. LINPACK has 51 sub-
routines, which contain about 5000 pairs of array refer-
ences (Goff et al., 1991). In our experiments, we consid-
ered only possible true dependent references. Table 4 lists
the number of lines, subroutines and array pairs tested.

Table 5 shows the usage and success frequencies of
the dependence tests for the two packages. The notations
are similar to those in Goff et al. (1991). ‘A’ denotes the
number of times the test was applied; ‘S’ denotes the

The K Test

–369–

1: 2 3
2: 1 1 10
3: –1 1 10
4: 0 1 10
5: 1
6: 0 1 10
7: –1 1 10
8: 1 1 10
9: –1

Fig. 10. The input format of testing algorithms.

Table 4. Program Characteristics for Practical Data

lines subrs array pair tested

EISPACK 11519 75 211
LINPACK 7427 51 106

number of times the test succeeded in determining depen-
dences; ‘I’ denotes the number of times the test proved the
pair was data independent.

We know that practical array subscripts are usually
simple, with unity coefficiencies and few index variables.
Therefore, the GCD test seem to be sufficient for practical
data, and the Power test and the K test were not signifi-
cantly superior to the GCD test. Note that in LINPACK
and EISPACK, the loop bounds are all parameters and are
unknown values. This is why the Banerjee test could not
be applied to the two packages.

B. Contrived Data

We collected 14 loop segments from Maydan et al.
(1991), Shen et al. (1990), Wolfe and Tseng (1992) and
Zima and Chapman (1990). They were special examples
constructed to demonstrate the power of certain tests, so
they rarely appear in practical programs. However, for
these examples, actually more powerful tests are required
to find their parallelism. The statistics are shown in Table
6.

Table 7 is similar to Table 5 except that it is for con-
trived data. In this case, we clearly find that the GCD test
and the Banerjee test are less exact than the Power test and
the K test.

3. Execution Time

Table 8 lists the execution times of five tests for the
array references shown in Fig. 11. Every entry in the table
denotes the time required to analyze this array reference
pair on our HP workstation. Although the experiments

were performed only on a specific array pair, we think
using other input data would lead to similar results.

The first row in Table 8 shows the times required by
the four tests themselves, and the second row lists the exe-
cution times of the K test when it invokes the four tests.
For comparison, we ran the Parafrase-2 restructurer on the
same HP workstation (Yang et al., 1994) and measured
the execution time for the same loop segment. Con-
sequently, about 0.1 second was required to analyze the
data dependences. This implies that the K test is not too
expensive, and that it can be adopted in a parallelizing
compiler.

V. Discussion

1. Treatment Using the K Test

In both our practical and contrived cases, the K test
achieve high accuracy. Although the number of array
samples that we collected was not large in comparison
with previous works (Goff et al., 1991; Shen et al., 1990),
these samples were fairly selected from EISPACK, LIN-
PACK, and previous works (Goff et al., 1991; Maydan et
al., 1991; Pugh, 1992; Zima and Chapman, 1990). For
this reason, we can say that the K test can give correct
answers in most cases, at least in terms of these sources.

The execution time for the K test was significantly
longer than that for the GCD test, the Banerjee test and the
I test. The overhead resulted from the cost of the inferen-
tial process and from using the expensive Power test.
However, the time required by the K test was nearly the
same as that for the Power test in the worst case. In fact,
the amount of time used was relatively small compared

C.T. Yang et al.

–370–

Table 5. Application/Success/Independence Frequencies for Practical
Data

EISPACK LINPACK

A S I A S I

GCD 206 204 0 83 83 0
Banerjee 0 0 0 0 0 0

I 206 204 0 83 83 0
Power 206 206 2 83 83 0

K 206 206 2 83 83 0

Table 7. Application/ Success/ Independence Frequencies for Contrived
Data

Contrived Data

A S I

GCD 14 5 5
Banerjee 12 7 7

I 14 12 12
Power 14 14 14

K 14 14 14

Table 6. Loop Characteristics for Contrived Data

one-dim two-dim total

Zima 6 1 7
Maydan 3 1 4

Shen 2 0 2
Wolfe 0 1 1

DO I = 1, 10
DO J = 1, 10

S1: A[I, J] = …
S2: … = A[J, J – 1]

ENDDO
ENDDO

Fig. 11. The input exmple of simulations.

with the time needed for the whole compiling process.
Although several authors (Maydan et al., 1991;

Pugh, 1992) have claimed that their methods are both effi-
cient and exact, their accuracy was confined within specif-
ic domains. For nonlinear and other general cases, these
methods are definitely inapplicable. Furthermore, Shen et
al. (1990) observed that 47% of the array references in
scientific codes are not linear. For this reason, we think it
is necessary to consider nonlinear cases for data depen-
dence testing. In this study, knowledge-based approaches
were not directly utilized to deal with nonlinear cases, but
it is easy to extend the knowledge-based approach; for
example, if a new test for nonlinear cases is presented
(Blume and Eigenmann, 1994), we only need to include
the new test in our library and modify the repertory grid.
In the above process, no modification of program logic is
needed. Furthermore, the rule base of the K test is con-
structed using GRD2CLP, which translates a repertory
grid into production rules, so modification of the rule base
is easier.

2. A New Trend

It is well known that the major source of parallelism
is loops. A loop is called a DOALL loop if there is no
data dependence among all the iterations, i.e., all the itera-
tions of a loop can be executed in parallel. Parallel loop
scheduling is a method that schedules a DOALL loop on
multiple processors (Polychronopoulos, 1988; Tzen and
Ni, 1993). In the past, load balance among processors and
synchronization operation overhead have been two main
issues for various scheduling algorithms. We explain
these issues in the following:

(1) Load Balance: If processors are idle, the process is
not taking full of advantage of the multiprocessors.
Scheduling algorithms try to distribute the work-
load among the multiprocessors as evenly as possi-
ble.

(2) Synchronization Overhead: The overhead results
from the simultaneous accesses by processors to a
set of shared variables that contain the indices of
iterations.

In a shared-memory multiprocessor system, schedul-
ing decisions can be made either statically at compile time
or dynamically at runtime. Static scheduling is usually ap-
plied to iteration uniformly distributed iterations among
processors. However, it has the drawback of load imbal-

ance when the loop style is not uniformly distributed, and
its loop bound must be known at compile time. In con-
trast, dynamic scheduling is more suitable for load balanc-
ing; however, the runtime overhead must be taken into
consideration.

Traditionally, the parallelizing compiler dispatches
the loop by using only one scheduling algorithm, either
static or dynamic. However, programs have different
kinds of loops, including uniform workload, increasing
workload, decreasing workload, and random workload,
loops, and every scheduling algorithm can achieve good
performance on a different loop style (Tzen and Ni, 1993).
To reduce the overhead and enhance load balancing, the
knowledge-based approach is feasible solution for parallel
loop scheduling. An approach that integrates existing stat-
ic and dynamic scheduling algorithms and makes good
use of their advantages will be proposed in the future. We
can use this approach to choose an appropriate scheduling
algorithm base on some features that include the loop
style, loops bound, system status, data locality, and syn-
chronization overhead, and then apply the resulting algo-
rithm to schedule the DOALL loop on processors. In
addition, we plan to study whether the knowledge-based
approach can be applied to guide different types of loop
transformation to obtain parallelism in parallelizing com-
pilers.

VI. Conclusions and Further Work

Current research on data dependence testing is no
longer concentrated on efficiency, but rather on precision.
Since the actual time required to test data dependences is
short in comparison with the execution time of the whole
compiling process, researchers tend to adopt more com-
plex algorithms in order to produce more results that are
accurate and to treat more general input cases. Con-
sequently, knowledge-based approaches have become fea-
sible for data dependence testing, and provide a different
means of achieving parallelizing compiling.

This paper has presented a new approach to data
dependence testing based on knowledge-based methodolo-
gy. To implement this new approach, a rule-based system
called the K test has been developed. Experimental
results show that the K test could give correct answers for
most of the practical and contrived cases studied, and that
the execution time was not high compared with that of a
parallelizing compiler. In addition, our approach is obvi-
ously superior to others in terms of software maintenance.
Our future research efforts will include formulating
knowledge acquisition methodology for data dependence
testing. In addition, we plan to determine whether knowl-
edge-based approaches can be applied to guide different
types of loop transformation to achieve parallelism and
parallel loop scheduling in parallelizing compilers. We

The K Test

–371–

Table 8. The Execution Time of the K Test on the HP Workstation

GCD Banerjee I Power

without K 10–5 sec 7×10–6 sec 10–5 sec 0.06 sec
with K 0.02 sec 0.03 sec 0.02 sec 0.07 sec

believe that our research will provide more insight needed
to develop a high performance parallelizing compilers.

Acknowledgment

This work was supported in part by the National Science Council
of the Republic of China under grant NSC 84-2213-E-009-090.

References

Banerjee, U., R. Eigenmann, A. Nicolau, and D. A. Padua (1993) Auto-
matic program parallelization. Proc. IEEE, 8(12), 211-243.

Blume, W. and R. Eigenmann (1994) The range test: A dependence test
for symbolic, non-linear expressions. Supercomputing’94, pp. 528-
537, Washington D.C., U.S.A.

Dongarra, J., C. B. Moler, J. R. Bunch, and G. W. Stewart (1979) LIN-
PACK Users’ Guide. SIAM, Philadelphia, PA, U.S.A.

Feldman, S. I., D. M. Gay, M. W. Maimone, and N. L. Schryer (1992) A
FORTRAN-to-C Converter. Computing Science Technical Report,
No. 149, Bell Communication Research and Carnegie-Mellon Uni-
versity, Pittsburgh, PA, U.S.A.

Goff, G., K. Kennedy, and C. W. Tseng (1991) Practical dependence test-
ing. Proc. of the ACM SIGPLAN ’91 Conf. on Programming Lan-
guage Design and Implementation, pp. 15-29, Toronto, Canada.

Hsiao, M. C., S. S. Tseng, C. T. Yang, and C. S. Chen (1994) Im-
plementation of a portable parallelizing compiler with loop Prtition.
Proc. of the 1994 Int’l Conf. on Parallel and Distributed Systems,
pp. 333-338, Hsinchu, Taiwan, R.O.C.

Hwang, G. J. and S. S. Tseng (1990) EMCUD: a knowledge acquisition
method which captures embedded meanings under uncertainty. Int’l
J. Man-Machine Studies, 33, 431-451.

Kong, X., D. Klappholz, and K. Psarris (1991) The I test: an improved
dependence test for automatic parallelization and vectorization.

IEEE Trans. Parallel Distrib. Syst., 2(3), 342-349.
Li, Z., P. C. Yew, and C. Q. Zhu (1990) An efficient data dependence

analysis for parallelizing compilers. IEEE Trans. Parallel Distrib.
Syst., 1(1), 26-34.

Maydan, D. E., J. L. Hennessy, and M. S. Lam (1991) Efficient and exact
data dependence analysis. Proc. of the ACM SIGPLAN ’91 Conf. on
Programming Language Design and Implementation, pp. 1-14, To-
ronto, Canada.

Polychronopoulos, C. D. (1988) Parallel Programming and Compilers.
Kluwer Academic Publishers, Norwell, MA, U.S.A.

Pugh, W. (1992) A practical algorithm for exact array dependence analy-
sis. Commun. of ACM, 35(8),102-114.

Schrijver, A. (1986) Theory of Linear and Integer Programming. John
Wiley and Sons, New York, NY, U.S.A.

Shen, Z., Z. Li, and P. C. Yew (1990) An empirical study of Fortran pro-
grams for parallelizing compilers. IEEE Trans. Parallel Distrib.
Syst., 1(3), 356-364.

Shih, W. C., C. T. Yang, and S. S. Tseng (1994) Knowledge-based data
dependence testing on loops. Proc. of the 1994 Int’l Computer
Symposium, pp. 961-966, Hsinchu, Taiwan, R.O.C.

Turban, E. (1992) Expert Systems and Applied Artificial Intelligence.
Macmillan Publishing Co., New York, NY, U.S.A.

Tzen, T. H. and L. M. Ni (1993) Trapezoid self-scheduling: a practical
scheduling scheme for parallel compilers. IEEE Trans. Parallel
Distrib. Syst., 4(1), 87-98.

Wolfe, M. and C. W. Tseng (1992) The power test for data dependence.
IEEE Trans. Parallel Distrib. Syst., 3(5), 591-601.

Wolfe, M. (1996) High-Performance Compilers for Parallel Computing.
Addison-Wesley Publishing, New York, NY, U.S.A.

Yang, C. T., S. S. Tseng, and C. S. Chen (1994) The anatomy of par-
afrase-2. Proc. Natl. Sci. Counc. ROC(A), 18(5), 450-462.

Zima, H. P. and B. Chapman (1990) Supercompilers for Parallel and
Vector Computers. Addison-Wesley Publishing and ACM Press,
New York, NY, U.S.A.

C.T. Yang et al.

–372–

* ** ***

*

**

Rule-based K Test K Test PFPC

K Test

