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ABSTRACT

A general method of analysis based on Liapunov’s direct method is presented for studying the
behavior of the nonlinear system of differential equations governing the motion of a rotor-bearing system
in the neighborhood of its equilibrium point.  A model comprised of an axially symmetric rigid appendage
attached at an arbitrary location along a nonuniform spinning shaft mounted on two dissimilar eight
component end bearings is adopted to develop stability criteria involving different system parameters.
The stability boundaries presented graphically in terms of system nondimensionalised parameters are typical
examples of the types of design information available to engineers through the equations provided in this
paper.  Among the results reached in this paper are the demonstration of the roles played by (1) bearing
mass, (2) appendage mass and dimensions, (3) bearing principal stiffness and damping coefficient, and
(4) bearing cross-coupling stiffness and damping coefficients in affecting the nature of system whirl
stability.
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I. Introduction

Rotor-bearing systems are assemblies widely used
in aerospace and mechanical industries.  Power ma-
chinery, such as compressors and turbomachines, usu-
ally transmits power by means of rotor bearing systems.
In recent years, due to the design trend toward high
spin rates to raise the operating efficiency, the resulting
instability problems and lateral vibration of the system
has become aggravated.  Therefore, research in stabil-
ity and dynamic response of rotor-bearing systems has
prospered in the past few decades (Vance, 1988).

The prevalent approach adopted for stability
analysis of rotor-bearing systems in most of the litera-
ture (El-Marhomy, 1994; Chang and Cheng, 1993; Kirk
and Gunter, 1976; Chivens and Nelson, 1975; Iwatsubo
and Tomita, 1973) is the traditional approach where
the governing equations of motion are first transformed
into an eigen-value problem.  Then from the solution
of the exponential growth (unstable) or decay (stable),
the stability criteria are established based on the re-
sulting eigen values (critical speeds) and their system
parametric dependance.  It is also found in the pertinent
literature that some authors (Castelli and Elrod, 1964;
Cheng and Trumpler, 1963; Rao, 1983, 1984) adopted
the fluid dynamics approach where the rotor stability
problem is mainly examined in terms of the character-
istics of the fluid film bearings.  The Routh-Hurwits

criterion has also been used by several authors (Kirk
and Gunter, 1976; Gunter, 1966; El-Marhomy, 1997)
to study the stability of linearized rotor-bearing sys-
tems.  However, for nonlinear systems and for certain
limiting cases, this criterion cannot be applied, and the
adoption of another stability criterion is required.

The Liapunov’s direct method is a powerful tool
for examining “infinitesimal stability” or “stability in
the large” of linear and nonlinear dynamical systems.
This method provides a significant advantage in that
sufficient conditions for stability can be obtained without
explicity solving the equations of motion, which are,
in general, nonlinear and impossible to solve analyti-
cally.  It has frequently been applied successfully in
examining attitude stability of satellites and space
mechanics problems.  In the area of rotor dynamics,
however, very few investigations (Gunter, 1966; Grobov
and Kantimer, 1978; El-Marhomy and Schlack, 1991)
are found in the literature that adopt this technique.
Moreover, the first two focus mainly on the effect of
appendage flexibility on shaft whirl stability, ignoring
completely the flexibility of the two end bearings.  The
third discusses only the elastic shaft without an at-
tached appendage on eight-coefficient bearings.

The results of a literature review thus prompted
this study on parametric stability analysis of rotor-
bearing systems via Liapunov’s direct method.  A general
method of analysis is presented in this work to inves-
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the left bearing and r2  of the right bearing center by

  r1 = x1i + y1 j – 1k (2)

and

  r2 = x2i + y2 j + 2k , (3)

where for small angular and translational displace-
ments, we have

   θ =
x – x1

1

=
x2 – x

2

(4)

and

   φ =
y – y1

1

=
y2 – y

2

, (5)

in which 1 and 2 are the distances from the shaft center
of mass to the left and right bearings respectively.
Also, the position vector of the appendage center of
mass at a distance, a, from the shaft mass center is given
by

   rA = (x + aθ)i + (y + aφ) j + ak . (6)

Using the infinitesimal rotation concept (where second
order terms of εi are neglected), the resultant angular

velocity of the appendage-shaft system   ω = Ω + θ + φ
can be written as

   ω = (φ – θΩ)i + (θ – φΩ) j + (Ω + θφ)k , (7)

Fig. 1. Rotor bearing model.

tigate how different system parameters can affect the
stability of its whirling motion.  This is done through
a model of an axially symmetric rigid appendage at-
tached at an arbitrary location along a nonuniform rigid
rotating shaft mounted on two dissimilar eight-com-
ponent end bearings.  A set of sufficient conditions of
asymptotic stability is obtained as a function of various
system parameters.  Stability boundaries are presented
in graphical forms in terms of system nondimen-
sionalized parameters.

II. Problem Formulation

The model consists of an axially symmetric rigid
appendage of mass mA rigidly attached at an arbitrary
location along a shaft of mass mS and length 2, which
is supported at its ends by two dissimilar eight-coef-
ficient bearings as shown schematically in Fig. 1.  The
static deflections are considered negligible compared
to the dynamics effect, and aerodynamic forces are not
included.

Consider that in the dynamic equilibrium configu-
ration of the system, the shaft is along the z direction
of a rotating x,y,z coordinate system located at the shaft
center of mass and described by unit vectors   i, j, k.
Denoting the displacement of the shaft center of mass
by

  rs = x(t)i + y(t) j , (1)

we can describe the position vector r1  of the center of
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where Ω is the spinning speed of the system.
Differentiating Eqs. (1), (2), (3) and (6) with

respect to time, the velocity vectors rs, r1 , r2  and rA

are given by

   rs = [x – y(Ω + θφ)]i + [y + x(Ω + θφ)] j

   + [y(φ – θΩ) – x(θ – φΩ)]k , (8)

   r1 = [x – 1θ + (y – 1φ)(Ω + θφ) – 1(θ – φΩ)]i

   + [y – 1φ + (x – 1θ)(Ω + θφ) – 1(φ – θΩ)] j

   + [(y – 1φ)(φ – θΩ) – (x – 1θ)(θ – φΩ)]k ,   (9)

   r 2 = [x + 2θ – (y + 2φ)(Ω + θφ) + 2(θ – φΩ)]i

   + [y + 2φ + (x + 2θ)(Ω + θφ) – 2(φ – θΩ)] j

   + [(y + 2φ)(φ – θΩ) – (x + 2θ)(θ – φΩ)]k , (10)

and

   rA = [x + aθ – (y + aφ)(Ω + θφ) + a(θ – φΩ)]i

   + [y + aφ + (x + aθ)(Ω + θφ) – a(φ – θΩ)] j

   + [(y + aφ)(φ – θΩ) – (x + aθ) + (θ –φΩ)]k .(11)

The kinetic energy of the system is

   T = 1
2[msrs • rs + mArA • rA + m1r1 • r1 + m2r2 • r2

   + Id(ωx
2 + ωy

2) + Ipωz
2] , (12)

where m1 and m2 are the masses of the left and right
bearings, respectively, whereas Id and Ip are the diame-
tral and polar mass moments of inertia of the append-
age−shaft system.

The strain energy expression for the bearing system
under consideration is

   V = 1
2 k ijqiq jΣ

j
Σ
i

= 1
2(k x1x1

x1
2 + k x1y1

x1y1 + k y1y1
y1

2

  + k y1x1
y1x1 + k x2x2

x2
2 + k x2y2

x2y2 + k y2y2
y2

2

  + k y2x2
y2x2) , (13)

in which the subscript 1 refers to the left bearing and
2 to the right bearing.

The energy dissipation function of the system is

   D = 1
2 cijqiq jΣ

j
Σ
i

= 1
2(cx1x1

x1
2 + cx1y1

x1y1 + cy1y1
y1

2

  +cy1x1
y1x1 +cx2x2

x2
2+cx2y2

x2y2 +cy2y2
y2

2 +cy2x2
y2x2) .

(14)

The state of motion of the dynamical system under
consideration is completely defined by the four state
variables x, y, θ and φ.

III. Stability Analysis: General Case

Lagranges equations,

   d
dt ( ∂L

∂qi
) – ∂L

∂qi
= Qi , i=1, 2, 3, 4, (15)

can be used to derive the system equations of motion
where the generalized non-conservative force Qi of the
system is a damping force of Rayleigh’s type, defined
by

   Qi = – ∂D
∂qi

, (16)

and the Lagrangian L is

L=T−v.

However, the resulting equations of motion are four
coupled nonlinear second order differential equations
that are impossible to solve analytically.  Therefore,
stability analysis is adopted in this investigation to
determine the behavior of the nonlinear system of
equations in the neighborhood of the equilibrium
configuration, identif ied by qi=qi =0, based on
Liapunov’s direct method.  If damping is neglected, the
Hamiltonian H is a constant called the Jacobi integral,
which is well known to be a suitable Liapunov function.
In the presence of damping, the total time derivative
of H is

   H = ∂H
∂qi

qi + ∂H
∂pi

piΣ
i = 1

n
, (17)

where pi is the generalized momentum of the system.
In view of the following Hamiltanian equations

of the considered system:

   qi = ∂H
∂pi

and pi = – ∂H
∂qi

+ Qi , (18)

Eq. (17) becomes

   H = QiqiΣ
i = 1

n
. (19)

Equation (19) indicates that the sign definiteness of H
depends on Qi.  Since Qi  comprises damping forces
representing either complete damping or pervasive
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damping, it does not alter the nature of equilibrium in
a meaningful way.  That is to say, a stable system
becomes asymptotically stable whereas an unstable one
remains unstable.  Therefore, for such a system, the
Hamiltonion still serves as a suitable Liapunov func-
tion.

The system Hamiltonion function can be written
as

H=T2−T0+V, (20)

in which the subscriptes of T denote the degree of
homogenity in the generalized velocity variables
qi .

Since T2 is by definition positive definite in qi ,
and since V and T0 depend only on qi, the positive
definiteness of the dynamic potential U given by

U=−T0+V (21)

ensures the positive definiteness of H.  Thus, the
following function U serves as a suitable Liapunov
testing function for the dynamical system under con-
sideration:

   U = 1
2{k x1x1

(x – 1θ)2 + (k x1y1
+ k y1x1

)(x – 1θ)(y – 1θ)

   + k y1y1
(y – 1φ)2 + k x2x2

(x + 2φ)2 + (k x2y2
+ k y2x2

)

   • (x + 2θ)(y + 2θ) + k y2y2
(y + 2φ)2 – IdΩ2(θ 2 + φ2)

   – IpΩ2 – m1Ω2[ 1
2(θ 2 + φ2) + (x – 1θ)2(1 + φ2)

   – (y – 1φ)2(1 + θ 2) – 2 1θ(x – 1θ) – 2 1φ(y – 1φ)

   – 2θφ(x – 1θ)(y – 1φ)] – msΩ
2(x2+y2+(xφ – yθ)2)

   – mAΩ2[(1 + φ2)(x + aθ)2 + (1 + θ 2)(y + aφ)2

   + a2(θ 2 + φ2) – 2aθ(x + aθ) – 2aφ(y + aφ)

   – 2θφ(x + aθ)(y + aφ)] – m2Ω2[ 2
2(θ 2 + φ2)

   + (1 + φ2)(x + 2θ)2 + (1 + θ 2)(y + 2φ)2

   – 2θφ(x + 2θ)(y + 2φ) + 2 2θ(x + 2θ)

   + 2 2φ(y + 2φ)]} . (22)

In view of Eqs. (14) and (16) and using Euler’s
theorem of homogenous functions, Eq. (19) be-
comes

H=−2D. (23)

Thus, a positive definite D leads to a negative definite
H .  Hence, according to the Liapunov stability theory,
if for such a system H is positive definite (which can
be guaranteed by the positive definiteness of U), then
the system is asymptotically stable; and if H can assume
negative values in the neighborhood of the equilibrium
point, then the system is unstable.  Thus, the problem
simplifies to testing for (1) the positive definiteness
of U to achieve stability in the undamped case and (2)
the positive definiteness of both U and D in order to
achieve asymptotic stability of the damped system.
Testing for the positive definiteness of U and D can
be accomplished by applying Sylvester’s theorem to
the Hessian matrices of U and D (evaluated at the
equilibrium point) given by

   
Uij = ∂2U

∂qi∂q j E

and (24)

   
Dij = ∂2D

∂qi∂q j E

.

IV. Similar Bearings and a Uniform
Shaft

To demonstrate the general method of analysis,
the bearings are taken to be similar (i.e., ki1j1= ki2j2=

1
2 kij ,

ci1j1=ci2j2=
1
2 cij , and m1=m2=1

2 m′), and the shaft is

made uniform with its mass center coincident with the
appendage mass center (i.e.,   1 = 2=  and a=0) in order
to simplify the complexity of the stability calculations
and the resulting conditions.  Dividing U by mΩ2 (where
m=m′+mA+mS), evaluating the second partial deriva-
tives at the equilibrium point and making appropriate
algebraic manipulations, the Hessian matrix Uij  can be
written as

   

Uij=

ωxx
2

Ω2 – 1 α 0 0

α
ωyy

2

Ω2 – 1 0 0

0 0 2 ωxx
2

Ω2 – C 2α

0 0 2α 2 ωyy
2

Ω2 – C

,

(25)

in which the nondimensional parameters C and α are
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defined by

   C = 4m′
m +

Id

m 2 (26)

and

   α = (ωxy
2 + ωyx

2 )/2Ω2 (27)

where   ωij
2 =kij /m.

Applying Sylvester’s Theorem to test the positive
definiteness of Uij , its successive principal minor de-
terminants must be positive definite, thus yielding the
following sufficient conditions for system whirl stabil-
ity:

   ωxx
2

Ω2 > 1 , (28)

   ωxx
2

Ω2 – 1
ωyy

2

Ω2 – 1 > α2 , (29)

   ωxx
2

Ω2 > C (30)

and

   ωxx
2

Ω2 – C
ωyy

2

Ω2 – C > α2 . (31)

V. Discussion of Results

The following points are made based on an ex-
amination of the foregoing conditions;

(1) Conditions (28)-(31) represent sufficient condi-
tions for whirl stability of an axially symmetric
rigid appendage on the midspan of a uniform
spinning shaft mounted on elastic bearings pos-
sessing mass and both anisotropic and cross-
coupling stiffness coefficients.

(2) For C≥1, it is seen that once conditions (30) and
(31) are satisfied, conditions (28) and (29) are
automatically satisfied.  In other words, the sys-
tem stability criterion can be performed based
on conditions (30) and (31) only, leaving con-
ditions (28) and (29) as trivial stability condi-
tions in this case.  On the other hand, if C≤1,
it is clear that satisfaction of conditions (28) and
(29) implies satisfaction of conditions (30) and
(31).  Therefore, in the case of C≤1, conditions
(28) and (29) constitute the basis of the system
stability criterion whereas conditions (30) and
(31) are considered as trivial conditions.

(3) The stability criteria in conditions (28)-(31) func-
tionally show the effects of the system’s non-

Fig. 2. Effect of the nondimentional cross-coupling parameter on
stability regions for C≥1.

dimensional parameters    ωxx
2

Ω2 , 
   ωyy
2

Ω2 , α anc C on

the whirl stability of the dynamical system under
investigation.  The effects of these factors on the
stability boundaries of the system based on con-
ditions (28)-(31) and the argument in the fore-
going point are presented graphically in Figs.
2-5.

(4) Figures 2 and 3 clearly demonstrate the influence
of the bearing cross-coupling nondimensionalized

parameter α=(
   ωxy
2 + ωyx

2

2Ω2 ) as a serious source of

instability where it is easy to see that the curves
with higher values of α contain smaller stability
regions.

(5) To demonstrate the effect of the principal stiff-
ness coefficients on the system stability regions,

let us take (    ωxx
2

Ω2 −1) in conditions (28)-(31) as a

parameterdenoted by λ.  The system stability
boundaries, drawn in terms of λ, are then rep-
resented by the family of parabolas shown in
Figs. 4 and 5.  It is clear from Figs. 4 and 5 that
the greater the value of λ, the larger the region
of stability.  The maximum stability region in
the figures is found when λ tends to infinity
(rigid bearings), where the stability region tends
to be the entire  area above the common tangen-

tial horizontal line 
   ωyy
2

Ω2 =1 or 
   ωyy
2

Ω2 =C.  This sup-

ports the intuitive expectation that the increase
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It is then obvious that the value of the bearing
mass ratio  m′

m  should be less than 0.25 such that
C>1 in order to guarantee that the bearing mass
has no influence on system whirl stability.
However, if the bearing mass ratio  m′

m  is greater
than or equal to 0.25, then it is certain that the
bearing mass will have a bad effect on system
stability.  It is also clear that if the mass and the
dimensions of the appendage are such that the

value of the ratio   Id

m 2 ≤(1−    4m′
m ), then they will

not affect system whirl stability; otherwise, they
will have had influence on system stability.

VI. Effect of Damping

A necessary condition to achieve asymptotic sta-
bility of the damped system in the sense of Liapunov
is the positive definiteness of D since it leads to the
negative definiteness of H .  Therefore, sufficient con-
ditions for asymptotic stability require satisfaction of
the positive definiteness of Dij  in addition to the positive
definiteness of Uij .  Therefore, letting Ci1j1=Ci2j2=

1
2 Cij

in Eq. (14) for similar bearings and evaluating the
second partial derivatives of D at the equilibrium point
qi=qi=0, the Hession matrix Dij  can be put on the form

   

Dij =

Cxx γ 0 0

γ Cyy 0 0

0 0 2Cxx
2γ

0 0 2γ 2Cyy

, (32)

in which the bearing cross-coupling damping param-
eter γ is defined by

Fig. 5. Effect of the nondimensional principal stiffness parameter
λ on stability regions for C≤1.

Fig. 3. Effect of the nondimentional cross-coupling parameter on
stability regions for C≤1.

of bearing rigidity enhances the dynamic stabil-
ity of the system.

(6) Based on the argument in point (2) and the results
illustrated in Figs. 2−5, it is seen that the system
stability boundaries are not affected by the
nondimensional parameter C in the case where
the value of this parameter is less than or equal
to unity.  On the other hand, it is shown that when
C>1, greater values of C lead to smaller stability
regions.  Thus, the role that can be played by
the bearing mass ratio and the appendage mass
and dimensions in affecting system stability can

be demonstrated if we recall that C=    4m′
m +

Id

m 2 .

Fig. 4. Effect of the nondimensional principal stiffness parameter
λ′ on stability regions for C≥1.
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Fig. 6. Stability surface of the bearing damping coefficients space.

is the spatial region inside the parabolic hyperbolid
shown in Fig. 6.  This indicates that all possible values
of bearing damping coefficients that result in asymp-
totically stable motion are located inside this stability
surface.  The cross sections of the stability surface in
Fig. 6 formed by planes perpendicular to either Cxx or
Cyy is a family of parabolas.  Thus, from  Fig. 6, it is
easy to see that the stability regions grow with the
increase of the principal damping coefficients Cxx or
Cyy.  It can also be shown that if the stability surface
is cut by planes perpendicular to the γ-axis, then the
cross-sections are rectangular hyperbolas representing
the stability boundaries in terms of γ as shown in Fig.
7.  The area inside each hyperbola decreases with the
increase of γ, which indicates that the stability regions
decrease with the increase of γ.  This clearly illustrates
the significance of the bearing cross-coupling damping
coefficients as a major source of whirl instability of
rotor-bearing systems.  This result agrees with the
results reached before by the author (El-Marhomy,
1995, 1997) and others such as Gunter (1966) and Rao
(1983, 1984).  The significance of the Cij  coefficient
in harming rotor stability may be physically attributed
to the fact that it produces a force in the i  direction
due to a time rate of change of a displacement from
the equilibrium configuration in the perpendicular
direction j  leading to self-excited rotor instability.
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