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ABSTRACT

A general method of analysis based on Liapunov’s direct method is presented for studying the
behavior of the nonlinear system of differential equations governing the motion of a rotor-bearing system
in the neighborhood of its equilibrium point. A model comprised of an axially symmetric rigid appendage
attached at an arbitrary location along a nonuniform spinning shaft mounted on two dissimilar eight
component end bearings is adopted to develop stability criteria involving different system parameters.
The stability boundaries presented graphically in terms of system nondimensionalised parameters are typical
examples of the types of design information available to engineers through the equations provided in this
paper. Among the results reached in this paper are the demonstration of the roles played by (1) bearing
mass, (2) appendage mass and dimensions, (3) bearing principal stiffness and damping coefficient, and
(4) bearing cross-coupling stiffness and damping coefficients in affecting the nature of system whirl

stability.
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I. Introduction criterion has also been used by several authors (Kirk
and Gunter, 1976; Gunter, 1966; EI-Marhomy, 1997)
Rotor-bearing systems are assemblies widely usei study the stability of linearized rotor-bearing sys-
in aerospace and mechanical industries. Power méms. However, for nonlinear systems and for certain
chinery, such as compressors and turbomachines, udimiting cases, this criterion cannot be applied, and the
ally transmits power by means of rotor bearing systemsidoption of another stability criterion is required.
In recent years, due to the design trend toward high  The Liapunov’s direct method is a powerful tool
spin rates to raise the operating efficiency, the resultinfpr examining “infinitesimal stability” or “stability in
instability problems and lateral vibration of the systenthe large” of linear and nonlinear dynamical systems.
has become aggravated. Therefore, research in stabllhis method provides a significant advantage in that
ity and dynamic response of rotor-bearing systems hasufficient conditions for stability can be obtained without
prospered in the past few decades (Vance, 1988). explicity solving the equations of motion, which are,
The prevalent approach adopted for stabilityin general, nonlinear and impossible to solve analyti-
analysis of rotor-bearing systems in most of the literaeally. It has frequently been applied successfully in
ture (EI-Marhomy, 1994; Chang and Cheng, 1993; Kirlexamining attitude stability of satellites and space
and Gunter, 1976; Chivens and Nelson, 1975; Iwatsubmechanics problems. In the area of rotor dynamics,
and Tomita, 1973) is the traditional approach wher&owever, very few investigations (Gunter, 1966; Grobov
the governing equations of motion are first transforme@nd Kantimer, 1978; ElI-Marhomy and Schlack, 1991)
into an eigen-value problem. Then from the solutiorare found in the literature that adopt this technique.
of the exponential growth (unstable) or decay (stable)Moreover, the first two focus mainly on the effect of
the stability criteria are established based on the rexppendage flexibility on shaft whirl stability, ignoring
sulting eigen values (critical speeds) and their systemompletely the flexibility of the two end bearings. The
parametric dependance. It is also found in the pertinethird discusses only the elastic shaft without an at-
literature that some authors (Castelli and Elrod, 1964ached appendage on eight-coefficient bearings.
Cheng and Trumpler, 1963; Rao, 1983, 1984) adopted The results of a literature review thus prompted
the fluid dynamics approach where the rotor stabilitythis study on parametric stability analysis of rotor-
problem is mainly examined in terms of the characterbearing systems via Liapunov’s direct method. A general
istics of the fluid film bearings. The Routh-Hurwits method of analysis is presented in this work to inves-
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X

Fig. 1. Rotor bearing model.

tigate how different system parameters can affect théhe left bearing and, of the right bearing center by
stability of its whirling motion. This is done through

a model of an axially symmetric rigid appendage at- r=xi+y]—0Kk (2)
tached at an arbitrary location along a nonuniform rigid

rotating shaft mounted on two dissimilar eight-com-and

ponent end bearings. A set of sufficient conditions of

asymptotic stability is obtained as a function of various 1 =x,i +y,j + (K, (3)
system parameters. Stability boundaries are presented

in graphical forms in terms of system nondimen-where for small angular and translational displace-

sionalized parameters. ments, we have
. X=X, _ X=X

Il. Problem Formulation O=",7 =" (4)

1 2
The model consists of an axially symmetric rigidand

appendage of mass, rigidly attached at an arbitrary V=V: _ Yo=Y

location along a shaft of mass and length 2, which Q=" = (5)
1 2

is supported at its ends by two dissimilar eight-coef-

ficient bearings as shown schematically in Fig. 1. Thén which?, and/, are the distances from the shaft center

static deflections are considered negligible comparedf mass to the left and right bearings respectively.

to the dynamics effect, and aerodynamic forces are nétlso, the position vector of the appendage center of

included. mass at a distanca, from the shaft mass center is given
Consider that in the dynamic equilibrium configu- by

ration of the system, the shaft is along théirection A

of a rotatingx,y,z coordinate system located at the shaft fa=(x+ad)i +(y+agj+ak. (6)

center of mass and described by unit vectigisk.

Denoting the displacement of the shaft center of masdsing the infinitesimal rotation concept (where second

by order terms of; are neglected), the resultant angular
velocity of the appendage-shaft syst@t‘:n:5+§+?p
re=xOi +y@)j, (1) can be written as
we can describe the position vectgrof the center of W = (p—6Q) + (8- ¢Q)j + (Q+ YK, @)
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where Q is the spinning speed of the system. +Cy x Y1X1 +Cy  J5HC, KoV +Cy V5 +Cy Vo) -
Differentiating Eqgs. (1), (2), (3) and (6) with
respect to time, the velocity vectors r;, i, andf,

are given by The state of motion of the dynamical system under
_ consideration is completely defined by the four state
Fo=[X=Y(Q+ 697 +[y+XQ+ 6¢)]] variablesx, y, 6 and ¢.
+[y(@— 6Q) —x(6— ¢k, 8 1ll. Stability Analysis: General Case
F = [X= 0,0+ (y—(,9)(Q+ 69) — (,(6— Q)T Lagranges equations,
+H[y—lip+ (X=0,6)(Q + 6¢) — {1(p— 6Q)]] %(%)_%:Qi, i=1, 2, 3, 4, (15)

+[(y—{19)(@— 6Q) — (x—,8)(6— ¢)]K, (9)

can be used to derive the system equations of motion

=X+ 0.0 — 0.0 S+ 0.(6— o where the generalized non-conservative fdpcef the
P2 =X+ E6-(/+ (.0 + 6g) + (6= gl system is a damping force of Rayleigh’s type, defined
+ly+ Lo+ (x+ 000Q+ 0~ (p-00))] Y
+[(y + (20 (p— 6Q) - (x + (,6)(6 - ¢Q)]K,, (10) 'Toog;
and and the Lagrangiah is
Fa=[x+ad-(y+ag)(Q + 69) +a(6— gQ)]i L=T-v.
+[y+agp+ (x+ad)(Q + 8g) —a(p— 6Q)]] However, the resulting equations of motion are four

coupled nonlinear second order differential equations
+[(y+ag)(¢p- 0Q) —(x+ab) + (6 —¢Q)]k .(11)  that are impossible to solve analytically. Therefore,
stability analysis is adopted in this investigation to

The kinetic energy of the system is determine the behavior of the nonlinear system of
equations in the neighborhood of the equilibrium

T:%[mfs,’ Fot MpFae T+ My Fr+myisye iy c_onfigur:a\tio_n, identified byqizqizc_), based on
Liapunov’s direct method. If damping is neglected, the
+14(c2 + w@ +|pr2] , (12) HamiltonianH is a constant called the Jacobi integral,

which is well known to be a suitable Liapunov function.
wherem; andm, are the masses of the left and rightIn the presence of damping, the total time derivative
bearings, respectively, wheregsandl, are the diame- of H is
tral and polar mass moments of inertia of the append-
age-shaft system. H= %qi +(?THD| : (17)
The strain energy expression for the bearing system =1 00 B

under consideration is wherep; is the generalized momentum of the system.

In view of the following Hamiltanian equations

-1 -1
V= ?lz ]Z Kiji0j = 5Ky XE + Koy, Xa¥a + Ky VE of the considered system:
+ kY1X1y1X1 + szxzxg + kx2y2X2y2 + kYzYzyg g = % and p=- gigll + Qi ) (18)
+ Ky, Yo%) , (13)  Eq. (17) becomes
in which the subscript 1 refers to the left bearing and H = i Qu (19)
i=1

2 to the right bearing.

The energy dissipation function of the system is ) o ) o
Equation (19) indicates that the sign definiteneskl of

-1 -1 .2 .\ 2 depends orQ;. SinceQ; comprises damping forces
D= Cig =5(Cy X +Cy XY+ C i i
2|ZIZ 910 = (G Xt * oy XaY1 * Oy I representing either complete damping or pervasive
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damping, it does not alter the nature of equilibrium inThus, a positive definit® leads to a negative definite
a meaningful way. That is to say, a stable systerdl. Hence, according to the Liapunov stability theory,
becomes asymptotically stable whereas an unstable oifefor such a systent is positive definite (which can
remains unstable. Therefore, for such a system, thee guaranteed by the positive definitenes&Jpfthen
Hamiltonion still serves as a suitable Liapunov functhe system is asymptotically stable; antli€an assume

tion. negative values in the neighborhood of the equilibrium
The system Hamiltonion function can be writtenpoint, then the system is unstable. Thus, the problem
as simplifies to testing for (1) the positive definiteness
of U to achieve stability in the undamped case and (2)
H=T=TotV, (20) the positive definiteness of both andD in order to

achieve asymptotic stability of the damped system.
in which the subscriptes of denote the degree of Testing for the positive definiteness OfandD can
homogenity in the generalized velocity variableshe accomplished by applying Sylvester’s theorem to
q;- the Hessian matrices d§ andD (evaluated at the
SinceT, is by definition positive definite in;,  equilibrium point) given by
and sinceV and Ty depend only org;, the positive

definiteness of the dynamic potentidl given by U = 22U
i~ Waqj .
U=-Ty+V (21)
and (24)

ensures the positive definiteness léf Thus, the 5
following function U serves as a suitable Liapunov D = 0D

: . : i = 9g,0q; |
testing function for the dynamical system under con- P e
sideration:

IV. Similar Bearings and a Uniform
U =4k (= 187+ (yy, + Ky, J—010)(y—£,6)  Shait

To demonstrate the general method of analysis,
the bearings are taken to be similar (ikg;,= kiﬂ-zz%kij,

< (X+0,0)(y+0,0) + kyzyz(y+€2@2_|d92(92+ @) ci1j1=ci2jz=%cij, and m1=m2=%m'), and the shaft is

made uniform with its mass center coincident with the
—1,0% - mQ7(6° + ) + (x—{,6)° (L + ¢P) appendage mass center (ifg.5 /,=/ anda=0) in order

to simplify the complexity of the stability calculations
—(y—fl@z(l +6%) —20,0x—0,0)—20,¢(y—{1¢) and the resulting conditions. Dividirdyby mQ? (where

m=m’'+ma+mg), evaluating the second partial deriva-
— 260X —0,6)(y — (1)] — MQ3(x>+y>+(xp—y6)®) tives at the equilibrium point and making appropriate

algebraic manipulations, the Hessian matjixcan be

+ kylyl(y_ pl@z + kxzxz(x + p2¢)2 + (kxzyz + kyzxz)

—mQA 1+ A (x+ab)? +(1+ 6% (y+ag)? written as
+a2(6% + ¢?) — 2a6(x + ab) — 2a@y + ag)
W
—20¢(x + ad)(y + a@)] ~MQ3(6° + &) [Qz‘l a 0 0
F L+ A0+ L+ Oy + L) a [;’%_ 1] o 0
~ 2600+ L,6)(y + (20) + 2000x+ £,6) i o, '
0 0 ﬂz[QZ—C] Pa
+ 20,0y + 9]} (22)
, . 0 0 o 0? ﬁz—c
In view of Egs. (14) and (16) and using Euler’s Q
theorem of homogenous functions, Eq. (19) be- ]
comes (25)
H=-2D. (23) in which the nondimensional paramet&sanda are
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defined by .
—am lg ]
=qm 4 'd_ 26 3
C=4%m me2 (26) 2503
and
20.0—;
a = (g + wl)2Q? (27) E
LN
where wé=k;/m. Q? ;
Applying Sylvester’s Theorem to test the positive 3
definiteness olJ;, its successive principal minor de- 10.0 3
terminants must be positive definite, thus yielding th: E
following sufficient conditions for system whirl stabil- 50 3 o)
ity: E '
@pl, (28) 0.0 ShrrrerrrrrrrrrrTTT T
Q 0.0 5.0 10.0 15.0 20.0 25.0
Wiy
Q2
“%—1][“%—1 >a?, (29)
Q Q Fig. 2. Effect of the nondimentional cross-coupling parameter on
stability regions forC=1.
% >C (30)
and dimensional parameter%%, ?;’2;{ a ancC on
% the whirl stability of the dynamical system under
[a%_c} lz_c >a. (31) investigation. The effects of these factors on the
Q Q stability boundaries of the system based on con-
ditions (28)-(31) and the argument in the fore-
V. Discussion of Results going point are presented graphically in Figs.
2-5.
The following points are made based on an ex- (4)Figures 2 and 3 clearly demonstrate the influence
amination of the foregoing conditions; of the bearing cross-coupling nondimensionalized

(1) Conditions(28)-(31) represent sufficient condi-

W, + W, ,
tions for whirl stability of an axially symmetric parametero=( 202 ) as a serious source of

rigid appendage on the midspan of a uniform instability where it is easy to see that the curves
spinning shaft mounted on elastic bearings pos- with higher values ofr contain smaller stability
sessing mass and both anisotropic and cross- regions.
coupling stiffness coefficients. (5) To demonstrate the effect of the principal stiff-
(2) ForC=1, it is seen that once conditiof®0) and ness coefficients on the system stability regions,
(31) are satisfied, condition@8) and(29) are . -
automatically satisfied. In other words, the sys- let us take %_l) in conditions(28)-(31) as a
tem stability criterion can be performed based parameterdenoted by. The system stability
on conditions(30) and(31) only, leaving con- boundaries, drawn in terms af are then rep-
ditions (28) and (29) as trivial stability condi- resented by the family of parabolas shown in
tions in this case. On the other handCH1, Figs. 4 and 5. It is clear from Figs. 4 and 5 that
it is clear that satisfaction of conditiof28) and the greater the value df, the larger the region
(29) implies satisfaction of condition80) and of stability. The maximum stability region in
(31). Therefore, in the case @k1, conditions the figures is found when tends to infinity
(28) and(29) constitute the basis of the system (rigid bearings), where the stability region tends
stability criterion whereas condition80) and to be the entire area above the common tangen-
(31) are considered as trivial conditions. tial horizontal line®=1 or ®Y=c_ This sup-
(3) The stability criteria in condition@8)-(31) func- 02~ 0z P
tionally show the effects of the system’s non- ports the intuitive expectation that the increase
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It is then obvious that the value of the bearing

Cf] . mass ratiorrTni should be less than 0.25 such that
p M C>1 in order to guarantee that the bearing mass
250 ze has no influence on system whirl stability.
However, if the bearing mass ratfg is greater
than or equal to 0.25, then it is certain that the
200 bearing mass will have a bad effect on system
. stability. It is also clear that if the mass and the
D150 dimensions of the appendage are such that the
o . .
Unstable value of the ratlo”ﬁs(l—%), then they will
10.0 not affect system whirl stability; otherwise, they
will have had influence on system stability.
5.0 3 .
:gzwtﬁ VI. Effect of Damping
a=0
0.0 F T T ey A necessary condition to achieve asymptotic sta-
0.0 5.0 10.0 15.0 200 250 bility of the damped system in the sense of Liapunov
w3 is the positive definiteness & since it leads to the
Q* negative definiteness ¢f. Therefore, sufficient con-
Fig. 3. Effect of the nondimentional cross-coupling parameter onditions for asymptotic stability require satisfaction of
stability regions forC<1. the positive definiteness @f; in addition to the positive
definiteness o). Therefore, Ietting:iﬂ-l:Cizjz:lCij
in Eq. (14) for similar bearings and evaluating the
10p~ second partial derivatives &f at the equilibrium point
) 0;=¢;=0, the Hession matri®; can be put on the form
8E
7k i
o2 6k C,k v O 0
@ 5E y C, 0 0
: D, = Y : 32
N: N U1 o0 e, Py (32)
~E nstable Unstable
2 E 0o o0 (% i,
1E 3 ]
-10.00 -2.00 0.00 2.00 10.00 in which the bearing cross-coupling damping param-
@ eter yis defined by

Fig. 4. Effect of the nondimensional principal stiffness parameter
A" on stability regions foC=1.

of bearing rigidity enhances the dynamic stabil- 10fT 7
ity of the system.

(6) Based on the argument in point (2) and the results
illustrated in Figs. 25, it is seen that the system
stability boundaries are not affected by the.
nondimensional paramet& in the case where ¢’
the value of this parameter is less than or equal
to unity. On the other hand, it is shown that when
C>1, greater values d lead to smaller stability
regions. Thus, the role that can be played by :
the bearing mass ratio and the appendage mass_ioo0 200 Y 00600

and dimensions in affecting system stability can a

be demonstrated if we recall th@t:% +m(7?' Fig. 5. Effect of the nondimensional principal stiffness parameter

2 A on stability regions folC<1.

W k L &N N X O
T TV TP T T TR T

Unstable / Unstable

— N
T
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Y :(ny +ny )2
4

is the spatial region inside the parabolic hyperbolid
shown in Fig. 6. This indicates that all possible values
of bearing damping coefficients that result in asymp-
totically stable motion are located inside this stability
surface. The cross sections of the stability surface in
Stability Surface Fig. 6 formed by planes perpendicular to eitfigy or
Plane of Symmetry C,y, is a family of parabolas. Thus, from Fig. 6, it is
c easy to see that the stability regions grow with the
increase of the principal damping coefficie@g, or
C,y. It can also be shown that if the stability surface
o N is cut by planes perpendicular to thaxis, then the
RS cross-sections are rectangular hyperbolas representing
the stability boundaries in terms gfas shown in Fig.
Fig. 6. Stability surface of the bearing damping coefficients space7. The area inside each hyperbola decreases with the
increase ofy, which indicates that the stability regions
decrease with the increasejof This clearly illustrates

1Lz

D

J(‘)o 647 1293
v

cesvsediiy

1003 AASAAARSAAMMARARARARANS the significance of the bearing cross-coupling damping
0.0 3 ¥ =(Cxy +Cyn)/2 coefficient_s; as a major source of whirl instabil.ity of
3 ! rotor-bearing systems. This result agrees with the
8.0 E results reached before by the author (El-Marhomy,
70 3 1995, 1997) and others such as Gunter (1966) and Rao
2 (1983, 1984). The significance of ti coefficient
6.0 -3 E in harming rotor stability may be physically attributed
Cy 50 to the fact that it produces a force in théirection
- 3 3 due to a time rate of change of a displacement from
4.0 3 the equilibrium configuration in the perpendicular
3.0 ] direction| leading to self-excited rotor instability.
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