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ABSTRACT

We have constructed a simulation environment called SEESMA (a Simulation and Evaluation
Environment for Shared-memory Multiprocessor Architecture). It is a program-driven simulator consisting
of a memory reference generator and a target system simulator. SEESMA aids in the investigation of
shared-memory multiprocessor architecture through a user friendly interface. It is a software platform
with a modular structure suitable for educational and research purposes. To achieve the design objectives,
SEESMA supports the following simulation environment for various important design spaces: (1) two types
of processing element architectures; (2) a two-level cache structure with write cache; (3) five types of
memory consistency models; (4) five types of cache coherence protocols; (5) three types of directory
structures; (6) interconnection networks, and other related issues. Each sub-environment provides many
options for investigating the interactions between different options. Meanwhile, we have also developed
an X-window interface to specify system architectures and benchmarks in addition to friendly on-line help.
We can determine the setup values of architectural parameters in a status region by moving the cursor
around the graph of each architecture component. The architecture graph is changed each time the user
modifies the simulation options. In addition, SEESMA can automatically collect data from several
simulation results and display a comparison using either a bar graph or a curve graph. So far, many design
issues and important performance gains for high performance multiprocessor systems can be evaluated
and explored using this platform.

Key Words: 'shared memory, multiprocessor, simulator, program-driven simulation, system design, per-

(formance evaluation, parallel-multithreaded processor

l. Introduction

Memory subsystem researchers working on
multiprocessor systems usually rely on a simulator to
evaluate and verify their designs. Because system
components can potentially interact in every memory
reference operation, the simulation of multiprocessor
systems is computationally expensive. Three sequen-
tial simulation techniques have been proposed for low-
cost workstations: trace-driven simulation (Eggers et
al., 1990), execution-driven simulation (Davis et al.,
1991), and program-driven simulation (Veenstra and
Fowler, 1994). ’

Trace-driven simulation does not execute real
benchmark programs at simulation time. Instead, it
uses memory reference traces as its input. Though such

"To whom all correspondence should be addressed.

a simulation method is very efficient, it suffers from
several disadvantages: (1) the timing or interleaving
of memory references can not be changed because there
is no feedback from the simulator to the trace file during
simulation; (2) the trace may be not accurate because
the timing difference between the simulation time and
the collection time can cause programs to take different
branches; and (3) each trace file can require hundreds
of megabytes of disk space (Eggers et al., 1990). In
contrast, execution-driven simulation and program-
driven simulation execute real benchmark programs
during simulation. Their advantage is that they provide
accurate reference timing and execution paths. Execu-
tion-driven simulations modify benchmark programs
by inserting calls into the simulator source. However,
this technique has the following disadvantages. (1)
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Users have to modify all the benchmark programs which
are to be simulated. (2) We have to relink the simulator
with the benchmark program each time the simulator
is modified. (3) Memory references for library code
called by the user program cannot be generated, unless
the library source is available and statically linked to
the user program (Davis et al., 1991).

Program-driven simulation overcomes the above
problems. It requires that benchmark programs be
statically linked with library codes to be executable
files for a specific real machine. These statically-
linked executable files are used as input files for
program-driven simulators. Consequently, benchmark
programs require no additional modification or
relinking. In addition, the memory references for the
library code can be simulated even if a library source
is not available (Veenstra and Fowler, 1994).

MINT (MIPS interpreter) is a kernel of program-
driven simulators (Veenstra and Fowler, 1994). We
have extended MINT to construct a simulation and
evaluation environment named SEESMA (a Simulation
and Evaluation Environment for Shared-memory
Multiprocessor Architecture). SEESMA aims to pro-
vide a simulation and evaluation environment for shared-
memory multiprocessor systems. It supports the
following simulation functions: (1) two types of pro-

cessor architecture, (2) a two-level cache with write’

caches; (3) a message-passing based interconnection
network; (4) five types of memory consistency models;
(5) five types of cache coherence protocols; and (6)
three types of cache coherence directory structures.
SEESMA has versatile simulation options to choose
from. Users can customize their simulated target memory
architecture by switching individual options on or off
through a friendly X-window interface.

We provide both menu-based and graph-based
input interfaces. The latter shows an architecture graph,
which changes each time the user modifies a simulation
option. Moreover, we can determine the setup values
of the architectural parameters in a status region by
moving the cursor around each architecture component.
During the setup procedure for the parameters, the
graphical interface also supports on-line help for users.
In addition, SEESMA can automatically collect the
data from several simulation results and display a
statistical comparison using a graph. So far, both bar
graphs and curve graphs are available. By means of
the graphs in the integrated environment, users can
compare different architectural parameters more eas-
ily. \
SEESMA provides so many features that it is a
good research environment for those who are interested
in system designs for shared-memory multiprocessor
architectures. We have used SEESMA to explore the

characteristics of cache coherence protocols and write
caches, and to verify our proposed methods either for
architecture designs or for compiler designs.

The rest of this paper is organized as follows.
Section II describes the simulated system architecture
and gives an overview of SEESMA. Section III details
the simulation functions of SEESMA. In Section IV,
we present the graphic input/output interface, which
facilitates use of our simulation and evaluation envi-
ronment. Section V gives an evaluation example based
on six SPLASH (Stanford Parallel Applications for
Shared-Memory) benchmark programs run on SEESMA.
Finally, we conclude the paper and suggest future de-
velopment. ’

Il. Overview of SEESMA

SEESMA is a sequential program that simulates
the execution of a benchmark program on any number
of processors. It is an extension of the MINT package
(Veenstra and Fowler, 1994). Its execution model is
the same as that of the MINT package; therefore, it is
a program-driven simulator. MINT itself only simu-
lates the ideal parallel memory that can satisfy a request
from every processor in every cycle, even if multiple
references are to the same location. Under this memory
model, all memory and synchronization references
complete in a single cycle. Therefore, to simulate more
realistic memory systems, SEESMA integrates the
MINT package with our constructed memory system
simulator and interconnection network simulator.

In the following subsections, we will give an
overview of the MINT and the organization and con-
struction of SEESMA, and finally, discuss the correct-
ness of simulation runs on SEESMA.

1. The MINT

MINT is a program-driven simulator for the study
of multiprocessor systems (Veenstra and Fowler, 1994).
It consists of a memory reference generator, simulation
library, and programming environment (Veenstra and
Fowler, 1994). The reference generator interprets MIPS
codes and models the execution of an application
program on any number of processors. The simulation
library manages and schedules events and processes.
These two parts are together called the front end, and
they are a source of overhead from the perspective of
a memory system researcher. MINT supplies the front
end to enable designers to focus on the design of
memory systems and interconnects.

The programming environment provides program-
mers with a set of function calls initialized empty.
When an event (for instance, a read reference) occurs,
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the memory reference generator calls the appropriate
functions (in this case, sim_read()) to simulate the
event. Because the function calls are initialized empty,
the memory system simulated by the MINT package
is an ideal model. In other words, the memory system
has neither cache hierarchy nor memory access latency.
What users have to do to simulate their target memory
systems is to replace the original function calls with
new contents. In addition, users may define other
function calls if this is needed. The content of each
user-defined function call is programmed individually
with the appropriate behavior, the local timing control
routine, and, if necessary, the time point at which to
call other functions. These function calls are together
called the back end.

The front end implicitly maintains the global time
by means of a data structure, called the Time_Wheel.
The Time-Wheel is a circular array in which each
element points to a prioritized task queue for a certain
time point. When the global time advances to the time
point, the tasks queued in the element are processed
one by one from the head to the tail of the queue. The
global time is not increased until we have processed
all the tasks queued in the array element pointed to by
the current time.

A task is processed by calling its associated
function. The task may create other new tasks to continue
the rest of its sub-tasks. For example, a write reference
will issue several invalidation requests to other caches
after it finds that the block status is shared. According
to their timings and priorities, these new tasks are
queued on the Time_Wheel. If a function returns a
T_ADVANCE value, the associated thread continues
its execution until an interesting operation (typically
the generation of a memory reference) is encountered.
At this time, the front end will call the appropriate back-
end function. However, if a T_FREE value is returned,
the front end just frees the task and processes the next
task.

If several tasks ask to access the same hardware
resource and the hardware resource can service only
one request at a time, only the event processed first
is granted service. The others are scheduled with new
events for retry at a later time. These tasks take place
and are handled virtually in parallel.

2. Organization and Construction of SEESMA

The primary goals of SEESMA are to use the
MINT-support programming environment to construct
simulations of memory subsystems and interconnec-
tion networks of shared-memory multiprocessor sys-
tems. SEESMA is comprised of the MINT front end
(Veenstra and Fowler, 1994) and our constructed target
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Fig. 1. Overview of the general simulated multiprocessor architec-
ture.

memory system and interconnection network simula-
tors (the back end).

The general architecture SEESMA simulates is a
distributed shared-memory multiprocessor system as
shown in Fig. 1. It is composed of multiple nodes -
connected by a global interconnection network. Each
node is composed of a processor environment, a local
shared memory, and a local interconnection. The or-
ganization of the processor environment consists of a
CPU and a two-level cache. In our two-level cache
hierarchy, the first-level cache (FLC) is a write-through
cache with no allocation on write misses, and the sec-
ond-level cache (SLC) is a write-back cache with write
allocation on write misses. The cache system is blocked
on read misses but not on write misses. Between the
FLC and the SLC there is a first-level write buffer
(FLWB) to avoid processor stalls on write accesses.
Moreover, to make the SLC lock-free, meaning that
multiple outstanding write requests are allowed, a second
level write buffer (SLWB) is included to store all writes
to the SLC that cause global actions. The cache hi-
erarchy is interfaced to the local portion of the shared
memory and the global interconnection network. The
shared memory is divided into several equal-size pages
that are allocated to nodes in a round-robin fashion.

SEESMA has been programmed in C language
with about 22000 statements and constructed on a SUN
workstation running under the UNIX System V envi-
ronment. The general back-end structure of SEESMA
as shown in Fig. 2 is similar to the architecture illus-
trated in Fig. 1. The whole structure is modular in
design so that it can be enhanced or extended easily.
However, SEESMA provides so many simulations of
various architectural functions that we can define an
architecture with specified components. The primary
simulation functions include the following:
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Fig. 2. Overview of SEESMA.

(1) Two CPU types: RISC (Reduced Instruction Set
Computer) and PMP (Parallel Multithreaded Pro-
cessor) (Hirata et al., 1992).

(2)Five memory consistency models: sequential
(Lamport, 1979), processor (Goodman, 1989),
weak (Dubois et al., 1986), release (Gharachorloo
et al., 1990), and our proposed PSC (PMP-MP
Specific Consistency) models (Wu and Chen,
1998b).

(3) Two-level cache hierarchy with FLWB, SLWB,
and write cache (Dahlgren and Stenstrom, 1995).

(4) Three cache directory structures: centralized
fully-mapped, centralized limited (Stenstrom,
1990), and distributed SCI (Scalable Coherence
Interface) structures (Gjessing et al., 1991).

(5)Five cache coherence protocols: SCI, write in-
validate, write update, competitive-update, and
clean protocols (Grahn et al., 1995).

(6) K-ary, N-cube interconnection network (Dally,
1990).

(7) Optimization for migratory-sharing accesses (Su
et al., 1996).

So far, we provide almost any combination of
options of these seven primary functions except for the
following combinations: (1) the clean protocol or the
PSC model under the distributed directory structure;
and (2) the SCI protocol or the optimization algorithm
for migratory-sharing accesses under a centralized di-
rectory structure.

After constructing the back end, we can compile
it on a SUN workstation. We can then link it with the
compiled memory reference generator and libraries to
obtain an executable simulator as shown in Fig. 3.
Now, we can use SEESMA to evaluate various bench-

mark programs, which are statically-linked Irix execut-
able file compiled for the MIPS R3000 processor. Mean-
while, we have to setup simulation options to customize
a simulated target machine. Basically, SEESMA can
output the following important simulation and evalu-
ation results:

(1) Parallel execution time: including busy time,
stalled time for read miss, acquire-stall time,
stalled time for write-buffer-full, and contention
time for accessing FLC.

(2)Memory accesses for FLC and SLC: including
any number of read and write requests.

(3)Miss ratio for read and write requests.

(4)Cold and coherence misses.

(5) Distribution of the invalidation/update count.

(6) Write run distribution.

(7)Hit ratio in write cache.

(8) Write run distribution in write cache.

(9)Number of read and write misses to invalid
memory copies.

(10) Amount of network traffic.
(11) Number of LOCK and Barrier operations.
(12) Delay time for acquire and release accesses.

3. Correctness

Correctness is the most important issue for any
software design. For a small to medium input domain,
it is easy or possible to verify the correctness. How-
ever, for a large input domain, correctness verification
is difficult or even impossible. What we can do is to
choose several reported results, redo the simulation
using SEESMA, and finally compare these two results.
For instance, Dahlgren and Stenstrom (1995) have
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Compiled memory
subsystem simulator

Memory subsystem I

MINT’s compiled
memory reference

link generator and libraries

Fully linked || /ink

executable
input .
Compiled - """ > input Options control
application D and architectural
run
parameters
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output

Fig. 3. Construction of a MINT-based simulator.
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Table 1. Mapping Table for Memory Accesses under Different
Memory Models

Model
Type SC PC wC RC
Ordinary Read Read Read Ordinary
Read Read
Ordinary Write-  Write Write Ordinary
Write Write
Acquire Read Read Synchronization Acquire
Release Write Write Synchronization Release

studied the impact of write caches on several cache
coherence protocols for shared-memory multiproces-
sors. On the other hand, we have also studied this topic
for Parallel multithreaded processor-based multipro-
cessor (PMP-MP) systems (Wu and Chen, 1998a). In
this research paper, we provide evaluation results for
PMP-MP. The PMP-MP architecture with one thread
per processing element is the same as that simulated
by Dahlgren and Stenstrom. Comparing these two
results, we can see that they have the similar behaviors.
The only exception is for the Ocean program. This is
because the Ocean program Dahlgren and Stenstrom
used is in the SPLASH suite (Singh et al., 1992) that
which we have used is in the SPLASH-2 suite (Woo
et al., 1995).

In the following section, we present details of the
functions and structure of SEESMA.

Ill. Functions of SEESMA

The memory system we simulate in the back end
of SEESMA is a cache-coherent non-uniform memory
architecture (CC-NUMA). The back end consists of
simulations of a two-level cache, global interconnec-
tion network, memory consistency model, and cache
coherence protocol. Details of each simulation are
given in the subsections below.

1. Multithreaded Multiprocessors

PMPs (Hirata et al., 1992) can execute more than
one thread at the same time. We expect that this type
of processor will become one of the most popular
single-processor designs because of its superior re-
source utilization. Because the MINT package pro-
vides only a simulation of the instruction set of the
MIPS R3000 processor, which is a RISC machine, we
add a simulation of the PMP-MP system in SEESMA.

The most important feature of PMP-MP is that

'In fact, it is called the process identifier in the MINT package.

several parallel running threads share only one cache
in each processing element. Consequently, to simulate
the PMP-MP architecture, when the front end invokes
a back-end function that will access the shared cache,
the thread identifier! for each task must be mapped to
the identifier of the processing element in which the
thread resides. On the other hand, when a task is going
to return a T_ADVANCE value to the front end, we
have to remap the identifier to its original thread
identifier to let the thread issuing the memory access
continue execution.

2. Memory Consistency Models

We provide simulations of four conventional
hardware-centric memory consistency models, includ-
ing sequential consistency (Lamport, 1979), processor
consistency (Goodman, 1989), weak consistency
(Dubois et al., 1986), and release consistency
(Gharachorloo et al., 1990). To simulate these four
memory consistency models in SEESMA, we categor-
ize and label memory accesses into acquire, release,
ordinary read, and ordinary write classes. To label
memory accesses in source benchmark programs, we
insert the MINT-supplied generate_event() functions
with different parameters into the LOCK, UNLOCK,
and BARRIER macros, respectively. Calls to
generate_event() within the object program will cause
an event to be generated for the current running thread.
The back-end sim_user() is called, and the arguments
for generate_event() can be retrieved from the event
structure to label the type of individual synchronization
access. Although we label synchronization accesses
in four classes, at the time of simulation, we have to
map these four classes into the original ones as illus-
trated in Table 1 according to the simulated memory
model.

In addition to the four conventional models, we
provide a simulation of our proposed memory consis-
tency model, called the PSC model (Wu and Chen,
1998b). The new model is an extension of the release
consistency model, particularly for PMP-MP systems.
It uses a new method of categorization for memory
accesses and utilizes the features of PMPs. We further
partition acquire and release accesses into three sub-
categories: one for lock-unlock pairs, one for barrier
synchronization, and the last for other accesses. Ac-
cording to the semantics of each synchronization primi-
tive, each sub-category has its own relaxed restrictions.
On the other hand, the feature of a PMP is that it is
capable of executing more than one thread at the same
time where all parallel threads share only one cache
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Fig. 4. The processor environment with a write cache.

hierarchy. Under the new model, we can use dual write-
caches to reduce write traffic and synchronization time.

3. Two-Level Cache with Write Cache

The processor SEESMA simulates is blocked on
read misses but not on write misses (Dahlgren and
Stenstrom, 1995). That is, the back-end will return
T_ADVANCE to the front-end only when write misses
occur. Read accesses are handled as follows. When
a read reference hits on the FLC, it returns the requested
words to the processor. When a read miss occurs on
the FLC, we have to check whether the requested block
is buffered in the FLWB. If the answer is yes, the read
miss request can not be sent to the SLC until all the
write references buffered in the FLWB have been issued
to the SLC. This handling procedure enables the FLC

to simply and quickly support one-cycle accesses. If

the requested block is not in the FLWB, the read miss
1is sent to the SLC. The requested words are returned
either from the SLWB if they are found in the SLWB
or from the SLC when the read request hits on the SLC.
Otherwise, a global action occurs for the read request.
A replacement prior to the global action may be
necessary.

On the other hand, we handle write accesses as
follows. A write request from the processor is blocked
when the FLWB is full. Once the FLWB has a free
entry, the write request is pushed to the FLWB.
Meanwhile, the contents of the words on the FLC are
updated if the write request hits on the FLC. Because
the FLWB is a FIFO (First-In First-Out) queue, a write
request can not be issued to the SLC until all the write
accesses prior to it have been sent to the SLC. Whenever
a write reference accesses the SLC, it will issue a global
memory action (e.g., write invalidation request) which
is buffered in the SLWB. The global action takes place
when the local bus can transmit it.

~ The default access times to the FLC and SLC are
set to 1 and 3 processor cycle times. However, the
penalties of various access misses are not fixed to
default times. They depend on many factors, e.g., the
state of the cache block, the location of the memory
copy, the routing time in the interconnection network
etc.

In addition, we add a simulation of write cache
(WC) (Dahlgren and Stenstrom, 1995) as an option.
Figure 4 shows the processor environment after a write
cache is added. Whenever a write reference accesses
the SLC, it will issue a global memory action, and the
action will be buffered in the WC instead of the SLWB.
In addition, actions belonging to the same cache block
will be merged into a single one in the WC. The actions
in the WC will be forwarded to the SLWB because of
WC block replacement.

Memory access ordering requirements must be
enforced by the underlying memory consistency model.
Sequential consistency and processor consistency re-
quire that before any one processor can perform a write
access, all previous write accesses in the program order
must first be performed. Consequently, write caches
are not supported under these two models because there
is no opportunity for the WC to merge write requests.
However, under weak consistency models, every or-
dinary access can be performed independently of other
ordinary accesses, so write caches must only be flushed
upon arrival of a synchronization reference. Therefore,
write caches can merge write access requests between
any two adjacent synchronization references. Conse-
quently, the amount of network traffic due to global
memory actions is reduced. Similarly, in release con-
sistent systems, write caches must only be flushed upon
arrival of a release reference.

4. Cache Coherence Protocol and Directory
Structure

We support three types of cache directory struc-
tures: fully-mapped centralized, limited centralized,
and distributed directories (Stenstrom, 1990). Under
each of these three directory structures, simulations of
several types of cache coherence protocols are provided
in SEESMA. As reported by Dahlgren and Stenstrom
(1995), cache coherence protocols can be classified
into four types: write-invalidate, write-update, clean,
and competitive-update. Clean protocols are similar
to write-invalidate protocols except that they update
the memory copy if there are copies in caches other
than that from which the write request came. Com-
petitive-update protocols are similar to write-update
protocols except that a cache block is invalidated when
it has been updated a fixed number of times, called the
competitive threshold, without intervening local ac-
cesses.

The centralized directory-based cache coherence
protocols we simulate are similar to that described by
Dahlgren and Stenstrom (1995) while the distributed
directory-based protocols are extensions of the IEEE
SCI standard (Su, 1996).
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5. Interconnection Network

We provide simulations of local interconnection
and global interconnection networks. The local inter-
connection provides the communication media between
the two-level cache controller, the local shared memory
controller, and the network controller. It can serve one
request at a time. Therefore, it has to use an arbiter
to select a request when there are multiple requests.
The arbitration we simulate selects the first request in
the task queue.

The global interconnection network is the inter-
face between any two nodes as shown in Fig. 1. The
topology we simulate is a k-ary n-cube interconnection
network (Dally, 1990). A k-ary n-cube network has
n dimensions and totally N nodes, where N=k". A node
in the k-ary n-cube can be identified by an n-digit radix
k address, aq, ..., a,_1, where a; represents the node’s
position in the ith dimension. Each node can forward
messages to its upper neighbor in each dimension. For
example, the address of the upper neighbor in the ith
dimension is ag, ..., a;+1(mod k), ..., a,_;. “Most
concurrent computers have been built using networks
that are either k-ary n-cubes or are isomorphic to k-
ary n-cubes: rings, meshes, tori, direct and indirect
binary n-cubes, and Omega network™ (Dally, 1990).
For instance, a 16-ary 1-cube is isomorphic to a 16-
node ring network. Therefore, we have chosen this type
of interconnection network for simulation in SEESMA.

Each node has two packet buffers: an input packet
buffer and an output packet buffer. A packet that the
input packet buffer receives may have either arrived
or not arrived at its destination node. In the former
case, the packet is transferred to the local interconnec-
tion in the corresponding node. Otherwise, the packet
is put into the output packet buffer.

The packets that the output packet buffer receives
may be those that have been issued from other nodes
but have not arrived at their destination nodes, or those
that have been issued from the local node. For each
packet in the output buffer, the router will calculate
the next node to which the packet is to be transferred
according to the routing algorithm. Then the packet
contends with others for the use of the routing path to
the next node. The arbitration algorithm is first-in first-
out. Next, the packet transfer process will calculate the
time needed for the transfer according to the packet
size. After this time period, it will put this packet into
the input packet buffer of the next node.

The parameters which we can adjust for the in-
terconnection network in SEESMA are: (1) the radix,
(2) dimension, (3) switch delay, (4) wire delay of a link,
(5) link width, and (6) unidirectional or bidirectional
transmission.

IV. Graphic Interface Capabilities

SEESMA supports a friendly graphic user inter-
face (GUI) which enables users to easily and efficiently
operate the simulation and evaluation environment.
Our GUTI interface has two parts: an input and an output
interface, which are described in the following subsec-
tions.

1. Input Interface:

The architecture characteristics are regarded as
parameters. Users are asked to input a list of command
line options to specify the parameters of the simulation
environment and the simulated architecture when a
text-based user interface is used. Each option is pre-
fixed by an identifier followed by an input value. We
give below an example to show how a command line
can be written to execute the MINT simulator.

../JOMSS/cache -ts -r -p64 — -p64 -N16 -n2 -k4 -f16 -s32
-W8 -Pc -T4 -o/usr/home/ccwu/data/mp3d/p64N16_Comp4_
w8 mp3d 50000 64 test.geom

Obviously, this type of input suffers from the
following disadvantages:

- (1) The command line is so long that it is tedious
and inconvenient for users to input the command
line for each simulation.

(2) We have to remember the default value for each
parameter to determine which options we must
specify.

(3) 1t is easy to confuse or hard to remember the
corresponding identifiers for various command
line options.

To make it easy for users to run SEESMA, we
have designed a friendly graphical input interface as
shown in Fig. 5. The interface has three parts: a menu
bar, an architecture graph, and a status region. The
menu bar consists of five main selection items; each
item has its own menu hierarchy according to the
category of the simulation parameter. The architecture
graph shows the corresponding architecture whenever
the user sets the architectural parameters. For instance,
if we incorporate write caches into the system, there
will be a connection between the write cache and the
cache hierarchy in the architecture overview; other-
wise, no connection will exist. Another example is that
we can change the architecture as presented in Fig. 5
into a PMP-MP with write caches as shown in Fig. 6.
Through real time display of the architecture graph, we
can easily determine what kind of architecture we have
chosen for simulation. The status region displays the
parameters of an architecture component at which the
cursor positions. For example, the status region shows
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Fig. 5. Graphical user input interface.

the current parameter setup for the node architecture
when the cursor moves to the area of the processor
environment as shown in Fig. 6. By means of the status
region, we can easily determine the entire parameter
setup by moving the cursor. If we find an incorrect
setup, we can just click on the position of the archi-
tecture block to change the setup.

SEESMA provides two input methods: menu based
_input and graphic based input. With menu based input,
the selection items are collated as a pull down menu
on the menu bar, and the dialogue window of each item
is then presented as a pop up menu. With graphic based
input, the user is directed to a dialogue window without
looking through the pull down menu. For each input,
the user can just click on the appropriate position of
the architecture block. In Appendix 1, we present the
complete procedure for an example to illustrate the
input capabilities.

2. Output Interface

After each simulation, the traditional simulation
environment outputs the simulation results in text form
on the screen or into a file. Usually, to study an
interesting topic, we will run several simulations by
changing the setup of an architectural parameter, and
then comparing the simulation results. However, from
text-based simulation results, we can not fully under-
stand the differences in the results. As a result, we
produce a graph of statistics after collecting data from
these simulation results to illustrate apparent differ-
ences. Therefore, we have designed an output interface
to facilitate comparison of the results.” We provide bar
and curve graphs, and the details are described in the

following section.

V. Performance Evaluations of MP in
SEESMA: An Illustration

In this section, we will give a complete design
example to illustrate the procedures for using SEESMA
to reveal some important issues and performance gains
in designing specific multiprocessor architectures.

Write caches can merge several write requests that
will access to the same block into a single request. By
cutting the number of write requests, write caches can
enhance the performance of cache coherence protocols.
As reported by Dahlgren and Stenstrom (1995), after
write caches are added, competitive-update protocols
are superior to any other protocol for multiprocessors
with non-parallel-multithreaded processing elements.
We investigate their effect on PMP-MP systems in this
section.

We assume that all memory accesses to code and
private data always hit on the FLC, and that each
requires a single processor clock cycle. We summarize
several important architecture parameters in Table 1
and others are as follows: (1) the FLC, SLC, and
WC are all direct-mapped; (2) the memory pages
are distributed in a round-robin fashion; (3) transmis-
sion is unidirectional; (4) release consistency is used
as the memory consistency model; and (5) the cache
directory structure is fully-mapped, centralized direc-
tory-based.

We need to point out some parameters which
differ from those in Dahlgren and Stenstrom (1995) and
influence performance. Because the total number of
threads was 64 (16x4) in our study, the acquire-stall

Fig. 6. Overview of the PMP-MP system with write caches.
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Table 2. Architecture Parameters

Parameter Value Parameter Value
Number of Processing nodes 16 Number of threads per PE 4
Processor clock rate 100 MHz Size of FLC 16 Kbytes
Size of SLC 256 Kbytes Access time to FLC 1 pclock
Access time to SLC 3 pclock® Block size of FLC, SLC, WC 32 bytes
Number of entries in FLWB 16 Number of entries in SLWB 32
Size of WC 8 blocks Size of memory page 4 Kbytes
k-ary n-cube k=4, n=2 Linked width 64 bits
Switch delay 1 pclock Wire delay 1 pclock

? processor cycle time

Table 3. Benchmark Programs

Benchmark Description Data sets
MP3D 3-D particle-based wind-tunnel simulator 50K particles, 10 time steps
Cholesky Cholesky factorization of a sparse matrix The matrix bcsstk 14
Pthor Distributed time digital circuit simulator RISC circuit, 1000 time step
Ocean Ocean basin simulator 130x130 grid, tolerance 107
Barnes Hierarchical N-body gravitation simulator 1024 bodies, 3 steps
Water N-body water molecular dynamics simulation 343 molecules, 3 time steps

[ Buffer

""" R Contentior
3 Acquire

Protocol

Fig. 7. Normalized execution times for various cache coherence
protocols after augmentation with write caches.

time was perhaps much larger than that for the 16
threads in Dahlgren and Stenstrom (1995). In addition,
because the SLC capacity was 256 Kbytes instead of
infinite size in Dahlgren and Stenstrom (1995), we have
to consider the impact of replacement on the SLC. A
smaller cache increases the number of dirty blocks that
must be replaced and the number of coherence misses
accessing clean memory blocks under write-invalidate
protocols, thus diminishing the advantage of the clean
protocol.

We used six SPLASH applications (Singh et al.,
1992; Woo et al., 1995) listed in Table 2 as benchmark
programs. We briefly describe the behaviors of these
benchmark programs in Appendix 2. For more details,
we refer the reader to Singh et al. (1992) and Woo et
al. (1995).

All applications were written in C using the ANL
(Argonne National Laboratory) macros (Boyle et al.,
1987) and were compiled using cc under IRIS version
3 at optimization level 2 on an SGI workstation. Because
the working set of these six programs are very small
when compared to the size of the used FLC and SLC,
the influence of replacements on performance is small.
The effect of coherence maintenance is the primary
factor that influences performance. All statistics pre-
sented in the following were gathered in the parallel
sections of the benchmarks.

Figure 7 shows the performance improvement
after adding write caches to write-invalidate (Inv-WC),
clean (Clean-WC), and competitive-update with thresh-
old T (CompT-WC) protocols. The execution time is
the time interval from when the process 0 forks the
first child process until all the child processes are
joined. The execution time for each application and
protocol was normalized relative to the execution time
under Inv. In other words, the normalized execution
time was, derived by dividing the original execution
time under a certain protocol by the original execution
time under Inv. In addition, we divided each execution-
time bar into five sections: busy time (bottom section);
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Fig. 8. Normalized network traffic for various cache coherence
protocols after augmentation with write caches.

read-stall time (i.e., the time spent servicing cache
misses); acquire-stall time (i.e., the time spent waiting
for a lock to be acquired); contention time (i.e., the time
spent waiting for access to the FLC); and buffer-stall
time (i.e., the time the processor spent stalled due to
a full FLWB). The most important observation is that
Clean-WC outperformed Inv for all applications. The
advantage of the Clean-WC protocol is the short read-
penalfies with a slight increase in network traffic. On
the other hand, Inv-WC and Comp-WC were generally
worse than Inv although the performance difference
was small for three of the applications (Cholesky, Pthor,
and Ocean). Inv-WC had longer acquire-stall times
than Inv for the following reason.

Inv-WC delays the issuance of global writes in
write caches until a synchronization point is encoun-
tered. The synchronization access then has to wait for
the write cache to be flushed. In particular, release
accesses cannot be issued until the write requests have
all been flushed from the write cache and have all been
performed. This waiting keeps other processes from
entering the critical section and, thus, increases the
acquire-stall time. On the other-hand, the write-invali-
date protocol without write caches sends only the first
in a sequence of writes to the same block to the memory
controller. Once a write-miss reply is returned (which
means the cache controller has acquired ownership of
that block), all other write misses are deleted after the
block is updated according to the write ordering. The
effect of this procedure is similar to the function of
write caches: all write requests to the same block can
be merged into a single one. As a result, adding write
caches is not beneficial for the write-invalidate pro-
tocol.

For competitive-update protocols, each write
request definitely incurs a global write. This feature
has two extreme effects on write caches. First, write
caches can considerably reduce network traffic by merg-
ing write requests; therefore, performance can be
enhanced substantially. Second, there are usually many
write requests to be flushed from the write cache
whenever a synchronization access is encountered; thus,
acquire-stall time is increased. We see from Fig. 7 that
the second effect dominates the results. Competitive-
update protocols have higher acquire-stall time though
the network traffic is reduced drastically, as shown in
Fig. 8. The network traffic is the total number of bits
transferred in the interconnection network during the
parallel section of each benchmark program. The nor-
malized network traffic was derived by dividing the
original network traffic under a certain protocol by the
original network traffic under Inv.

Next, we will examine the different effects on
total performance of various numbers of threads for
each processing element. Figure 9 shows the perfor-
mance speedup of each individual protocol relative to
that of the write-invalidate protocol under a fixed number
of threads per PE for MP3D. For the system with one
thread per PE, the competitive-update protocol with
write caches outperforms the write-invalidation proto-
col. However, when the number of threads per PE is
increased, the competitive-update protocol with write
caches may be worse than Inv. On the other hand,
Clean-WC outperforms Inv for architectures with
various numbers of threads per PE. Moreover, because
the competitive-update protocol requires one counter
per cache block, the clean protocol is more suitable for

P3D.tne.curve
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Fig. 9. Normalized execution times for various cache coherence
protocols with write caches for various numbers of threads
per PE.
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Fig. 10. Overview of clustering architecture.

PMP-MPs after the cost/performance tradeoff is con-
sidered.

In addition to the above example, we have used
SEESMA to evaluate other design issues and to verify
our proposed design methods as follows: (1) we have
found that the clean cache coherence protocol usually
has the best performance for multiprocessor systems
no matter whether the processor element is multithreaded
or not (Wu and Chen, 1998a); (2) the characteristics
of write caches on PMP-MPs have been extensively
evaluated (Wu and Chen, 1998a); (3) the performance
of doubly linked directory cache coherence protocols
in multiprocessor systems has been evaluated (Su, 1996);
(4) the performance of our proposed optimization
method for migratory-sharing accesses has been evalu-
ated (Su et al., 1996); (5) the performance of our
proposed memory consistency model, the PSC model
has been evaluated; and (6) the performance of our
proposed parallelization technique has been evaluated
(Pean and Chen, 1997).

VI. Conclusions and Future Devel-
opment

System architecture designers usually use a simu-
lator not only to verify their proposals, but also to
understand the interaction between system components.
We have constructed a simulation environment called
SEESMA, which is a platform for research and edu-
cation on shared-memory multiprocessor architecture
systems. It provides versatile simulations for archi-
tectural functions in an integrated environment with a
friendly graphical user interface. The primary simu-
lation functions include the following: (1) two CPU
types: RISC and PMP architectures; (2) a two-level
cache hierarchy with FLWB, SLWB, and write caches;
(3) five cache coherence protocols: write invalidate,
write update, competitive-update, and clean protocols;
(4) three cache directory structures: centralized fully-
mapped, centralized limited, and distributed SCI struc-
tures; (5) five memory consistency models: sequential,
processor, weak, release, and our proposed PSC mod-
els; (6) K-ary and N-cube interconnection networks.

To simulate a target system architecture, we can use
the menu bar or just click on the architecture graph to
set up the simulation and architectural parameters. The
simulation results are dumped to a file. Optionally,
we can set up the simulation parameters to view the
specified evaluation results through graphs of statis-
tics. In summary, SEESMA provides a good research
environment for those who are interested in system
designs for shared-memory multiprocessor architec-
tures. We have also been constructing a web site at
http://cspcéd.csie.nctu.edu.tw that provides various in-
formation about SEESMA.

The multiprocessor architecture we have simu-
lated so far has only one processor on each node. In
the future, we will investigate the clustering architec-
ture (Lenoski et al., 1992) shown in Fig. 10. Several
processor environments linked by a local bus are as-
sembled as a cluster node, and then several cluster
nodes linked by a intercluster interconnection network
are brought together as a large system. Because there
are several processors on a cluster node, we can
design a node according to the characteristics and
advantages of a small-scale multiprocessor system. On
the other hand, the inter-cluster architecture design
follows the design rationale for large-scale multipro-
cessor systems. The clustering architecture is attrac-
tive because it has the advantages of both small-scale
and large-scale multiprocessor architectures.

The clustering architecture we will simulate in our
future work will have the following features. Cache
coherence among these processor environments
maintained by a snoopy-based protocol. On the other
hand, we will use the IEEE SCI standard to maintain
cache coherence among cluster nodes. In addition,
we will incorporate an inter-cluster cache on each
cluster node to buffer the remote data in order to exploit
the data locality among local processor environ-
ments. We will focus on the design of an interface
between the snoopy-based protocol and the SCI pro-
tocol.
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Appendix 1
An Illustrative Example of Running the SEESMA

In this appendix, we will show how the graphical interface
can be used to input the parameters for simulation of the architecture
with the clean protocol as described in Section V. Moreover, we
will show how the parameters of the statistics graph can be specified
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Fig. 11. Input the name and parameters of the benchmark program.

Fig. 12. Input the name of the benchmark program using the browser.

to construct a bar graph as shown in Fig. 7.

Step 1: Select the “Bench_Mark” button in the menu bar as shown
in Fig. 5.

Step 2: Input the name and parameters of a benchmark program
in the window as shown in Fig. 11 directory or click on
the “Browse” button to select a benchmark program via
the window as shown in Fig. 12. In this example, we
choose MP3D as our benchmark program.

Step 3: Click on the “processor” graph as shown in Fig. 5 and
input the parameters of the node architecture in the win-
dow as shown in Fig. 13.

Step 4: Click on the “First Level Cache” graph as shown in Fig.
5 and input the parameters of the two-level cache and
two-level write-buffer in the window as shown in Fig.
14. :

Step 5: Click on the left “Shared Memory” graph as shown in

Fig. 5 and input the parameters of the cache coherence :

protocol and directory structure in the window as shown
in Fig. 15. In this example, we choose the clean protocol
under a centralized directory structure.

Step 6: Click on the right “Shared Memory” graph as shown in

Fig. 5 and input the parameters of the memory consis-
tency model in the window as shown in Fig. 16. In this
example, we choose the release consistency model.
Step 7: Click on the “Write Cache” graph as shown in Fig. 5 and
input the size of the write cache in the window as shown

in Fig. 17.

Step 8: Select the “Back_End” button in the menu bar as shown
in Fig. 5.

Step 9: Select the “Output” item in the pull-down menu as shown
in Fig. 18.

Step 10: Input the parameters of the statistics graph in the window
as shown in Fig. 19. The parameters are set according
to the kind of statistics graph we desire to obtain after
several simulations. In this example, we wish to produce
the graph shown in Fig. 7. Therefore, the parameters have
to be consistent with the simulation parameters as speci-
fied above. In this example, the benchmark program is
MP3D, the cache coherence is maintained by clean pro-
tocol, and the system has write caches.

Appendix 2
Brief Descriptions of Six Benchmark Programs

In this appendix, we will briefly describe the behaviors of the
six benchmark programs discussed in Section V.

MP3D (Singh er al., 1992) is a 3-dimensional particle-based
wind tunnel simulator. There are two types of data structures. (1)
The particle array holds the molecules and records their positions
and their velocities. (2) The space array represents the physical space,
the boundary conditions, and the flying objects. It evaluates the

Fig. 14. Input the parameters of the two-level cache and write
buffers.
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Fig. 15. Input the cache coherence protocol and the directory struc-
ture.

Fig. 16. Select the memory consistency model.

positions and velocities of molecules over a sequence of time steps.
During each time step, molecules are picked up one at a time and
moved according to their velocity vectors. The program is parallelized
by statically dividing the particles equally among the processes.
Barrier synchronization is inserted between each time step.

Cholesky (Singh et al., 1992) performs parallel Cholesky
factorization of a sparse matrix. The matrix is divided into supernodes,
which are sets of columns with identical non-zero structures. The
supernodes are further divided into conveniently sized chunks of
columns, called panels. A panel receives updates from other panels
to its left in the matrix. After receiving all the updates, it is placed
in the task queue. A free process removes the panel from the task
queue and performs the associated modification. This in turn yields
other panels to be placed on the task queue. The main data structure
is the sparse matrix, and the principle operation is the repeated
addition of a multiple of one column to another column. Contention
occurs for the task queue and for column modification, which are
protected by locks.

Pthor (Singh et al., 1992) is a parallel distributed-time logic
simulator. The main data structures are the logic elements, the nets,
and the task queues. Each element has a preferred task queue to
increase data locality. Each process performs the following loop.
It removes an active element from its task queue and determines the
changes on that element’s outputs. It then looks up the net data
structure to schedule the newly activated elements in the task queues.

Ocean (Woo et al., 1995) simulates the role of eddy and
boundary currents in influencing large-scale ocean movements. The
main data structures are four-dimensional (4-D) arrays, which are
comprised of grids. The program partitions the grids into square-
like subgrids. Each processor is assigned a set of contiguous and
local subgrids. In each time step, each processor solves a set of
spatial partial differential equations using a red-black Guass-Seidel
multigrid equation solver. The simulation is performed for many
time-steps until the eddies and mean ocean flow attain a mutual
balance.

Barnes (Singh et al., 1992) performs a gravitational N-body
simulation. The primary data structure is an 8-ary tree, which is
implemented as an array of bodies and an array of space cells that
are linked together. Bodies are statically assigned to processors for
the duration of a time-step. During each time step, each processor
calculates the forces exerted on its own subset of bodies. The bodies

Fig. 18. Menu of the “Back_End” item.
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Fig. 19. Input the parameters of the statistics graphs.

are then moved under the influence of those forces. Finally, the tree
is regenerated for the next time step. A set of distributed locks is
used for exclusive access. In addition, barriers are used to separate
different computation phases and successive time steps.

Water (Singh et al., 1992) simulates the evolution of a system
of water molecules. The principal data structure is a large array of
records that store the state of each molecule. The molecules are
statically split among processors. During each time step, each
processor calculates the interaction of the molecules with one an-
other. For each molecule, each processor calculates the interactions
between a molecule it owns and half of the other molecules.
Synchronization is maintained by means of locks on the molecules
being modified, and through barriers that separate different compu-
tation phases.
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