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ABSTRACT

We propose an analytical model which unifies the steady sfate analysis of a three-phase rectifier
with voltage source, current source, and dc¢ motor loads. The continuous conduction mode of the dc-
side current is assumed, and the ac-side inductance which introduces the commutation effect is considered.
The regulation curve of output voltage versus output current for the rectifier can be plotted on the output
plane using the commutation angle as the parameter under some specified firing angle and dc-side
inductance. The upper bound of the firing angle can be derived as a function of the dc-side inductance.
The range of the commutation angle can be found as a function of the firing angle and the dc-side inductance.
Then, the allowable operating region of the output plane for a certain dc-side inductance is determined.

Key Words: steady state analysis, continuous conduction mode, regulation curve

l. Introduction

Ac-to-dc converters with SCRs as switching
devices can (1) provide a constant voltage source via
a dc-link capacitor (or an L-C filter) for a voltage
source inverter or for a switching regulator, (2) provide
a constant current source via a dc-link inductor for a
current source inverter, or (3) supply an adjustable dc
voltage to a dc drive motor (Mohan et al., 1989; Bose,
1986; Krause, 1987). However, the dc-side current is
generally assumed to be constant for simplified analy-
sis (Kalra,1990; Mohanet al., 1989; Bose, 1986, Krause,
1987), which is not true for a voltage source load and
for a dc motor load when the armature current is likely
to be discontinuous at light loads.

All the above three kinds of loads can be modeled
as the series connection of a constant voltage source,
aresistance, and an inductance. In the case of a voltage
source load, a dc-link capacitor with infinite capaci-
tance exhibits a constant voltage source. The series
inductance and resistance in the model can be zero if
the filter inductor is not present. In the case of a current
source load, the series inductance in the model is
assumed to be infinite, since an infinite inductance
presents a constant current source. In the case of a dc
motor load, the back emf (proportional to the motor
speed) is nearly constant because the mechanical time

constant is much larger than the ripple jeriod (one-
sixth of the ac source period) on the dc side. The
armature inductance and resistance act as the series
inductance and resistance in the model. .

A phase-controlled rectifier with load circuit char-
acterized by a finite filter inductance in series with a
constant voltage source was analyzed by Kwon (1992).
However, the ac-side inductance, which adversely
affects the commutation process, absorbs significant
ac-side voltage drop, and reduces the output voltage
especially at heavy loads, was not considered (Mohan
ef al., 1989). In addition to the ac-side inductance, we
consider the resistance associated with the dc-side
inductance, which absorbs significant dc voltage drop
at heavy loads. Since the ac voltage drop across the
dc-side resistance is much less than that across the dc-
side inductance and can be neglected, the load circuit
is remodeled as another constant voltage source (origi-
nal constant voltage source plus dc voltage drop across
the dc-side resistance) in series with the inductance.

Given the value of this constant voltage source
(known as the output voltage) in the load circuit, with
continuity and periodicity of the dc-side current in
steady state analysis, an auxiliary equation of the com-
mutation angle can be derived. Furthermore, we can
derive the average value (dc component) of the dc-side
current, which is known as the output current. By
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varying the commutation angle, the regulation curve
of output voltage versus output current can be plotted
on the output plane.

At light loads, the minimum value of the dc-side
current waveform may approach zero, and the rectifier
may enter the discontinuous conduction mode (DCM).
The commutation angle, which increases as the out-
put current increases, may become larger than 7/3
(one ripple period on the dc side). For a rectifier
operated in the inversion mode with alarge firing angle,
the output current should be limited to reduce the
commutation angle, so that a sufficient turn-off time
(margin angle) available to the SCRs is provided. To
sum up, the above constraints can be combined to
derive the operating range of the regulation curve,
which depends on the firing angle and the dc-side
inductance.

Il. Converter Analysis

The three-phase line-frequency phase-controllied
rectifier is shown inFig. 1, where L, is the commutating
(ac-side) inductance, and L, and ¢, (a constant voltage
source, which equals the dc component of v) form the
model of the load circuit as described in the Introduc-
tion. Assume that Qs is triggered at r=0 with firing
angle o to initiate a commutation interval in order to
turn off Q,. Then v,=V,sin(wt+o+7n/3), where V,, is
the peak value of the line-to-line voltage of the bal-
anced ac source with an abc sequence, and wy is the
angular frequency of the ac source. During the com-
mutation interval 0<¢<t,, Fig. 1 reduces to Fig. 2(a).
Note that

i(0)=i(0), ip(tc)=i(t,), ia(t)=1(0)=0, @®

which Wilf be used in circuit analysis.

We derive the Thevenin equivalent circuit be-
tween z and y (left part), and Fig. 2(a) can bé further
simplified as Fig. 2(b), where v,=(v,+vp)/2=(v3 V,,/
2)cos(w,t+a) and L=L,+3L./2. We choose V,, as the

T Q. #Q‘ }:g Q. d

Fig. 1. Three-phase rectifier.

voltage base, L, as the inductance base, and 1/ as
the time base. Then w,L, becomes the impedance base,
and V,/w,L, becomes the current base. Define r=L,/
L., E=e4V,, O=wg, and I=w L i/V,. Then L/L=r+3/
221, and the normalized differential equation for Fig.
2(b) can be formulated as

Laj_le=gcos(9+a)—E, 0<e<y, @)

where uéwstc is the commutation angle, and /(®) can
be solved as

1(0:0205p)= 3 sin(O+)-£04p. (3)

where p is the constant of integration to be determined.

At t=t,, i,=0 and Q, is off. Then the equivalent
circuit becomes Fig. 2(c). Define T, as the ripple period
of i(t), and we have w,T,=n/3. Therefore, Fig. 2(c) is
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Fig. 2. (a) Equivalent circuit during commutation interval.
(b) Equivalent circuit of Fig.2(a).
(c) Equivalent circuit after the end of commutation.
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valid during y<@<n/3, and the normalized differential
equation is

sin(9+at7§f), u< o<

Wiy

where Li=(L,+2L.)/L.=r+2, and I(®) can be solved as

1(O:u<O<fy= —L~1cos(9+a+7~r)—£ O+q,
1
5)

where g is the constant of integration to be determined.
With continuity and periodicity of I(®) in steady state,
we have I(0)=I(n/3) and I(u")=I(u*), which lead to
[using Eq. (3) and Eq. (5)]

1 27I /3sina _ 7E
—cos o+ £Ey_Losm
pP-q= ( ) 2L, 3L,
=2—]cos(,u+a+”)—£sm(/.t+a)
1
L1
LL, Eu (6)

During the commutation interval 0<t<t, in Fig.
2(a), the normalized differential equation is

dl Ve _p_LatLe dl

do~ Vv, L. do©

=[USingEq.(2)]sin(@+a+2T”)

V3L, L,
~ I, cos(@+a)+(L—3—l)E,

0<6<pu, Y

where J=wL.i,/V,, and Ly=(L,+L,)/L=r+1.
Equation (7) can be solved as

J(@:OS@S#):—COS(@+(X+2T”)
_*/2§LL2 sin(@+a)+(%—1)E@+M,
3

(8)

where M is the constant of integration to be determined
with I1(0)=J(0) [from Eq. (1)] using Eq. (3) and Eq. (8).
Then

M=(1+L2)M+p+cos(a+-2£). 9)
2L, 3

).

Furthermore, using J(1)=0 [from Eq. (1) ] in Eq. (8)
with M given in Eq. (9), we obtain p, which can be
substituted into Eq. (6) to give g (using the first equal-
ity). The second equality of Eq. (6) indicates the
auxiliary equation of the commutation angle y.

Using Eq. (3) and Eq. (5), we can obtain </>, the
dc component of I(©), as

H /3
<1>=%[J I(@)d8+f 1(6)dO]
0 H

=37_¥3 - E 2
=51 2L3°°S(“+a) 2L3#

+pu+[-cosa—Llsm(a+23£)
1

(”) +3q+ 1 sm(/.t+a+”)

+p - gh]. (10)

Therefore, <I> can be plotted as a function of E for
some firing angle a.

However, from another viewpoint, we can solve
E(u) from Eq. (6) (using the second equality) as

E(u)= 3‘u+”k{k[cos(,u+a+7—r) cos(a+ )]

+V3 (r+2)[sin(U+a)-sin]} , (11)
where k=2r+3. Substituting Eq. (11) for E in the
expressions of p and g, we obtain p(ft) and g(u). Using
p(), (1), and E(u) in Eq. (10), <I> can be obtained
as a function of y. Thus, we can plot E versus </>
by varying u and obtain the regulation curve.

Constraints for Commutation
Angle u

When plotting the regulation curve, we must
determine the range of u in advance. We have O<u<n/
3 and I(©)>0 during 0<O@<na/3 in the continuous con-
duction mode (CCM). Equation (2) shows that, if
E>(3 [2)cosa, then I(©) decreases monotonically
during 0S@<y, as illustrated inFig. 3(a), where the area
of the shaded region is proportional to the decrease in
1. If E<(¥3/2)cosa, then either I(6) increases mono-
tonically during 0<O<u, or I(O) first increases mono-
tonically and then decreases monotonically during
0<O<y, as illustrated in Fig. 3(b).

- 380 -



Analytical Model for the Phase-Controlled Rectifier

o

Ip

7 o

0 @ ot T \'
‘
0 ; —>@

(@)

O\H% TaT 3 O+ta | —/g
E% |
—— 1 50

(®)

Fig. 3. (a) Ilustration of (2) for E>(¥3 /2)cosa.
(b) Illustration of (2) for E<(¥3 2)coso.

Equation (4) shows that, if E>sin(u+o+7/3), then
I(©) decreases monotonically during u<@<n/3, as il-
lustrated in Fig. 4(a). If E<sin(u+o+n/3), then either
I(®) increases monotonically during u<O<n/3, or I(O)
firstincreases monotonically and then decreases mono-
tonically during u<@<n/3, as illustrated in Fig. 4(b).

To summarize Fig. 3 and Fig. 4, we know that

“ Min[1(0), I(w), I(7/3)]=Min[1(0), IGn][ - 1(0)=I(x/3)]

gives the minimum value of I(®) during 0<@<n/3.
Consequently, both 7(0)>0 and I(x)>0 must be satisfied
in the CCM.

We first consider 7(0)>0. Using p(u) in Eq. (3),
we obtain ,

10)="3502 1 p(p)
=cos(,u+06+27”)+Fcos(,u+ Oc+%[)

~(1+F)cos(a+Zr)

3

+—7C-[sin(u+a)—sina][r+1+(r+2)F],

(12)

where F=3u/(3u+nk). Using trigonometric identities,
Eq. (12) can be further simplified as
I0)=A(r, w)sino+B(r, w)cosa, 13)

where

Y 1
E—— 7, T
\EW/A: O+a+ I !
0 aturd V/ atE /2 3 i
]
0 n r e
3
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% ! '
0 u g— ®
(b)
Fig. 4. (a) Illustration of (4) for E>sin(ow+pu+mn/3).
(b) Illustration of (4) for E<sin(ow+p+m/3).
A(r,u)=—sinw+2T")—Fsinw+-37€)+§(1+F)
+%(cosﬂ—1)[r+1+F(r+2)]
(14)

B(r,u)=cos(u+2T")+Fcos(u+g)+%(1+F)

+§(sinu)[r+1+F(r+2)]. (15)

Suppose that A=Rcos8 and B=Rsinf, where
R=VA?*+B* and 6=tan(B/A). Then Eq. (13) can be
further derived as I(0)=Rsin(o+8). I(0)>0 results in
O<o+6<m, and we have

—0<8(r, W)<m—a. (16)
6(r, 1) can be plotted as a function of y over Osusn/
3 for a fixed r. For some selected &, (16) can be used
to determine the allowable range of .

From (14) and (15), u=0 results in A=B=0. There-
fore,

6(r,0)2 lim 6(r, 1)

=tan ! [l}i_r)noﬁ—géz—zg] =(using L’Hospital’s rule)
—1 E)B/aﬂ _ —16—'\/7.))_71' 17
tan (—aA/alu#:O)_tan Tk >0. a7
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Using Eq. (14) and Eq. (15),
_1B(r,m/3)
6(7‘ )_ta m >0. (18)

Now we consider the second restriction/(1)>0 for
the CCM. Using Eq. (11) andp(u) in Eq. (3), we obtain

2F (p) 1
k

I(ﬂ):ik—?isin(,u+0()— +p(H)

=§(r+2)(1—F)[sin(ﬂ+0‘)—5i"“]

+(F - 1)cos(a+ )+cos(;1+a+ )

—Fcos(U+a+Z

I, (19)

which can be further simplified as [similar to Eq. (12)
-Eq. (15)]

I(w)=C(r, wsino+D(r, p)cosc, (20)
where
C(r.p)=33 (r+2)(1-F)(cosu-1)
+ B (1-F)~sin(u+ 2F)
+Fsin(u+§) 21

D(r,u)=§(r+2)(1—F)sinu+%(1—F)

+cos(/l+ ) Fcos(,u+”) (22)

Define ¢=tan™'(D/C). As the derivation for (16),1()>0
results in
-o<@(r, W)<m—-a. (23)

From Egs. (21) and (22), u=0 results in C=D=0.
Therefore,

¢(r,0)2 lim ¢(r,p)

Ly DIK| . _. _1/3E-6
cmul,.,) =™~k

=[seeEq. (17)1-6(r,0)<0. 24)

Li

Using Eqgs. (21) and (22),

L D(r,mB)
O(r. =t E TR =6

=[seeEq.(18)16(r,Z)>0. (25)

When the firing angle o becomes larger (more
than 7/2), we must check whether there is a sufficient
turn-off time available to the SCRs. Compare Fig. 2(a)
with Fig. 1, and note that after 6=u (Q, turns off and
i,=0), v,, is the voltage across Q;. Then we have

+L, 49 (26)

Vaz=vb+L < dt

c dt ab

We normalize Eq. (26), substitute dI/d© from Eq. (4),
and obtain

=—sin( O+ @)

Vv (©)
Va

_b[sin(mm%‘)—E]. (27

Let t, be the required turn-off time for the SCRs. To

ensure the turn-off of Q;, we must have v,,(1+wt,)<0.

From Mohan et al. (1989), w,t,=15° to 30° for w=377

rad/s. For a conservative design, select w,t,=7/6 rad.
Using Eq. (27), v, (u+n/6)<0 leads to

E>cos(,u+Ot)—(r+2)sin(ﬂ+a+7€7). (28)

Substituting Eq. (11) into Eq. (28) with simplification
gives
G(r, wysina+H(r, p)cose>0, 29)

where
G(r,/t):——sm,u+[—(cos,u 1)

(30

H(r, #)_*/—sm,u+2(cos,u+1)

+3L3mc[—“/23——(r+2)sin#+%cosﬂ].

(31)
Define w=tan'(H/G). Then Eq. (29) leads to [as the
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derivation for Eq. (16)]

-o<yY(r, p)y<m—a. 32)
Using Egs. (30) and (31),
a1 H(r,0) 1 Ar+6
Y(r,0)=tan G(r,O)_tan \/§71'(r+2)>0
(33)
Ty a1 Hr, 3) o1 2k 49
Vv(r,%)=tan G(r,7t/3)—tan «/?(27[—3)>0'
(34)

For given r(>0) and a(>0), y must satisfy O<u<sn/
3, Egs. (16), (23), and (32) simultaneously. 6(r, u),
¢(r, 1), and y(r, p).are all increasing functions of u.
¢(r, 1) and y(r, ) are both increasing functions of r
whereas 6(r, i) is a decreasing function ofr. The above
arguments are illustrated in Fig. 5, where Fig. 5(b)
exhibits Exactly two straight lines, which will be dis-

deg 80
V70
60
50
40+
30

20

0 10 20 30 40 50 60
u,deg
(a)
deg °°
80
70k
601 v
50+
40
a0
20r 4=9 /
10r- 4
% 10 20 20 40 50 80
n,deg
(b)
Fig. 5. (a) The limiting case of 6(r, u), ¢(r, 1), and y(r, p) for r
(b) T(})1.e limiting case of 6(r, u), ¢(r, y), and y(r, u) for r
—>oo,

cussed later in Eqgs. (37) and (38). The reader can also
check Eqgs. (17), (18), (24), (25), (33), and (34) in Fig.
5 and see how r affects the plots. It can be easily seen
that

o(r, W<O(r, wy<y(r, w. 35)

Therefore, Egs. (16), (23), (32), and (35) can be
combined to give

&(r, wy>-o and y(r, W<m—a, (36)
which can be used to determine the range of u for
given r and o. ¢(r, u)>-o. determines fy,,, while y(r,
W<m—a determines fty,,, which is illustrated in Fig.

6, where (m—@)—(-a)=7 is constant and independent of
a.

A
T—Qfm——m————— — — — — - —{
|
(1, :
l
o (r, 1) I
U
0 m — u
e T - —— ~
3
|
(2)

(®)

Fig. 6. Graphical illustration of fi,, and fy,.y; (a) small @, (b) large
a.
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The limiting case of r—ce indicates a constant
current source load on the dc side, which is normally
assumed in classical studies. Using Egs. (14) and (15),

cos,u) tan

Hy_H
sin 1 (tan )-

(37)

Using Eqgs. (21) and (22), we similarly obtain ¢(eo,

W=1/2. B(eo, )=¢(eo, i) is not surprising because 1(0)

=I(u) for constant I(®), which leads to A(ee, )=C(eo,

M) and B(eo, )=D(ee, p) in Egs. (13) and (20).
Using Eqgs. (30) and (31), we obtain

0 (oo, i)=tan! (1

- .. —1,4/3 sintl+cosp
V(e i) =tan (~/—cos,u sm,u)
sin(U+7l6) . , =
= tan” [cos(,u+77:/6)]_’u+6 (38)

Recall that wt,=n/6. In the foregoing derivation for
W(r, w), if 7/6 is not substituted for wyt,, and r is
assumed to be infinite, we obtain Y(eo, W)=pU+w,.
Since Y(eo, )<~ in Eq. (36), we have n—o—u>wit,,
which is consistent with classical results.

IV. Operating Range and Output
Plane

We are going to compute the allowable range
of o and the range of u for a given . ;=0 is
self-explanatory. From Fig. 6(b), we can see that 7—
O max=w(r, 0) while py,,=0=p. From Fig. 6(b), if 7—
o>y(r, n/3), we have p..=n/3. From Fig. 6(a), if -
a<¢(r, 0), we have U,;,=0. We summarize the above
arguments in Table 1.

However, as Fig. 5 and Eq. (24) show, we have
¢(r, 0)=0, and the third row of Table 1 can be elimi-
nated. Thus, the operating regions are illustrated in
Fig. 7, where Region I and Region II correspond to the
first and the second rows of Table 1, respectively.

From Fig. 5 and Eq. (33), y(r, 0)=n/6, and yAr,
1) is nearly a straight line. Therefore, using Eq. (34),
we have

Table 1. Range of Commutation Angle u for Different Regions of
Firing Angle o

75“[/(7‘, %L' )<a<amax
amax=”_w(r’ 0)

0= .umms.usﬂmax<—g
(T, Umax)=T0—-C

-¢(r, O)<o=<m-y(r, % ) 0=.umms.usﬂmax=%[
0=Omn<0t<-9(r, 0) 0<ummSys,umax=’§t
¢(r= ﬂmm)=‘ o

& 160 —
deg
140+ Aoz =7 — P(r,0)
120+ Region I
100 \
80} a=mx—1t(r,x/3)

60 Region II
40

20

Fig. 7. Operating regions of the firing angle o as a variation of
the normalized dc-side inductance r.

27k +9 b4
v(r, ﬂ)~—+ {[tan ' =22 - Ly
V3 (2m-3)" 6 39)
From y(r, Uy,.)=7—Q, we obtain
%”_a
Homax = 3 3 a2k 1 (40)
ks V3(2r-3)" 2

for Region 1. Note that &, =n—y(r, 0)=571/6, as can
be verified in Fig. 7.

Now consider the limiting case of r—oo, which
alsoresults in k—eo, Lj—>e0, Ly—>c0, and L3—>oo. Equation
(11) can be simplified as

”[cos(u+a+”) cos(a+ 7y

3¢— [sin (4 + o) —sinX]

=—2-3—7—[[cosa+cos(u+a)]. 41)
Equation (10) can be simplified as
<I>=3 pi+q(1-31). (42)

From Eq. (6) (using the first equality), p=q. We have
derived p by using Eqgs. (8) and (9). Then Eq. (42)
results in

<I>=p=1/—2§~[sin(,u+ a) —sino ]

—384 -



Analytical Model for the Phase-Controlled Rectifier

+cos( 1+ a+27”)—cos(a+27”)

=%[cosa—cos(/.t+a)]. (43)

From Eq. (43), we obtain cos(u+a), which is substi-
tuted into Eq. (41) to yield

E=3 (cosa-<I>). (44)

Equations (43) and (44) are consistent with classical
results (Mohan et al., 1989).

Figure 8 illustrates three families of regulation
curves of E versus </> on the output planes by varying
0°< UL, for a=0°,30°, 60°, 90°, 120°, and 150° with
r=0, 10, and . Each additional symbol * to the right
indicates a 10° increase of . Once the operating point
is determined, the corresponding i can be found by
linear interpolation. Note that for r—eo and a=150°,
we have p=0°[ y(eo, Uyax)=T—0=>L,=0° by using Eq.
(38)], <>=0 [from Eq. (43)], and E=-3v3/27=- 0.827
[form Eq. (44)], which is just a point and is not in-
dicated in Fig. 8(c). The left dashed curve, the right
dashed curve, the upper regulation curve, and the lower
regulation curve on each output plane of Fig. 8 enclose
the region in which the operating point is allowed to
exist. <I>;,=0 in Fig. 8(c) because a constant current
always remains in the CCM, and the left dashed curve
is just the vertical axis. Figure 8 agrees with the steady-
state solution obtained from the transient simulation
with 12 rectifier topological modes in an ac source
period.

V. Discussions

Figur{e 8(b) is similar to Fig. 8(c), which means
that for r210, the dc side can be well approximated by
a constant current source. This can also be seen in Fig.
7, where the boundary curve o=n—y(r, 7/3) is almost
a horizontal line in 10<r<100. For a large firing angle
o, the commutation angle g cannot be large (see Fig.
8) as to provide a sufficient turn-off time available to
the SCRs, and the normalized output current </> is thus
limited.

As the normalized dc-side inductance r becomes-
smaller, <I>,,, becomes larger, as illustrated by the
three left dashed curves of Fig. 8. This can be explained
as follows. As r becomes smaller, the dc-side current
waveform /(©) has more ripple, and the minimum value
of I(®) may go negative. Consequently, </> [dc
component of I( ©)] must be larger to raise the minimum
value of I(©) above zero so as to avoid entering the
DCM.

/
by Oty
RRRAR R

]

I

0 01 02 03 04 0.5 06
(I

ta=0° 0° < u<60°

A
o B:a=230°
C:a=60°10° < 1 < 60°
| D:a=090°
=~ E:a=120° 0° < u < 31.05°
F-a=150° 0°< < 0.19°

0.5

I
I
I
I
—os[-E P
i ——
! -

©

Fig. 8. (a) Regulation curves for r=0.
(b) Regulation curves for r=10.
(c) Regulation curves for r—eo(fim,,=0°).

VI. Conclusions

An analytical model with all equations and vari-
ables normalized has been presented for a rectifier
circuit with voltage source, current source, and dc
motor loads, which are all modeled as the series con-
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nection of an inductance, a resistance, and a constant
voltage source. We neglect the ac voltage across the
resistance and obtain another constant voltage source
in series with the inductance on the dc side. With a

positive-sequence balanced three-phase ac voltage -

source in series with the commutating inductances on
the ac side , we have been able to perform periodic
steady-state waveform analysis in the CCM and derive
regulation curves on the output plane; whose allowable
operating region is determined under a certain dc-side
inductance.
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